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Finding the “Dark Matter” in Human and Yeast Protein 
Network Prediction and Modeling 

 
Supporting Information 
 
1. Ab initio methods used for building the Predictograms (PG 
methods). 
 
GECO (Gene Expression COmparison) Method: Microarrays provide a high 
throughput approach for identifying functionally related proteins. For the current 
evaluation in yeast we chose a compendium of publicly available gene expression data 
from the Eisen lab. The dataset consisted of 80 experiments broadly corresponding to a 
previously published dataset [54]. A clear signal between microarray data and 
interacting proteins has previously been observed with the yeast dataset and the MIPS 
(MPACT) PPI dataset [55]. For human we use the E-TABM-185 compendium dataset 
of 6000 gcrma normalised HGU133-A affymetrix microarrays assembled by array-
express [56]. A maximum of 5 values were allowed to be missing from a given genes 
expression profile, using the C-clustering libraries masking function. Because virtually 
all yeast ORFS are present on the microarray, the combination of all pairwise 
correlation coefficients represents a near total population of ORF pairs. For the human 
hgu133a affymetrix chips 14,500 genes are well characterised giving a very large set of 
similarity scores. 
 
CODA (Co-Occurrence of Domain Analysis) Method: CODA is based on domain 
fusion analysis. The aim of gene fusion methods is to infer protein-protein interactions 
or more generally functional associations between pairs of separate protein chains in a 
genome of interest whose orthologues have become fused in another species. Enright et 
al. (1999) and Marcotte et al. (1999) [57,58] were the first groups to introduce this 
approach. CODA uses a Multi-Domain Architecture (MDA) representation of proteins 
in complete genomes (target genomes) provided by Gene3D Multi-Domain Architecture 
datasets [59]. The Gene3D database contains protein sequences for all complete 
genomes with predictions for CATH [22] and Pfam [23] domains as well as functional 
annotations including GO. MDA CATH and PFAM datasets were created from 527 
complete genomes (50 eukaryotes, 438 eubacteria and 39 archaea), CODA predictions 
were performed on these two (CATH and PFAM) datasets. 
 
CODA scoring method: Here we consider how the method is implemented for a 
particular pair of proteins i = (p,q) in a query genome g. P is the set of domains in 
protein p. a ∈ P denotes that protein p contains a domain of superfamily a. J is the set of 
domain pairs j = (a,b) where a ∈ P, b ∈ Q. In other words J consists of all the distinct 
pairs of domains between proteins p and q. It is also required that P∩Q = {}, as the two 
proteins must not share any domains of the same superfamily. 
 
To determine a fusion event we require that a target genome (one other than the query 
genome) contains a protein s where a ∈ S and b ∈ S i.e. domains which are separated in 
the query genome are found fused in the target genome. The set T comprises those 
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genomes other than g which contain such proteins s. For a domain pair j in genome g, 
the fusion score Cj is taken as a maximum over all genomes in T:  

 

 (1) 

 
Where |T| is the number of elements of set T (i.e. the number of target genomes),  

and are the frequencies of domain A and domain B respectively in genome g and 

and are the frequencies of domains A and B respectively in genome t. For a 

particular protein pair i, in query genome g, the maximum Cj is taken over all possible 
domain pairs j. 
 

  (2) 

 
Where |J| is the number of elements in set J (i.e. distinct domain pairs). Thus Ci is the 
CODA score for proteins p,q (pair i); the best (highest) score over all domain pairs 
between the proteins and over potential fusion proteins in all genomes (other than the 
query genome). The important novel aspect of this score is that it takes the maximum 
score over all the genomes whereas other methods do not consider target genomes 
individually. The score was chosen to reflect the uncertainty that fused domains and 
their unfused relatives are orthologues. The highest (best) possible score is 1 which is 
returned when there is only one example of each domain family in the query genome 
and one fused protein in a target genome, with no other domain homologues. In this 
case it is highly likely that the query protein domains are orthologous to the target 
protein. 
 

hiPPI (homology inherited Protein-Protein Interaction) Method: The hiPPI method 
takes advantage of the Gene3D families of structurally conserved proteins as well as 
multiple sources of protein-protein physical interaction (PPI) data to reliably infer 
(‘inherit’) novel protein-protein interactions from homologues. hiPPI exploits the 
Gene3D protein families (G3D_families) datasets [59]. These are families of proteins 
with similar multi-domain architectures generated using an automated, but conservative, 
clustering procedure. Interactions are only inherited between proteins belonging to the 
same Gene3D family, even though there may be recognisable sequence similarity with a 
protein in another cluster. This step helps to reduce the amount of noise produced by 
attempting to inherit from overly-distantly related sequences. 
 
The interaction dataset is formed from a merger of the PPI resources from MIPS, 
IntAct, HPRD and MINT protein-protein interaction datasets, obtained from the 
Gene3D database [59]. From each dataset the interacting proteins, their family, species, 
and experimental method was retrieved. Gene3D family codes consist of 11 elements. 
The first is the root family code, then the family is further sub clustered at 10 levels of 
sequence identity, termed S-levels (S30, S35, S40, S50, S60, S70, S80, S90, S95, 
S100).  
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hiPPI score (for a graphical description see Figure 1): For every test protein ('the 
inheritees'), all the relatives ('the inheritors') with interactions with proteins ('the 
complementors') with relatives in the inheritee's species ('the complementees') are 
identified. The inherited interaction ('inheritance') is that between the inheritee and the 
potential complementees. Known direct interactions were discarded. For each 
inheritance the similarity between the inheritee and the inheritor is measured by what 
Slevel they belong to, on a scale of 1 – 11 (1 is the family code and 11 is 100% 
identical); this is termed the 'iLevel'. Identically, the 'cLevel' is calculated for the 
complement. The two values are then averaged to create the 'icLevel'. 
 
At this stage two alternative steps can be taken, and both are useful in different 
situations. The first assumes that if a protein interacts with one member of family then it 
is likely to at least show some affinity for another member in the same species. This can 
be considered biologically realistic, as the effect is seen in many genetic experiments 
(i.e. complementation tests). In this case all inheritances are counted. The second 
disregards this assumption in order to identify the probable biologically most important 
interaction. In this case, those inheritances with either a cLevel or an iLevel of 10 are 
disregarded. For the current study the former approach was used. 
 
