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Text S1: Supplementary Methods and Results 

Comparison of two mechanisms of synergistic activation 
 
Many promoter and enhancer sequences harboring more than one activator site exhibit synergistic 
activation: the effect of multiple sites is more than the sum of the effects of individual sites [1,2]. 
In the text, we discussed two possible mechanisms of such synergistic activation: (1) cooperative 
binding of TF molecules to DNA sequences; and (2) multiplicative activation (see the section 
“Modeling the action of multiple activators”) possibly due to the simultaneous interaction of 
multiple TF molecules with the basal transcriptional machinery (BTM). In this section, we 
discuss how these two mechanisms may lead to qualitatively different behavior. To compare the 
two models, we assume that in each model the effect of the other model is absent, i.e., no 
multiplicative activation in (1), and no cooperative interaction between TF molecules in (2).  
 
We consider a simple case of one sequence with n identical binding sites of transcription factor A. 
The behavior of the sequence is characterized by how the transcriptional response varies with the 
activator concentration, denoted as [A]. We define the Boltzmann weight of a single site as 

[ ]Aq K A=  where KA is the association constant of the site to A. The occupancy of a single site 
(the probability of binding), without interaction with any other sites, is thus 1/(1+q). The 
physiological range of q could be very broad, from much less (very weak site or very low TF 
concentration) to much greater than 1 (saturation of occupancy).  We denote by α the 
transcriptional effect of a single bound molecule of A, and by ω the cooperative interaction 
between two bound molecules of A, assuming that the strength of cooperative interaction is 
independent of spatial arrangement of sites (for more description of these parameters, see the 
description of DirectInt model in the Methods section). Furthermore we have one more 
parameter, qBTM, for the basal level of interaction between the BTM and the core promoter 
sequence. Below we give the explicit equations of the expression level as functions of other 
parameters, for two activation models.  
 
Cooperative Binding (CB) model 
We first consider the case where there is cooperative interaction between two TF molecules 
bound to adjacent sites in the DNA sequence, but no multiplicative activation (i.e., the 
transcriptional effects of multiple bound activator molecules are additive). Under this model, any 
two molecules of A bound at adjacent sites can interact with each other; thus in a configuration 
where i sites are occupied, there will be i TF-DNA interactions (one per site), and i-1 cooperative 
interactions (one per consecutive pair of sites). We have: 
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Under the additive activation model, the configuration where i sites are occupied has ( )Q i iα= , 
i.e., at any time, only one activator molecule is allowed to interact with BTM:  
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The expression level is given by Equation (1) in the main text.  
 
Multiplicative Activation (MA) model 
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We next consider the case where interactions of TF molecules and BTM are multiplicative, but 
there is no cooperative interaction between TF molecules. When the BTM is not present, we 
simply have: 
  
 (1 )n

OFFZ q= +  (S3) 
Under the multiplicative activation model, the configuration where i sites are occupied has 

( ) iQ i α= . We have:  
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Comparison of the two synergistic activation models 
For simplicity of discussion, we define: /ON OFFZ Zη = , and then the expression level is 
proportional to the occupancy of promoter, which is: / (1 )E η η= + . When 1η   (which may 
often be the case due to the small value of the BTMq term), E η≈ , thus we can approximate 
expression output of the sequence using η. So we will analyze how η varies with the number of 
sites n under two models. We start with the MA model, where the value of η is given by the 
simple equation:  
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Thus under the MA model, the expression output is roughly exponential in the number of sites. 
Since α is always large than 1 for activators, the base term is larger than 1. When it reaches a 
significant value (e.g., due to a high q resulting from high concentration [A] or a high α), we 
could easily have the synergistic effect: 2 12η η . 
 
For the CB model, we claim that there will be no synergistic effect at high/saturating 
concentration of A. To see this, we note that when 1qω   due to high [A] (or high 
cooperativity, or strong site affinity), the equations of ZOFF and ZON can be simplified, we have:  
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Therefore, the expression output is only roughly linear to the number of sites at high [A]. This 
conclusion should be intuitively clear: cooperative binding mainly facilitates occupancy of TF 
molecules to the DNA sequence, but at high [A], the occupancy of any single binding site is 
already close to 1, thus cooperativity from additional sites will not produce further benefit.  
 
