Text S2: The Mean Relative Entropy of Dirichlet Mixtures

We are first interested in calculating $\hat{\mathcal{D}}$, the mean value of the relative entropy $\sum_i q_i \ln(q_i/p_i)$ when the probability density of \vec{q} follows a Dirichlet distribution. (Note that throughout this appendix we use natural logarithms, and all relative entropies are therefore expressed in nats rather than bits.) Specifically, as stated in the main text, $\rho(\vec{q}) \equiv \mathcal{Z} \prod_j q_j^{\alpha_j-1}$, where $\mathcal{Z} = \Gamma(\alpha^*)/\prod_j \Gamma(\alpha_j)$. The domain of \vec{q} is the simplex \mathcal{P} defined by $0 \le q_i \le 1$ and $\sum_i q_i = 1$. The scalar \mathcal{Z} arises from the fact that

$$\int_{\vec{q} \in \mathcal{P}} \prod_{j} q_{j}^{\alpha_{j}-1} d\vec{q} = \frac{\prod_{j} \Gamma(\alpha_{j})}{\Gamma(\alpha^{*})}.$$
 (1)

The mean value of the *i*th component of the relative entropy is given by

$$\mathcal{Z} \int_{\vec{q} \in \mathcal{P}} \left[q_i \ln \frac{q_i}{p_i} \right] \prod_j q_j^{\alpha_j - 1} d\vec{q} = \mathcal{Z} \int_{\vec{q} \in \mathcal{P}} \left[\ln q_i - \ln p_i \right] q_i^{\alpha_i} \prod_{j \neq i} q_j^{\alpha_j - 1} d\vec{q}
= \mathcal{Z} \left[\partial_{\alpha_i} - \ln p_i \right] \int_{\vec{q} \in \mathcal{P}} q_i^{\alpha_i} \prod_{j \neq i} q_j^{\alpha_j - 1} d\vec{q} = \mathcal{Z} \left[\partial_{\alpha_i} - \ln p_i \right] \frac{\Gamma(\alpha_i + 1) \prod_{j \neq i} \Gamma(\alpha_j)}{\Gamma(\alpha^* + 1)}
= \mathcal{Z} \left[\psi(\alpha_i + 1) - \ln p_i - \psi(\alpha^* + 1) \right] \frac{\Gamma(\alpha_i + 1) \prod_{j \neq i} \Gamma(\alpha_j)}{\Gamma(\alpha^* + 1)}
= \left[\psi(\alpha_i + 1) - \ln p_i - \psi(\alpha^* + 1) \right] \frac{\alpha_i}{\alpha^*} ,$$
(2)

where $\psi(x) \equiv (d/dx) \ln \Gamma(x)$. When we sum (2) over all i, noting that $\sum_i \alpha_i = \alpha^*$, we find that

$$\hat{\mathcal{D}} = \mathcal{Z} \int_{\vec{q} \in \mathcal{P}} \left[\sum_{i} q_i \ln \frac{q_i}{p_i} \right] \prod_{j} q_j^{\alpha_j - 1} d\vec{q} = \left\{ \sum_{i} \left[\psi(\alpha_i + 1) - \ln p_i \right] \frac{\alpha_i}{\alpha^*} \right\} - \psi(\alpha^* + 1) . \quad (3)$$

For a Dirichlet mixture, we have $\hat{\mathcal{D}} = \sum_k m_k \hat{\mathcal{D}}_k$, where $\hat{\mathcal{D}}_k$ is the mean relative entropy of the kth component Dirichlet distribution.

A simple numerical formula for the digamma function $\psi(x)$ is

$$\psi(x+1) = -\gamma + \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{x+k} \right) = -\gamma + \sum_{k=1}^{\infty} \frac{x}{k(x+k)} , \qquad (4)$$

where γ is the Euler's constant 0.5772.... Because eq. (3) involves a difference of digamma functions, the γ term in eq. (4) is irrelevant.