Since each protein-protein interaction can be inherited from more than one species, 
experimental method or iLevel, a summed score is created (the 'iScore') for each distinct 
pair of icLevels (NB iLevel = 10, cLevel = 8 is not the same as iLevel = 8, cLevel = 
10). The first entry (non-redundant experiment) at that level contributes the full score of 
the icLevel. For subsequent entries at that icLevel if the experiment type or species is 
not new the score is halved; if neither is new but is a recombination of previously 
observed ones then the score is quartered. The final iScore is the sum of all the 
intermediate icLevel scores. 
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Figure 1. The hiPPI approach. (A) An example of identifying two potential interaction partners 
(labelled (d)) for the query protein (a). The interaction is inferred from the known interaction between (b) 
and (c), which are homologous to (a) and (d) respectively. Small example trees are shown for each 
family; each branch in the trees occurs at a particular family S-level (i.e. 80% sequence identity). The S-
level in common between (a) and (b) is the iLevel, while the S-levels in common with (c) and the (d) s are 
the cLevels. 
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2. Benchmarking studies for the integrated prediction methods using 
KG datasets. 
 
These studies explored the variation of Precision vs. Recall with progressive reduction 
of noise, due to increasing evidence (yeast ≥ 2, 1 evidences and in Human ≥ 3, 2 and 1), 
in the gold standard KG datasets used to estimate statistical power. These plots (Figures 
2A and B) reinforce the results showed in Figure 1 in the main manuscript by showing 
that reduction of noise in the gold standard KG datasets increases the area under the 
curve in the precision vs. recall plots for both species. 
 
There are two related effects that could distort the estimation of FP rates in our 
validation model: the fact that the gold standard datasets do not contain all the true PPIs 
in nature; and the fact that the random model used for benchmarking can randomly 
select true positives. Therefore, we have performed an experiment to estimate the 
consequence of considering TPs as FPs in our validation protocol. 
 
We have validated performance using as random datasets the combination of 2/3 
randomly obtained PPI plus a random selection of 1/3 known TPs from the GOSS, Int 
and Reactome_int datasets (these TP enriched random datasets are called “noisier”). We 
then compare the results for these noisier datasets with validations performed using the 
remaining 2/3 of PPIs from the same gold standards (Figure 2C and D). When TPs are 
counted as FPs the precision decreases in all cases giving an underestimate of the 
performance of the prediction methods. 
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Figure 2. Prediction power of the integrated methods in yeast and human. Panels present precision 
versus recall for Yeast and human, as discussed in the main manuscript. In panel A, validation for yeast 
was performed using KG ≥2 evidences and KG ≥1 evidences as gold standards. Panel B shows the 
validation in human using the KG ≥3, 2 and 1 evidence gold standard datasets. The enlargement 
highlights the improvements obtained. In panel C validation was performed in yeast using the Goss and 
Int noisier datasets as random models and the remaining 2/3 of the respective gold standard datasets as 
TPs. In panel D validation was performed as in panel C but in human using the Reactome_int extra 
datasets. 
 
 

3. Metrics and Mutual Information 
 
 
A. Metric for Yeast  
 
Yeast GECO CODAcath CODApfam hiPPI 
GECO - 0.9982 0.9987 0.9697 
CODAcath   0.9697 ~1 
CODApfam    ~1 
hiPPI     
 
B. Mutual information predictions in Yeast 
 
Yeast GECO CODAcath CODApfam hiPPI 
GECO - 0.0018 0.0013 5.4612.e-05 
CODAcath   0.0059 9.3768.e-07 
CODApfam    9.2720.e-07 
hiPPI     
 
C. Metric for Human  
 
Human GECO hiPPI CODAcath CODApfam 
GECO - 0.9998 0.9326 0.9311 
hiPPI   0.9999 0.9998 
CODAcath    0.9987 
CODApfam     
 
D. Mutual information predictions in Human 
 
Human GECO hiPPI CODAcath CODApfam 
GECO - 1.1143.e-04 0.0560 0.0585 
hiPPI   7.5174.e-05 1.2897.e-04 
CODAcath    0.0011 
CODApfam     
 
 
Table 1. Study of dependencies between the prediction methods. The mutual information remains low 
suggesting a minimal overlap of features. Tables A and C correspond to the normalised measure or 
universal metric whilst B and D show the mutual information scores between the predictors. In order to 
meet the statistical requirements for integrating PG datasets it is important to ascertain whether 
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integration improvements could be an artefact caused by correlation and dependencies between the 
prediction methods. Mutual information is a more general measure of correlation than the Pearson's 
correlation coefficient metric, capturing both linear and non-linear correlations. 
 
Metric 
 
Many applications require a metric, that is, a distance measure between points. The 
quantity d(X,Y) = H(X,Y) − I(X;Y) satisfies the basic properties of a metric; most 
importantly, the triangle inequality, but also non-negativity and symmetry. Where H is 
the entropy between X and Y samples and I the corresponding mutual information. 

 In addition, one also has 

, 

 and so obtains 
 

The metric D is a universal metric, in that if any other distance measure places X and Y 
close, then D will also judge them close. 

In this way, mutual information and mutual metric measure opposite behaviours. The 
latter is adopted with the aim of normalizing for database size. 
 
4. Validation of the FisherW p-values using physical interaction 
datasets. 
 
We have performed the validation of the Fisher predictions using the “Int” datasets for 
yeast and human and with an additional Reactome_int dataset for human (see Figure 3). 
The Int dataset combines the interaction data from the HRPD, MINT, and Intact 
databases (see Methods). In human we have used an extra Reactome_int dataset which 
contains the physical interactions annotated in the Reactome database. No similar 
Reactome_int dataset was available for yeast since Reactome is only focused on human 
molecular interactions and reactions. The methodology employed for performing 
analysis of precision vs. coverage was the same as that described in Methods. 

We found that Fisher p-values correlate inversely with the precision scores in the yeast 
and human validations (see Figure 3a and b respectively), as expected if physical 
interaction information is linked to the Fisher prediction score. Fisher integration 
retrieves 240,840 predictions with precision ≥ 80% from the Int validation dataset in 
yeast (Figure 3a). This figure is more than two fold the number of hits obtained in the 
Gossr validation at the same precision level ≥ 80% (see Figure 1 in the main 
manuscript). For the functional analysis performed in our work, physical interaction 
validation with the Int dataset in yeast assigns a precision ≥ 90% to the PG0.01 dataset 
(pairs with p-values ≤ 0.01), higher than the Gossr validation estimation which assigns a 
lower precision (precision ≥ 80%) to the same PG0.01 dataset (see Figure 1a in the main 
manuscript). 
 