In summary, the MA and CB models have qualitatively different dosage-response behavior: the 
MA model leads to the strongest transcriptional synergy at high concentrations of TF, and low 
synergy at low TF concentration; on the contrary, the CA model leads to almost complete absence 
of synergy at high TF concentration. This difference of behavior is illustrated in Figure S1, where 
the expression output is plot against [A] (scaled by 1/KA). The results were obtained at 10.0α = ,

20.0ω =  and 0.01BTMq = . Different values of these parameters (within biologically realistic 
range) give similar qualitative results. At [ ] 1Aq A K= = , the occupancy of a single site is 
1/ (1 ) 1/ 2q+ = , and the occupancy is nearly full at q = 10.  It is clear that the synergistic 
behaviors of the two models are very different at large values of q. Also note that at high [A], 
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while n = 2 or 3 leads to high synergism comparing with n = 1, as n further increases, the 
synergistic effect is diminished as the sequence approaches saturation (of BTM occupancy).  

Details of thermodynamic models and algorithms 
 
The statistical weight of individual binding sites 
For a single site S, the statistical weight due to TF binding is given by 

,  where [TF] is the concentration of the TF, Smax is the strongest 
binding site (the consensus sequence) of this TF, K(Smax) is the effective association constant of 
Smax, ∆E(S) is the “mismatch energy” of the site S relative to Smax and β is the Boltzmann constant. 
According to the theory of Berg & von Hippel [3,4], the mismatch energy is related to the log 
likelihood ratio (LLR) score of a site by , where LLR(⋅) is 
computed from the known position weight matrix (PWM) of the TF and the background 
distribution of nucleotides [4]. Since our input data includes relative values for TF concentration 
(on an arbitrary scale), we rewrite [TF] above as ν[TF]rel where [TF]rel is concentration relative to 
some unknown reference, and ν is the value of this reference level. The statistical weight of a site 
can thus be computed as  
 max max( ) ( ) [ ] exp[ ( ) ( )]relq S K S TF LLR S LLR Sν= −  (S7) 
where (νK(Smax)) is a free parameter, [TF]rel is the given (relative) TF concentration value, and 
LLR(⋅) is computable from the PWM. 
 
Cooperative interaction of transcription factor molecules 
In general, the statistical weight ωAB(d) due to the interaction between two bound TF molecules A 
and B depends on their distance d. It is not known a priori what a suitable functional description 
of ωAB(d) should be. For the results presented in this paper (when cooperative interactions are 
involved), we use a simple binary function for ωAB(d), i.e. it is some constant ωAB if d is less than 
or equal to some threshold dC, and 1 otherwise (no interaction). The parameter ωAB is treated as a 
free parameter of the model, dependent on A and B. Our default value of dC is 50bp (many 
different values of dC have been examined, and 50bp is the optimal value judged by the 
correlation coefficient (CC) of the DirectInt model with Bcd and Kni cooperativity). We also 
evaluated a Gaussian function with mean 0 (the interaction is maximum when the sites are close) 
and standard deviation s (a free parameter). This is effectively the same function used in Segal et 
al. [5], except that they examined only a single value of s (50bp) and our function will truncate 
(i.e. a constant value 1) if d > dC. In spite of an extra parameter (s), we did not find evidence that 
the Gaussian form of cooperative interaction leads to higher CC than the simple binary form.  
 
 
Dynamic Programming Formulation for SRR model with Unlimited Contact (NMA = ∞) 
In the short range repression model, ZOFF(i) can be split into two cases: Z0(i) where site i is in the 
bound-only state and Z1(i) where site i is bound-effective. Using these definitions, ZOFF (i) = Z0(i) 
+ Z1(i). If i is bound-only, it could interact with other bound sites, but should not fall in the range 
of any effective repressor site. We have the following recurrence for Z0(i), where d(i,j) >dR 
enforces the constraint that no effective repressor site can be found within dR of site i:  

 0 0 1
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For Z1(i), we consider two cases: if f(i) is an activator, then Z1(i) = 0; otherwise, site i may interact 
with other bound-effective repressor sites, but no other bound-only sites should fall in the 
repression range of i. We have: 

