Patterns of subnet usage reveal distinct scales of regulation in
the transcriptional regulatory network of Escherichia coli
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Text S1: Supplementary figures



Figure 1. A highly resolved version of the ihfAihfB subnet.
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Figure 2. Histogram of the relative overlap of all pairs of subnets. We plot the frequency
distribution of the relative overlap (Intersection/Maximum) calculated for all 117 x 116/2 pairs of
subnets. Interestingly, apart from a peak at 0, the subnet overlap is a fairly equally distributed quantity.
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Figure 3. z-score profiles of all 13 possible directed triads. For the two expression data sets
(top: static data, bottom: time-course data) we calcluate the z-score profiles for all identified clusters of
different subnet usage. In both data sets, we find the feed-forward loop (5th triad) to be
overrepresented in the ‘null’ cluster, in contrast to other cluster.
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Figure 4. Normalized z-score profiles of all 13 possible directed triads. For the two
expression data sets (top: static data, bottom: time-course data) we calcluate the normalized z-score
profiles for all identified clusters of different subnet usage. The networks of all cluster show the triad
significance profile of bacterial regulatory networks (compare with [12]).

Z-score

zZ-score

40

20

static data
null model A

==« data

random
sample

ST D

20

-20

—40

null model B

TSR EBEED

subgraphs

Figure 5. Comparison with null model z-score profiles. For both null models (see main text for
details) we find that the feed-forward loop z-score of the ‘null’ cluster exceeds both null model averages.
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Figure 6. FFL enrichment in the time-course data, using the last four version of
RegulonDB (6.1 - 6.4). We find that irrespective of the RegulonDB version used in our analysis, a
prominent FFL enrichment in the ‘null’ cluster appears.
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Figure 7. sSRNA mediated control on network motifs. Comparing the number of 3-node motifs
with at least one sSRNA target with randomly sampled sets of targets of the same size, we identify seven
motifs with significantly (z — score > 2) enriched occurrence of SRNA targets.