For the human Int validation dataset Fisher predicts 455,410 pairs with precision ≥ 80%, 
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whilst in the validation using Reactome_int the number of predictions rise to 3,823,840 
at the same level of precision ≥ 80% (Figure 3b). These figures are about half and 
almost four fold, respectively, the PG0.014 human dataset used for functional analysis in 
our work. In the Gossr validation of the PG0.014, the selected Fisher predictions achieve 
precisions ≥ 80%. However, in the Int and Reactome_int validations the PG0.014 selected 
Fisher predictions dataset reaches precisions of ≥ 76% and ≥ 82%, very close to the ≥ 
80% precision assigned by the Gossr validation of the same PG0.014 dataset. 
 
 

 
 
Figure 3. Prediction powers of the Fisher integrated method in yeast and human using datasets of 
pairs of physically interacting proteins. Panels present the results for yeast and human in terms of 
precision (y-axis) versus recall (x-axis), as discussed in the main manuscript. Panel A shows the 
validation in yeast using the Int dataset (a combination of the physical interaction datasets; see Methods) 
as gold standards (blue line). Panel B shows the validation in human using the Int (blue line) and 
Reactome_int (red line) gold standard datasets. The boxes highlight the number of predictions retrieved 
with precision ≥ 80%. 
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5. Fisher integration of the STRING individual ab-initio prediction 
datasets and benchmarking of the integrated STRING predictions. 
 
We performed a weighted Fisher integration of the neighbourhood, fusion, co-
occurrence and co-expression prediction datasets obtained from the STRING site 
(http://string-db.org/newstring_cgi/) [14]. The yeast and human STRING predictions 
were extracted from the downloaded file: protein.links.detailed.v8.2.txt.gz. Duplicated 
(ie redundant) protein-protein pairwise predictions were identified in the STRING yeast 
and human datasets and removed. The four STRING prediction datasets scores showed 
Gaussian distributions and their scores were translated into p-values. Then, FisherW 
integration was performed for the STRING prediction datasets following the same 
protocol implemented in this work for obtaining the PG predictions (see “Calculating p-
values for the predictions and data integration” section in Methods). 
 
We compared our PG Fisher prediction performance against the STRING Fisher 
integrated scored predictions. STRING is an updated and well-known resource for 
predicting protein interaction, and represents a good gold standard to compare against. 
STRING comprises, amongst other methods, four ab-initio prediction methods similar 
to the methods integrated in the PG models. Amongst other methods, STRING provides 
the following ab-initio predictions based on genome and gene expression comparison: 
gene neighborhood, gene fusion (comparable to CODA), gene co-occurrence, and gene 
co-expression (comparable to GECO). STRING does not include a prediction algorithm 
similar to hiPPI, but instead STRING implements a phylogenetic profiling-like method 
(gene co-occurence) and a gene genome co-localization method (gene neighborhood). 
In any case, hiPPI predictions represent a small percentage (around 0.1%) of the total 
predictions integrated by Fisher in our work, and therefore with little influence on the 
overall increase in prediction power observed. 
  
The number of STRING predictions is significantly smaller that the PG predictions 
indicating a much lower coverage for all the methods compared (Table 2). 
 
 Yeast Human 
Method STRING PG STRING PG 
FisherW predictions 89,037 10,642,398 87,102 70,908,243 
neighborhood 17,137 - 18,391 - 
fusion 1,119 678,928 (cath) 

336,781 (pfam) 3,943 32,259,881 (cath) 
24,984,943 (pfam) 

co-occurence 2,791 - 20,348 - 
coexpression 72,049 10,371,735 49,382 26,292,126 
hiPPI - 12,070 - 86,099 
 
Table 2. Comparison of the numbers of STRING and PG ab-initio predictions in yeast and human. 
First column: methods. Following columns: number of predictions retrieved by each ab-initio method 
independently for the STRING and PG data in yeast and human. CODAcath (cath) and CODApfam 
(pfam) number of predictions are also indicated. 
 
Since a given method can predict large numbers of predictions without there being any 
functional information associated with the predictions, the total number of predictions is 
not a good indicator of the methods’ performance in itself, but the number of accurate 
predictions above a significant precision level (e.g. 80% precision) is a useful measure. 
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Therefore, the STRING predictions were validated with the same Gossr and Int gold 
standard datasets used to validate the PG predictions in our work (Figure 4). 
 
The STRING Fisher predictions’ scores show correlation with precision in yeast and 
human (see Figures 4a and b, respectively). However, the STRING Fisher’s prediction 
power is much lower than the PG predictions. Whilst, in yeast, the number of STRING 
predictions with precision ≥80% number 14,293 in Gossr validation and 19,849 in Int 
validations respectively (see Figure 4a) the comparable PG validations in yeast yielded 
95,351 and 240,840 predictions above 80% precision (see Figures 1a in the main 
manuscript and 3a). In human validation, STRING showed worse performance than in 
yeast, probably due to the difficulties in implementing ab-initio prediction methods in 
upper eukaryotic organisms like human (Ranea et al., 2007 [50]). STRING human 
validation shows 100 predictions with precision ≥80% in Gossr validation, 550 and 650 
predictions in the Int and Reactome_int validation respectively, while the comparable 
figures in the PG human validations are 1,052,579, 455,450, and 3,823,840 in the Gossr, 
Int and Reactome_int respectively with precision ≥80% (see Figures 4b and compare 
versus Figures 1b in the main manuscript and 3b). The integrated PG datasets clearly 
outperform the integrated STRING datasets and therefore constitute an accurate and 
comprehensive dataset of ab-initio predictions to analyse and compare with the KG 
datasets. 
 
 



 11 

 
 
Figure 4. Validation of the FisherW integration of the STRING ab-initio prediction datasets in 
yeast and human. STRING_FisherW predictions were validated with Gossr and Int in yeast (A) and 
human (B), and with Reactome_int in human (B). Precision (y-axis) is represented versus number of 
predictions –Recall- (x-axis). 
 
6. Assessment studies for the Bayes integration of CODA, hiPPI and 
GECO datasets. 
 
In order to contrast the results of the Fisher weighted method with other methods, 
exploiting prior knowledge, we compared the Fisher weighted method to the Naïves-
Bayes classifier, which employs a semi-learning approach. We used the Gossr as a True 
Positive (TP) training dataset and a randomisation of this dataset for the True Negative 
(TN) training dataset (with 1,000 iterations). These TP and TN datasets were useful for 
learning the corresponding parameters of our model and subsequently for calculating, 
by bayesian inference, the posterior maximum likelihood for every pair involved in the 
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integration. A Likelihood Ratio (LR) was calculated for every TP and TN integrated 
dataset’s p-values as follow: 
 LR(p1,p2,…,pn) = P(p1,p2,…,pn |I)/P(p1,p2,…,pn |~I) = ∏i=1

 n [P(pi|I)/P(pi|~I)] 
 
(In the ∏i LR calculation it is assumed the conditional independence of the integrated 
datasets). 
 