 

q(S) = [TF]K(Smax )e−β∆E (S )

 

β∆E(S) = −LLR(S) + LLR(Smax )
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where βf(i) is the repression strength of the repressor f(i). To compute ZON(i), we split the recursion 
into two cases, Z2(i) and Z3(i), corresponding to Z0(i) and Z1(i) respectively.  ZON (i) = Z2(i) + 
Z3(i).  Z2(i) incorporates the transcriptional effect, α, of the bound site i (1 if f(i) is a repressor): 
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Z3(i) is defined only for repressor sites, and repressors do not interact with the BTM in 
this model.  
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Again, 𝑍𝑂𝐹𝐹 =  ∑ 𝑍𝑂𝐹𝐹(𝑖)𝑖  and  𝑍𝑂𝑁 =  ∑ 𝑍𝑂𝑁(𝑖)𝑖 . The time complexity of the algorithm is 
O(n2), where n is the number of sites. If we limit the range of cooperative interactions and 
repression to a constant value, e.g. 200 bp, the time complexity is O(cn), where c is the average 
number of binding sites with this range.  
 
Details of DirectInt model with limited contact for activation  
To describe our activation model in the general case, we consider a configuration σ where N 
activator molecules (of the same type) are bound with the parameter NMA indicating the maximum 
number of activator molecules that may simultaneously contact BTM. If MAN N≤ , then all 

bound activator molecules can simultaneously interact with BTM, we have ( ) (1 )NQ σ α= +  
where α  is the transcriptional effect of the activator (note that each molecule may actually 
interact with BTM or not – imagine that the BTM-interaction site of an activator has two states, 
similar to TF binding sites in DNA, thus we have the term 1 here). If MAN N≥ , then at most NMA 

molecules can interact with BTM simultaneously. Since there are 
N
k
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molecules ( MAk N≤ ), this results in: 
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∑ , where kα  corresponds to the 

multiplicative effect of k molecules. If the bound activator molecules are of different types, the 
computation can be similarly achieved, by replacing binomial coefficients with multinomial 
coefficients, and kα  with another appropriate power term.  
 
Our goal is to compute E (Equation (1)) from a given sequence incorporating limited contact of 
activation and still using dynamic programming. The computation of ZOFF follows exactly the 
Equations (S2). At each configuration in this version of the DirectInt model, the number of 
activator molecules that interact simultaneously with BTM cannot exceed NMA. To compute ZON, 
we define ZON(i,k) as the sum of weights over all configurations where the site at i is bound and 
the number of contributing activators equals to k. Comparing with the algorithm where NMA is 
unlimited, the additional index k is used to keep track of the number of BTM-interacting activator 
molecules. As before, f(i) denotes the factor bound at site i. If f(i) is an activator, it may or may 
not interact with BTM: contributing ( )f iα  only if interaction occurs. Thus we have:  
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𝑍𝑂𝑁(𝑖,𝑘) =  𝑞(𝑖) � 𝜔(𝑖, 𝑗)𝑍𝑂𝑁
𝑗 ∈𝛷(𝑖)

(𝑗,𝑘) +  𝑞(𝑖)𝛼𝑓(𝑖) � � 𝜔(𝑖, 𝑗)𝑍𝑂𝑁
𝑗∈𝛷(𝑖)

(𝑗,𝑘 − 1) + [𝑘 = 1]�  

(S12) 
 
The term [k=1] is the indicator function. When f(i) is a repressor, it will not contribute to 
activation:  

𝑍𝑂𝑁(𝑖,𝑘) =  𝑞(𝑖)𝛼𝑓(𝑖) � � 𝜔(𝑖, 𝑗)𝑍𝑂𝑁
𝑗 ∈𝛷(𝑖)

(𝑗,𝑘)  + [𝑘 = 0]�                                (S13) 

  
When k = 0, the recurrences need to be modified: the terms containing k-1 will be removed. The 
final partition function is given by:  

𝑍𝑂𝑁  =  �� 𝑍𝑂𝑁(𝑖,𝑘)
𝑁𝑀𝐴

𝑘=0𝑖

                                       (S14) 

The time complexity of the algorithm is O(NMAn2), or O(cNMAn) if the range of cooperative 
interactions and repression is within a certain constant value, where c is the average number of 
binding sites with this range. 