And therefore, by inference of Bayes rule, we are interested in determining the posterior 
odds ratio of interaction between two proteins in our integration: 
Opost = P(I|p1,p2,…,pn )/P(~I|p1,p2,…,pn) = P(I)/P(~I) * P(p1,p2,…,pn |I)/P(p1,p2,…,pn |~I)  
= Oprior * LR(p1,p2,…,pn) 
 
Where Opost and Oprior are the posterior and prior odds ratios respectively and I is a 
binary variable for the interaction and absence of interaction in the case of ~I. Finally, 
we termed p1,p2,…,pn as the scores of datasets to being integrated. 
 
Bayes integration of the datasets from the four individual methods (GECO, CODAcath, 
CODApfam and hiPPI) was implemented as described above for yeast and human, and 
the Bayes integration was compared against the Fisher integration. The yeast and human 
Bayes integrations were validated and compared using Int and Reactome_int datasets, 
since the Gossr datsets could not be used for both, training and validating proposes. 
 
Bayes integration produced uneven results in yeast and human compared to Fisher 
(Figure 5). Whilst Fisher outperforms Bayes for the highest levels of precision in yeast 
(see left side of the Figure 5a), in human Bayes performs better (see Figure 5b). These 
results show that the Fisher’s integration gives a good performance compared to a 
trained method, despite the fact that this has the advantage of learning from the 
experimental (KG) information to predict PPIs. Therefore, despite the increase in 
precision achieved by using Bayes with the human data, Bayes, as with any trained 
and/or supervised integration method, could not be used in our analysis since we would 
then be comparing Bayes PG models, that were not completely independent from the 
KG training datasets, against the KG models.  
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Figure 5. Comparison of the Fisher and Bayes integrations of the PG datasets in yeast (A) and 
human (B). Precision (y-axis) versus number of predicted hits –Recall- (x-axis). 
 
 
7. Calculating topology features for the PG and KG protein networks. 
 
The following topological parameters were calculated for the PG and KG networks: 
 
Degree Statistic or Vertex Degree Connection, the most commonly calculated 
parameter. Measurements in classical undirected graphs indicate that the power-law 
growth described as ck-γ with γ>0 and c>0 and its associated exponents (γ≈2-3 typically 
for stable models) are significant statistics for the classification of graphs and can be 
used to determine the similarity of the predicted network model to the real network 
model [36-40]. 
 
Degree Correlation or Assortativity [39,40], this parameter measures the preferential 
attachment of a new node i.e. the likelihood that a new node will be associated with 
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others that are highly connected in the graph. Together with power-law growth this is a 
sufficient and necessary condition for Scale Free (SF) network models [37,38]. 
 
Clustering Distribution, this is a density function based on the probability of each 
node belonging to a completely connected triplet, and is a necessary condition for 
proving a Hierarchical or modular organization [41, 52]. 
 
Clustering Average Coefficient Statistic or the mean probability of finding triangles 
in the networks [37], which would support the scale free behaviour of our networks 
[38]. 
 
Distance Statistics, in our case this was calculated by solving the all pairs shortest-path 
problem (APSP) in polynomial time [42]. We have used some more 'compact' derived 
statistics as well, such as: 
 
Average or Characteristic path length ℓ parameter [37], the arithmetic mean of all 
connected pair distances in the graph used for assessing small world properties [36,60]. 
For disconnected sub-graphs we set ℓ=∞. 

Radius, Diameter and Eccentricity Statistics [42] By fixing one argument of the 
distance, the analysis of this eccentricity might be usefully reduced to εcc(ni) as the 
maximal distance to another node in the graph. In our case this can be calculated from 
the distance matrix O(ni

2) (obtained from the single-source shortest-paths problem 
solution (SSSP) time). The radius of the Graph, Rad(G), as the minimal eccentricity of 
all vertices. The diameter of a graph G, diam(G), as the maximal distance between two 
arbitrary (connected) vertices (used in testing the network modularity [52]). 

Algorithmic Aspects and Path Algebra, Our networks were all treated as cycles of 
non negative weight [32] so that the problem of determining distances could be solved 
in polynomial time and by well established algorithms provided as functions deployed 
in Matlab MathWorks, C++, Java, Octave and Python high-level languages. Assuming 
that G=(V,E) is a weighted undirected graph without cycles of negative weight the 
approach adopted for the calculation of the distance matrix is given by matrix 
multiplication over the path algebra [42].  
Let di(u, v) be the weight of a shortest path (i.e. a path of minimal weight) from u to v 
using at most i edges. This implies 
 

if u=v, otherwise ∞. 

  
 
Since a path with at most i + 1 edges either has at most i edges or consists of a path of 
length ≤ i to a predecessor v' of v and the edge (v', v), we have 
 

 
 
 
8. The set of PG models obtained using different cutoffs in yeast 
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Figure 6. Pictures of the different PG Yeast network models presented in the main manuscript. A) the 
non-random network, B) and C) the p-value and adjacency random models respectively. Finally, D) the 
clustering coefficient distribution. The points referring to distributions depicted in the main manuscript 
have been enhanced in size. 
 
 
Figure 6 presents the entire set of network models studied in the analysis including 
those introduced in the main manuscript obtained by every cutoff applied in the 
analysis. Notice panel D) presents the PG Clustering distribution in Yeast. 
 
Note: There will be not a section for all KG models because the complete sets of 
results have already been presented in the main manuscript. 
 
 
 
 
 
 
 
 
 
 

A 
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B 
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9. The set of KG models obtained by using different cutoffs in KG 
human 
 
 
 
 
 

 
 
Figure 7. As for Figure 6 but showing data for the Human KG-grams. Similar trends are observed. 
 
 
Figure 7 presents the entire set of network models studied in our analysis, including 
those shown in the main manuscript, and obtained using different cut-offs. Note: panel 
D) presents the PG Clustering distribution in Human. 
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10. The set of PG models obtained by using different cut-offs in PG 
human 
 
 

 
 
Figure 8. As in Figure 6 but for the Human PG-grams. The same trends are observed again. A scale-free 
character is observed, typical of the real-networks, as well as a non-hierarchical organization. 
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11. Assortativity of yeast and human networks 
 
 

 
 
Figure 9. This shows the degree correlation trends for the different Yeast KG and PG networks presented 
in this paper.  
 
 

A 
 
 
 
 
 
 
 
 
 
B 
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Figure 10. These results provide a view of the degree correlation between the different networks 
presented in this paper. The final plot explains why there is such a radical decay of the degree distribution 
in the human PG-gram in Figure 3b (main manuscript). Notice the contrasting behaviour of the 
assortativity in human PG compared to the behaviour in yeast Figure 2b. 
 
 
Assortativity trends in Figures 9 and 10 are in agreement with the results shown in 
Figures 2 a-b and 3 a-b of the main manuscript in which the Degree distribution (ki) 
remains linear for edges with strong statistical weight and the Gaussian random effect 
appears when those edges have weaker statistical weight. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 
 
 
 
 
 
 
 
 
 
 
    B 
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12. Hierarchical organization 
 
 

 
 
Figure 11. Clustering distributions in yeast (panels A and B) and human (panels C and D) PG and 
KG networks respectively. The legend for panels B, D indicates the level of significance selected in 
yeast and human PG networks (e.g., PG0.01 = the PG network with p-value threshold of ≤0.01). Axes are 
the clustering coefficient (y-axis) versus connectivity (ki) per node (x-axis).  
 
 
13. Other Parameters Involved in the Analysis of the Networks 
 
In this section we present the parameters measured in the analysis of the networks. 
  
KGYeast 
significance 
levels 

Density Cluster 
average 

Characteristic 
Path Length 
(ℓ) 

Radius Diameter 

>=3 evidences 6.6789*10^-5 0.03537 4.9780 2.000 16.0000 
>=2 evidences 0.0015 0.25814 4.4867 2.000 11.0000 
>=1 evidences 0.0437 0.48762 2.2712 4.000  6.0000 
KGHuman 
significance 
levels 

Density Cluster 
average 

Characteristic 
Path Length 
(ℓ) 

Radius Diameter 

>=5 evidences 2.1809*10^-06 0.00337 2.5480 1.0000 10.0000 
>=4 evidences 8.7124*10^-06 0.01173 2.3100 1.0000 9.0000 
>=3 evidences 2.0545*10^-05 - - - - 
>=2 evidences 0.000109 - - - - 
>=1 evidences 0.002914 0.15261 1.0100 1.0000 2.0000 
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Table 3. Network parameters used in the analysis: density, cluster average, characteristic path length 
average, radius and diameter (see section 6). The rows are the KG networks for yeast and human species.  
 
 
PGYeast 
significance 
levels 

Density Cluster 
average 

Characteristic 
Path Length 
(ℓ) 

Radius Diameter 

≤0.01 pvalues 0.0016 0.1961 3.2137 2.0000 9.0000 
≤0.05 pvalues 0.0169 0.1584 2.5876 1.0000 12.0000 
≤0.1   pvalues 0.0345 0.1819 2.2037 1.0000 10.0000 
≤0.2   pvalues 0.0648 0.2085 1.9237 1.0000 9.0000 
≤0.4   pvalues 0.1361 0.2541 1.7099 1.0000 7.0000 
≤0.6   pvalues 0.2035 0.3061 1.5441 1.0000 7.0000 
≤0.8   pvalues 0.5462 0.7498 1.3411 1.0000 3.0000 
Total 0.6822 0.8960 1.2041 1.0000 2.0000 
PGHuman 
significance 
levels 

Density Cluster 
average 

Characteristic 
Path Length 
(ℓ) 

Radius Diameter 

≤0.01 pvalues 0.0012 0.0424 2.6974 1.0000 12.0000 
≤0.05 pvalues 0.0053 0.1054 2.6641 1.0000 12.0000 
≤0.1   pvalues 0.0118 0.1353 2.5138 1.0000 11.0000 
≤0.2   pvalues 0.0215 0.1710 - - - 
≤0.4   pvalues 0.0454 0.2271 - - - 
≤0.6   pvalues 0.0694 0.2987 - - - 
≤0.8   pvalues 0.0907 0.3651 - - - 
Total 0.1158 0.4252 1.6035 1.0000 5.0000 
 
Table 4. Network parameters: density, cluster average, characteristic path length average, radius and 
diameter (see section 6). The rows are the PG networks for yeast and human species.  
 
In Tables 3 and 4 several measures are shown which support the highly modular nature 
of our networks: as the significance levels of the PG and KG models increases there is a 
decreasing density with concomitant decrease in the cluster average. This correlation 
between density, cluster average and significance level together with the fact that the 
radius remains almost equal and both diameter and ℓ increase appreciably, is consistent 
with the other topological signals of high modularity found in our modelled networks. 
These include: relatively low assortativity (in human lower than in yeast), scale free 
exponents below 3, and no hierarchical structure (detailed support of these statements 
can be found in references [37, 39, 42]). Note that the density parameter was defined as 
the probability of obtaining triangles in any network, and that radius, ℓ, and diameter 
measurements are referred to the largest component of a network in accordance with 
definition of path algebra introduced in section 7. 
 
Some of the parameters are not explored in human because of the high computational 
cost in calculating these values. Nevertheless, the tendency for high modularity is 
confirmed in the other parameters calculated for human. 
 
To further illustrate the modular behaviour of our models we present two models (A –
for human and B –for yeast in Figure 12) highlighting the difference in modularity of 
the yeast and human networks. Notice a higher assortativity in the yeast network (as in 
most real-life networks) compared to the human example. These examples support the 
proposed possible configuration of our networks, although they do not necessarily 
depict an exact model of them. 
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Figure 12. Two disassortative networks. (A) High-degree nodes are loosely interconnected in the case 
of human KG and PG networks. (B) High-degree nodes are tightly interconnected in yeast KG and PG 
networks. 
 
 
14. The GO semantic similarity refined dataset (Gossr) used for 
validating the prediction methods. 
 
In order to increase the quality and reliability of the human and yeast validation 
datasets, those annotations with term evidence type Inferred from Electronic Annotation 
(IEA), No biological Data available (ND) and those inferred from Computational 
Analysis were removed. We expected the source data of CODA, GECO and hiPPI to 
have overlap with IGC (Inferred from Genomic Context), IEP (Inferred from 
Expression Pattern) and IPI (Inferred from Physical Interaction) annotation sets 
respectively. To minimise this overlap and prevent circularity, these evidence codes 
(IGC, IEP and IPI) were removed.  
 