Implementation and model fitting 
 
Overview 
 
The program takes as input: a set of sequences, the PWMs of the relevant TFs and the expression 
patterns of the sequences and the TFs. It will estimate the model parameters that best explain the 
data, under any user specified model options. These options determine which of the several 
models to run, and the relevant model options. Specifically, the program supports two basic 
models: DirectInt and SRR models (see main text). The control options include: the role of a TF 
as an activator or repressor (only needed for the SRR model), the TF pairs with cooperative 
interactions, the distance thresholds for cooperative interactions (dC) and short-range repression 
(dR), and the multiplicative activation parameter NMA.  
 
The main steps of the programs are: extract the putative transcription factor binding sites in the 
input sequences, estimate parameters that optimize an objective function and print the results. 
Below, we describe the details of each step.  
 
Binding site extraction 
 
This step converts the DNA sequences into a representation of linear arrays of TFBSs, and also 
computes the LLR score of each TFBS. Since only TFBSs will be used in the computation, the 
future steps only operate on this representation. Transcription factor binding sites in each 
sequence were annotated as those having the log likelihood ratio (LLR) scores greater than 0.4 
times the LLR score of the optimal site [6]. This threshold is weak enough to include a large 
number of putative sites for each TF, while keeping the running time low.  
 
Objective function 
For a given set of model parameters (see Table S1 for the list of parameters), our model computes 
the value of an objective function. We use the average correlation coefficient (Avg. CC) between 
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measured and predicted expressions of the input sequences. To avoid being trapped in the local 
maximums, we also use the sum of squared errors (SSE) during this optimization in an auxiliary 
fashion (see below). Suppose the input data set contain n sequences. Let E(i) and P(i) be the 
measured and the predicted expressions respectively for the i-th sequence Si. Also, let E(i,j) and 
P(i,j) be the measured and the predicted expressions respectively of Si under the j-th condition. 
Then for a given set of parameters Θ, the function Avg. CC is defined as  

 
� 𝑟(

𝑖
𝐸(𝑖),𝑃(𝑖)|Θ)/𝑛, 

where r(X,Y) denotes the correlation between two variables X and Y; and the function SSE is 
defined as 

 
� [𝐸(𝑖, 𝑗) − 𝑃(𝑖, 𝑗)|Θ]2.

𝑖,𝑗
 

 
Parameter optimization 
 
We perform the optimization through multiple runs while alternating between Avg. CC and SSE 
as the objective function in these runs (starting with Avg. CC as the first objective function). We 
use a set of default parameters to start the first run. In subsequent runs, the program starts with the 
set of parameters that it learnt in the previous run. The optimization in a run of our program is 
achieved by alternating between the Nelder-Mead simplex method and the quasi-Newton method 
(the BFGS algorithm), both provided in the GNU Scientific Library [7]. Both the Nelder-Mead 
and the quasi-Newton algorithms are prone to producing sub-optimal solutions, and it is a 
common practice in such optimization problems to retrain the model with some randomly 
sampled values for the free parameters. Although the essence of random sampling is to find a new 
set of parameter values that can eventually lead us to a better solution, this approach is not 
guaranteed to improve the solution and we also did not find it to be helpful in our case. Our 
switching the objective function to SSE from Avg. CC in every other run was therefore an 
attempt to find a different set of starting parameters, which is essentially similar in spirit to doing 
a random sampling of the parameters.  We found this scheme to be more helpful in searching the 
parameter space than random sampling. 
 
Output 
The program will output the best-fit values of the parameters shown in Table S1. These include 
the TF-specific parameters: for the DirectInt model, these are (νK(Smax)) in Equation (2) and the 
transcriptional effect α; for the SRR model, these are (νK(Smax)), α (for activators) and the 
repression effect β (for repressors). Since each TF is an activator or repressor in the SRR model, 
the number of free parameters per TF is two under either model. When cooperative interactions 
are specified, one free parameter is added for each cooperative pair. Here, we examine only 
homotypic cooperativity, hence we have up to one extra parameter per TF under the cooperative 
model. In addition, we have a parameter for the basal transcription by BTM, BTMq . 
 