GO annotations of human and yeast proteomes were obtained from UniProt GOA 
proteome sets 17th-October-2008 (Human file: 25.H_sapiens.goa; yeast: 40.S 
cerevisiae.ATCC 204508.goa with whole proteomes coverage by GO annotation of 
95.5% and 72.5% respectively) downloaded from the Gene Ontology Annotation 
(GOA) database located at the European Bioinformatics Institute (Hinxton - 
http://www.ebi.ac.uk/GOA/).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A 

 

B 
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15. Quantitative comparison of intersections and unions of KG and PG  
  
 

Intersection, Fusion 
and Source Networks # Edges # Nodes 

KGY U PG0.01Y 760,057 5,366 
KGH U PG0.014H 2,821,556 24,056 

KGY 682,079 5,261 
PG0.01Y 95,351 4,374 

KGH 1,783,025 10,095 
PG0.014H 1,052,579 19,618 

PG0.01Y \ KGY ∩ 
PG0.01Y 77,978 105 

PG0.014H \ KGH ∩ 
PG0.014H 1,038,531 13,961 

   
Yeast (total proteome) - 5586 

Human (total proteome) - 34912 
 
 
 
Table 5. Quantitative analysis (in terms of the edges and real nodes) of the union and intersection of 
the source sets (Yeast (Y) and Human (H)). The total number of proteins (nodes) in the yeast and 
human proteomes are also indicated at the bottom of the Table. 
 
 
16. Functional enrichment analysis of the yeast and human dark 
(hidden) hubs. 
 
We have performed a comparative enrichment analysis of the top 10% and bottom 10% 
of the PGki_er ranked lists, against the human proteome background datasets, using the 
DAVID algorithm [43]. DAVID includes functional annotation from an extensive 
number of public resources and identifies enriched biological themes, particularly GO 
terms, computing a p-value for the observed enrichment. Results indicate that the dark 
hubs in our dataset (top 10% of the PGki_er ranked lists) are significantly enriched in 
proteins integral to membrane in yeast (Table 6), compared to the bottom 10%, and in 
unknown (i.e. with no functional annotation) proteins in yeast and human (Table 7). 
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 GO term GO 
cat. 

Top 
10
% 

Bot. 
10
% 

Tot.
% P-val 

GO: 
number 
Ids 

GO definition 

Intrinsic to 
membrane cc 111  23 9,10 

E-06 0031224 

Located in a membrane such that some 
covalently attached portion of the gene product, 
for example part of a peptide sequence or some 
other covalently attached moiety such as a GPI 
anchor, spans or is embedded in one or both 
leaflets of the membrane. 

Integral to 
membrane cc 106  22 1,80 

E-05 0016021 

Penetrating at least one phospholipid bilayer of 
a membrane. May also refer to the state of 
being buried in the bilayer with no exposure 
outside the bilayer. When used to describe a 
protein, indicates that all or part of the peptide 
sequence is embedded in the membrane. 

Regulation 
of 
transcription 

bp  110 21 1,20 
E-08 0045449 

Any process that modulates the frequency, rate 
or extent of the synthesis of either RNA on a 
template of DNA or DNA on a template of 
RNA. 

Non-
membrane-
bounded 
organelle 

cc  132 25 2,60 
E-03 0043228 

Organized structure of distinctive morphology 
and function, not bounded by a lipid bilayer 
membrane. Includes ribosomes, the 
cytoskeleton and chromosomes. 

Y
ea

st
 

Intracellular 
non-
membrane-
bounded 
organelle 

cc  132 25 2,60 
E-03 0043232 

Organized structure of distinctive morphology 
and function, not bounded by a lipid bilayer 
membrane and occurring within the cell. 
Includes ribosomes, the cytoskeleton and 
chromosomes. 

hu
m

an
 

Extracellular 
region 
 

cc  423 21 2,00 
E-24 0005576 

The space external to the outermost structure of 
a cell. For cells without external protective or 
external encapsulating structures this refers to 
space outside of the plasma membrane. This 
term covers the host cell environment outside 
an intracellular parasite 
 

 
Table 6. Gene-annotation enrichment analysis of the yeast and human dark (hidden) hubs. Gene-
annotation enrichments in GO of the 10% top of hubs and the bottom 10% of nodes in the yeast and 
human protein lists, ranked by their PGki_er values, performed using the DAVID algorithm with the 
human proteome as the background (Dennis et al., 2003; http://david.abcc.ncifcrf.gov/; see in Results the 
section: “Analysing the ‘dark matter’ in the PG models.” and in Methods the section: “Calculating the 
PGki enrichment ratio and the PG functional enrichment”). PGki_er values rank the dark (hidden) hubs at 
the top of the list. These are proteins with high connectivity in the PG model and low connectivity in the 
KG models; while those hubs with few connections in the PG models compared to the KG models are 
ranked on the bottom. The Table shows from left column to right: specie, yeast and human; name of the 
GO term; GO category: cc (cellular component) and bp (biological process); Top 10% - results related to 
the enrichment analysis of the top 10% of the ranked lists; Bottom 10% - results related to the bottom 
10% of the ranked lists; Tot. % - protein enrichment percentage over the analysed datasets; p-value, 
statistical significance provided by DAVID – note that all the enrichment data shown are statistically 
highly significant; GO identification number; and functional definition in GO. Only the Tot.% enrichment 
values equal or greater than 20% are reported. Enrichment results show that 22% of the top 10% dataset 
proteins are “Integral to membrane” in yeast, while 25% of the bottom 10% dataset proteins are annotated 
as “Intracellular non-membrane-bounded organelle”. In human there is no significant enrichment equal to 
or above 20% in the top 10% dataset, while in the bottom 10% of the dataset 21% of proteins are 
annotated with the “Extracellular region” GO localization term. The results in yeast statistically support 
the observation that the hidden hubs are significantly related to membrane proteins, which are difficult to 
isolate by conventional purification protocols. 
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yeast  human   

Top 10% Bottom 10% Top 10% Bottom 10% 
Known 475 522 1907 2125 
Unknown 61 14 286 68 
Total 536 536 2193 2193 
 
Table 7. Number of known and unknown proteins in the yeast and human dark (hidden) hubs 
datasets. This table shows the number of proteins with functional annotation (known) and without 
functional annotation (unknown) found by DAVID in the top and bottom 10% of the protein lists ranked 
by their PGki_er values in yeast and human. The ratio of unknown proteins in yeast (61/14) and in human 
(268/68) are both about 4 times higher in the top 10% than in the bottom 10% of the dataset, indicating 
that the dark (hidden) hubs datasets (top 10%) are enriched in proteins without any current functional 
knowledge. 
 
 
17. Context analysis and validation 
 
The following example represents the typical context analysis framework: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Context matrix of interactors. This matrix represents the framework of second order or 
context prediction analysis. Prot.1 and Prot.2 share the same partners as do Prot.3 and Prot.4 but there are 
no binary links between proteins in these pairs. 
 
We observe in Figure 13, for example, that in the comparison between Prot.1 and Prot.2 
only three matching bits (1-1) are found, whilst between Prot. 1 and Prot. 3 there is an 
absence of matching bits and between Prot. 3 and Prot. 4 two matching bits (1-1) are 
found and one non matching bit (1-0). It can be seen as well that there is not a direct 
relationship between Prot. 1 and 2 or between Prot. 3 and 4, consequently the prediction 
retrieved using context could not be detected from their primary interactions. 
 