Testing statistical significance of the difference of model predictions 
We want to test if the difference between the predictions from two models is significant.  To do 
this, we calculated the correlation coefficients of the predictions of the two models to the 
observed expression, c1(i) =  r�E(i), P1(i)�  and c2(i) =  r�E(i), P2(i)� , where i is the CRM 
index, E(i) is the observed expression profile, and P1(i), P2(i)  are predicted expression profiles of 
the two models, respectively  Using the uniform ratio distribution [8]   
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we define a random variable Y(i) label to indicate if the first model makes significant better 
prediction for the i-th CRM than the second one (with p-value 0.01): 
 

𝑌(𝑖) =

⎩
⎪⎪
⎨

⎪⎪
⎧+1        𝑝𝑍 �𝑧 >

𝑐1(𝑖)
𝑐2(𝑖)�

< 0.01

−1         𝑝𝑍 �𝑧 <
𝑐1(𝑖)
𝑐2(𝑖)�

< 0.01

0                             otherwise
 

� 

 
To determine if the overall improvement in CC is significant due to one model versus another, we 
are interested in the p-value of 𝑋 =  ∑ 𝑌(𝑖)𝑖 .  The null distribution of X, D, can be obtained as 
follows. Under the null hypothesis that the two models have the same predictive ability, for each 
of the i-th CRM, Y(i) is equal to 0 with probability 0.98 and equal to 1 or -1 with probability 0.01 
(the value 0.01 comes from the p-value we chose for testing a single CRM).  Thus the sum of Y(i) 
follows the distribution produced by a symmetric 1-D random walk where the particle moves in 
either direction with equal probability 0.01.  We are interested in the probability distribution of 
the particle position after n steps (n is the number of CRMs), assuming it starts from the origin. 
This can be calculated from the standard theory of Markov process as D = Pnv, where the 
transition matrix P is defined as  

𝑃𝑖𝑗 = �
0.98               if 𝑖 = 𝑗
0.01    if |𝑖 − 𝑗| = 1 

  0         otherwise
� 

 
and the initial distribution, v, is defined as   𝑣𝑖 = �1         if 𝑖 = 0

0   otherwise
� .    

 
 

Predicting conserved transcription factor binding sites 
We used a recently developed tool, STEMMA (He et al., manuscript in preparation), to predict 
binding sites in a sequence that are at least partially conserved in orthologous sequences. The idea 
of this tool is similar to MONKEY [9], except that the binding sites are allowed to undergo 
lineage-specific changes during evolution, a feature that is becoming commonly recognized 
[10,11]. STEMMA scores every putative site in a sequence for its likelihood of representing the 
binding site of some TF, whose PWM is given. The score is determined not only by the match of 
the site to the PWM, but also by the conservation pattern of the site in orthologous sequences. 
Specifically, taking a sequence block that matches the length of the PWM, from the multiple 
alignment, STEMMA assumes that each orthologous site is associated with some functional state 
(1 if functional and 0 otherwise), and finds the most likely history of functional states in all 
orthologous sites. In the underlying evolutionary model of STEMMA, the functional state may 
change over time, modeled by a two-state Markov chain. The sequence evolves according to a 
neutral model (HKY model, [12]) if the functional state is 0, and according to a constrained 
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model (Halpern-Bruno model, [13]) if the functional state is 1. Let σ be the history of the 
functional states along the phylogenetic tree, the best history is found by:  
 * arg max ( ) ( | )P P S

σ
σ σ σ=   

where ( )P σ  is computed from the two-state Markov chain and ( | )P S σ  is computed by 
applying the HB model on the subtree where the functional state is 1 and the HKY model on the 
neutral subtree. The model parameters are estimated from the sequences using maximum 
likelihood or taken from the estimates published previously [10,14].  
 
When applying STEMMA in the experiments reported in this paper, we run it in two modes: 
allowing turnover of sites (as above), or not (i.e. σ is all 1’s or all 0’s). The multiple alignments of 
Drosophila sequences are taken from the UCSC genome browser.  
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