 
 
 
 
 
 
 

Prot. 1 
 
Prot. 2 
 
Prot. 3 
 
Prot. 4 
… 

0     0    0    1    0    1    1 
 
0     0    0    1    0    1    1 
 
1     1    0    0    1    0    0 
 
1     1    0    0    1    0    0 
… 
 

 1    2    3    4    5    6    7 
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18. Functional association predictions based on context information in 
the PG networks  
 
The protein association profiles (i.e. vectors of interacting proteins for each protein in 
the PG networks; see Methods) were compared between all protein pairs in order to 
retrieve additional association signals not explicitly present in the first order predictions. 
Similarities between protein association profiles were calculated using three different 
measurements: bits and specific bits for human and yeast (see methods), and 
congruence only for yeast [53] (congruence measure involves a combinatorial 
calculation which is not feasible given the large size of the human PG network; see 
Methods).  
 
Bits and specific bits scores show very similar behaviour in all the KG datasets. In yeast 
specific bits slightly outperforms bits score for all the datasets, while in human the 
opposite is observed and bits slightly outperforms specific bits score except for 
Reactome_Int where bits calculation shows remarkable improvement over specific bits 
predictions (Figures 16e, 17e and 18e). However, the congruence measure in the yeast 
PG0.001 network shows a poor performance close to random behaviour for practically all 
KG datasets in yeast (Figure 4a; and Figures 14 and 15 in Text S1). Therefore, we 
decided not to use congruence further as a measure. 
 
The large sizes of both PG matrices (4,374 x 4,374 nodes in yeast and 19,618 x 19,618 
nodes in human; see Table 5), make it very unlikely that two proteins would share a 
significant number of interactions in their respective association profiles by chance, 
which would explain the good performance of the bits score. 
 
Similarity score performances vary according to the nature of the gold standard datasets 
used to validate them (Figure 20). If we consider the bits specific scores as the most 
stable measure, we observe that for yeast the second order approach is better at 
predicting protein relationships in KEGG, than predicting physical interactions (Int 
dataset) or ontological associations in the GO or FunCat databases (Goss and Foss 
datasets) (see Figure 20a and b). Whilst, in human, second order predictions seem to 
work much better at predicting associations in biological pathways (Reactome and 
KEGG) than predicting physical interactions (Int and Reactome_Int) and are even worse 
at predicting ontological relationships (GOSS and FOSS; see Figure 20c and d). These 
differences can probably be explained by the difference in noise (error) in the different 
biological sources used as gold standards to validate performance. 
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Figure 14. Yeast PG network context similarity measures validation with different gold standard 
datasets. The panels present the results for yeast in terms of precision versus score (specific bits, bits and 
congruence) in the context analysis. Panel A is the validation with the Int database as gold standard. Panel 
B validation for Kegg, C and D are validation with Foss (Funcat Semantic Similarity) and Goss 
(Semantic Similarity in GO annotations) respectively. In every panel a normalised comparison amongst 
the specific bits, bits and congruence context methods is shown. 
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Figure 15. Yeast PG network context validation with different gold standard datasets and error bars 
indicated. These panels are the same of the Figure 11, but with error bars calculated for average points. Values of 
precision under a standard deviation of 1/3 of the mean were ignored.  
 
 

 
Score Score 



 29 

 
 
 
Figure 16. Network context validation of the human PG with different gold standard datasets. The 
panels present the results in the context analysis, for human, in terms of precision versus score (specific 
bits and bits). Panel A is the validation with the Int database as Golden Standard. Panel B validation for 
Kegg, C and D are validation with Foss (Funcat Semantic Similarity) and Goss (Semantic Similarity in 
Go annotations) respectively. Finally panels E and F present the validation using Reactome_int and 
Reactome as Gold standard. In every panel a normalised comparison amongst the specific bits and bits 
context methods is shown. 
 
 

 

 
 
 
 
 
Figure 17. Human PG network context validation with different gold standard datasets and error 
bars indicated. These panels are the same of the Figure 11, but with error bars calculated for average points. 
Those values of precision under a standard deviation of 1/3 of the mean were ignored. 
 

         0               0.2               0.4               0.6               0.8                1                                     

                                                      Score 
           0               0.2               0.4               0.6               0.8                 1                                     

                                                      Score 
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Figure 18. Validation of the yeast PG network prediction power with different gold standard 
datasets. The upper panels present the results for yeast in terms of precision versus recall as introduced in 
the main manuscript (specific bits and bits). Panel A is the validation with the Int database as gold 
standard. Panel B is the validation for Kegg, C and D are the validation with Foss (Funcat Semantic 
Similarity) and Goss (Semantic Similarity in GO annotations) respectively.  
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Figure 19. Validation of the human PG network prediction power with different gold standard 
datasets. These panels show the results for human in terms of precision versus recall as described in the 
main manuscript (specific bits and bits). Panel A is the validation with the Int database as gold standard. 
Panel B is the validation for Kegg, C and D are the validation with Foss (Funcat Semantic Similarity) and 
Goss (Semantic Similarity in GO annotations) respectively.  
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Figure 20. Validation of the PG networks functional context with different gold standard datasets. 
These plots present the precision value (y-axis) versus specific bits similarity score between protein pairs 
interaction profiles (x-axis in plots A and C) and versus Recall (# of pairs predicted, x-axis in plots B and 
D) for different sets of gold standards in yeast (plots A and B) and human (plots C and D) PG 0.001&0.0014 
networks. The aim of these plots is to use a common framework for showing the validations of all the PG 
networks derived by functional context. Gold standard datasets: Int, Kegg, Goss, Foss, Reactome-Int and 
Reactome are described in Methods. 
 
 
19. Running the PG methods on the human and yeast proteomes 
 
Proteome files were downloaded from the Integr8 [61] database June 2007. The Integr8 
web portal (European Bioinformatics Institute –EBI-) provides easy access to integrated 
information about completed genomes and their corresponding proteomes. Available 
data includes DNA sequences (from databases including the EMBL Nucleotide 
Sequence Database, Genome Reviews, and Ensembl); protein sequences (from 
databases including the UniProt Knowledgebase and IPI) 
(http://www.ebi.ac.uk/integr8/EBI-Integr8-HomePage.do). 
 
 
20. Weights in Fisher’s integration statistic 
 
As described in the main manuscript (Methods), Ztests were performed using Matlab to 
ensure that probability density function (PDF) distributions fit random Gaussian 
distributions (null hypthesis) at a 5% significance level. Calculation of weights in the 
Fisher’s integration is based on running the Monte Carlo and ESA algorithms 
simultaneously. Both these approaches are well defined and well known in the field of 
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data integration. More specifically, the Monte Carlo simulation methods are particularly 
useful in studying systems with a large number of coupled degrees of freedom such as 
the data analysed in the main manuscript. We apply them as in a predictor-corrector 
system in which we predict a weight for our datasets and this is corrected at the same 
iteration in order to avoid a local optima effect. We summarize these methods in the 
following paragraphs: 
  
The Monte Carlo method (Matlab package) provides approximate solutions to a 
variety of mathematical problems by performing statistical sampling experiments on a 
computer generating suitable random numbers, and observing that fraction of the 
numbers obeying some property or properties. The method is useful for obtaining 
numerical solutions to problems which are too complicated to solve analytically. 
 
The method applies to problems with no probabilistic content as well as to those with 
inherent probabilistic structure. Among all numerical methods that rely on N − point 
evaluations in M − dimensional space to produce an approximate solution, the Monte 
Carlo method has absolute error of estimate that decreases as N superscript -1/2 
whereas, in the absence of exploitable special structure all others have errors that 
decrease as N superscript −1/M at best. This may produce incorrect results, but with 
bounded error probability.  
 
ESA Algorithm or Simulated Annealing algorithm is one of the best-known local 
search algorithms derived from thermodynamic principles. In the article N. Metropolis 
et al., Equation of state calculations by fast computing machines, Journal of Chemical 
Physics 21 (1955), pp.1087-1092 [48] an algorithm simulating the behaviour of a 
system at a given temperature is proposed. At each iteration, a neighbouring solution, 
sol′ of the current solution, sol, is randomly generated. If the neighbour is better than the 
current solution, it is always accepted and becomes the current solution for the next 
iteration. Otherwise, the neighbour is accepted with a probability Paccept depending on 
the energy difference ∆ between the two solutions (i.e. energy of neighbour minus 
energy of current solution) and a parameter t called temperature. This probability 
increases when the temperature increases and decreases when the energy difference 
increases. This selection scheme is called Metropolis criterion. The advantage of this 
scheme over Stochastic Hill Climbing (i.e. only accept better solutions) is the possibility 
to escape local optima. The short pseudo-code, the following text, the framework of a 
Metropolis chain of length L in temperature t is shown.  
 
Metropolis chain  
 
Algorithm Metropolis chain (initial, L, t)  
{  
   sol = initial  
  repeat L times  
     {  
        sol′ = new neighbor of sol  
        ∆ = ENERGY(sol′ ) - ENERGY(sol)  
       if ∆ ≤ 0 then Paccept =1 else Paccept =exp(−∆/t)  
       if random(0,1)< Paccept then sol = sol′  
      }  
   return sol  
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}  
 
Simulated annealing consists of a series of Metropolis chains at different decreasing 
temperatures. The aim of each Metropolis chain is to permit the system to reach thermal 
equilibrium. A slow cooling leads eventually to a frozen system yielding a good final 
solution.  
 
In order to use simulated annealing algorithm for a specific optimization problem, an 
appropriate state space corresponding to the possible feasible solutions, a 
neighbourhood relation between the states, a cost function of each state and an 
appropriate cooling schedule should be selected. The role of neighborhood-relation is to 
express the similarity between the elements of the state space. The neighborhood of a 
state is typically defined as the set of the states that can be obtained by making some 
kind of local modifications on the current state.  
 
Given the source node w, the state space of the simulated annealing is the set of all 
possible spanning trees rooted at the source node w and the cost of a state is the power 
cost of it. During the execution, the temperature decreases exponentially between 
successive Metropolis chains, i.e. the temperature ti after ith Metropolis chain is given 
by  
                           ti = α · ti−1 , t0 = const,   
 
where α is the so called cooling factor, which is a number close to 1 and t0 is initial 
temperature. The following idea is used to find a suitable neighbourhood structure. 
 
 
21. Predicition validation, network topology and context analysis of the 
PG models without the hiPPI predictions. 
 
Whilst CODA and GECO do not use any publicly available PPI information, hiPPI uses 
available experimental data by exploiting sequence similarity information between 
known interacting partners and their homologues to predict new interacting pairs (see 
section 1 in this text S1 document). 
 
Therefore, there is a reasonable concern that the sequences we are predicting in human 
and yeast could be very close homologues of the sequences in the KG datasets and 
perhaps the weight accorded to the hiPPI predictions in the integrated prediction set 
(CODAcath, CODApfam, GECO and hiPPI) could be high enough to significantly bias 
the Fisher’s integrated PG model so that the characteristics resemble those of the 
experimental KG network. Addressing this possibility we have repeated the main 
analyses of this work excluding the hiPPI predictions. 
 
When hiPPI predictions were excluded we observed that the Fisher integration of the 
remaining predictions gives a similar performance predicting almost the same number 
of true PPIs in yeast and in human above 80% precision (see Figure 21). PG models 
without hiPPI built at different significant pvalues show the same behavior observed 
when all predictors are integrated, and the scale free trend of the ki distribution is also 
observed when PG (without hiPPI) pvalue significance levels increases (see Figure 22). 
Significant PG models without hiPPI (precision ≥ 80%) also show context information 
of PPI in both species (see Figure 23). All these results indicate that the similarity of the 



 35 

PG and KG models is not due to any bias or circular information and support all the 
observations, discussion and conclusions of our work. 
 

 
 
Figure 21. Prediction power of the integrated methods in yeast and human without the hiPPI 
predictions. Panels present the results for the yeast and human validations in terms of precision versus 
recall for the Fisher integration of all methods except hiPPI. In panel A validation was performed using 
Goss and Int datasets as gold standards in yeast. Panel B shows the validation in human using the Goss, 
Int and Reactome_int gold standard datasets. Number of predicted hits above 80% precision are also 
indicated in the panels’ upper legends. 
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Figure 22. Degree distribution for the various PG networks built without the hiPPI predictions. 
Panels A and B correspond to the PG networks ki (degree) frequency distribution at different pvalue 
significance levels (without the hiPPI predictions) in yeast and human respectively. The legend for these 
panels show the exponents corresponding to the linear regression fit of the data. 
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Figure 23. PG networks (without hiPPI predictions) functional context validation. These plots 
present the precision value (y-axis) versus specific bits similarity score (x-axis) between the interaction 
profiles of the protein pairs in yeast (plots A) and human (plots B) for the PG 80% precision networks 
without the hiPPI predictions. The gold standard dataset used, are Goss, Int in yeast and human, and 
Reactome_int in human. 
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