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S3. Learning with a two-dimensional input

The weight vector rotates toward the heavy-tailed direction in the input

For elucidating the mechanism by which the interaction between STDP and IP may facilitate the discovery
of an independent component, we go back to the simplified problem of a single unit receiving a two
dimensional input. This analysis is restricted to the theoretical formulation of zero mean, unit variance
inputs and does not consider the time of individual spikes. Additionally, for mathematical convenience,
the rotational angle α is zero in this case. Previously, we have shown in simulations that for a bounded,
whitened, two dimensional input the weight vector tends to rotate towards the heavy-tailed direction in
the input [1]. Here, we show analytically that the same result holds for the zero mean, unit variance
uniform and the standard Cauchy distribution (see Fig. 1A). The two inputs are independent (p(u1, u2) =
pU1

(u1) · pU2
(u2)), with the PDFs defined by:
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1

π(1 + u2
2)

.

As before, a linear relation is assumed between the input and the induced changes of voltage in
the postsynaptic neuron. Additionally, the IP adaptation is taken to be much faster than synaptic
plasticity [1] for the analytical derivation.

Under the above assumptions, given the two inputs and the corresponding weight vector (w1, w2),
the probability distribution for the total input u of the neuron (u = u1 + u2) can be computed as a
convolution of the probability distributions of u1 and u2. For simplicity, we only consider here a weight
vector along the first diagonal, but the analysis could be extended to any other weight vector. For this
case, the result of the convolution is:

pU=U1+U2(u) = pU1
(u1) ∗ pU2

(u2) =
1

2
√

3π
(arctan(u+) − arctan(u−)) ,

where * marks the convolution operator and u+/− = u ±
√

3 (see Fig. 1B).
Under the assumption of a fast IP, the neuron’s gain becomes close to the optimal function g̃, while

the weights remain approximately unchanged. Knowing the input distribution, g̃ can be computed

analytically. Specifically, we exploit the standard relation pG(g) =
(

dg
du

)−1

pU (u) and the constraint that

the output distribution should be exponential. By integrating the above equation, with pU as computed
before and pG(g) = 1

µe−
g

µ , we obtain the optimal transfer function (see Fig. 1C):
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.
Knowing g̃, the estimated change in weights by classic Hebbian learning, under the assumption that

E(R(t)) ≈ 1, can be computed as:

∆w1 = E(u1g) =

∫

xg̃(y)pU1
(x)pU2

(y − x)dxdy,

∆w2 = E(u2g) =

∫

(y − x)g̃(y)pU1
(x)pU2

(y − x)dxdy.
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Figure 1. Mathematical analysis for a two-dimensional input space (A) The joint probability
distribution of the input, (B) Distribution of the total synaptic current, given the total input for a
weight vector along the first diagonal, (C) Corresponding optimal neuronal gain function.

Integrating the above relations, we obtain that ∆w1 < ∆w2, meaning that the learning procedure
rotates the weight vector towards the heavy-tailed direction in the input. Similar results can be obtained
numerically for a rate-based equivalent of our STDP rule (see Methods). Intuitively, the largest changes
in weight occur for large neuron responses, which corresponds to samples from the right tail of the input
distribution. As the uniform distribution has only finite support, here the output tail is determined by
the other input. These results apply to any IP rule that enforces an exponential output distribution. In
practice, implementations corresponding to different families of transfer functions may work more or less
well, depending on the specific problem (i.e. on how well g̃ can be approximated).

Most learning occurs on the tail of the output distribution

To build more intuition, and to show that our analytical results hold also for distributions with infinite
support, we repeat the above experiment for a Gaussian and a Laplacian distribution:

pU1
(u1) =

1√
2π

e−
u
2

1

2 ,

pU1(u2) =
1√
2
e−

√
2|u2|.

As before, the PDF for the total input is pU (u) = pU1
(u1) ∗ pU2

(u2), which, unfortunately, does not
have a closed-form solution in this case. However, as in [1], we can generate samples from the distribution
and obtain an estimate of the optimal transfer function by our IP rule. For the approximated optimal
parameters r̃0 ũ0 ũα, we can again estimate the changes in weights with nearest-neighbor STDP (see [2]
and Methods) as:

∆wi ∝ uig̃(u)

(

A+

τ−1
+ + R̃g(u)

+
A−

τ−1
− + r̃g(u)

)

, (1)

with u = w1u1 + w2u2, i = 1, 2. The proportionality factor is given by the learning rate of the STDP
rule and by the average value of the refractory state of the neuron R(t) (we consider again R̃ ≈ 1).

In Fig. 2, we plot the change in weights for different input samples, ordered by the corresponding
neuron activation. One can easily note that significant changes in weights occur only on the tail of the
output distribution, as expected by a Hebbian rule. Importantly, for the same output, weight changes
are much larger for the heavy-tailed directions in the input, suggesting that IP guides weight towards
the heavy-tailed direction in the input. Moreover, this property does not depend on the initial state of
the weight vector (except for the extreme case where w1 ≫ w2, where the gradient becomes very flat,
making it difficult for the IP rule to converge). It holds also when weights change by classic Hebbian
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Figure 2. A two dimensional input space, both directions with infinite support. (A) and (B)
Probability distributions for the two independent directions, (C) The distribution of total input for
w = (0.6, 0.4), (D) Output distribution of the neuron, after the IP rule has converged, (E) Change in
weights for the Gaussian (u1, blue crosses) and Laplacian (u1 red circles) directions, ordered by the
instantaneous firing rate of the output neuron, (F) The actual evolution of the weight vector when the
IP and STDP rule are acting in parallel (w1 in blue, w2 in red, different dashes show variations in initial
conditions). The weight vector aligns with the heavy-tailed direction u2, independent of initial
conditions.

learning and when inputs are mixed using a matrix A, as described in the main text for two Laplacian
directions. Consequently, when the STDP and IP rules are acting together, the neuron will learn to
respond preferentially to the Laplace direction (u2) in the input, independent of the initial value of w

(Fig. 2F).

Learning maximizes kurtosis

In the case of multiple heavy-tails in the input, it is expected that ICA would select one single such
direction, as we have demonstrated for the demixing problem with a two-dimensional input. This can
be explained mathematically by the fact that the kurtosis of a linear mixture of several non-Gaussian
sources is always smaller than that of each of its components [3]. Hence, maximizing kurtosis—a very
common objective for ICA—means reducing the weighted sum of several directions to a single direction,
by making all but one of the weights equal to zero. It is easy to show that the same principle applies to
our rule (Fig. 3A), for two independent Laplace inputs. Depending on the initial conditions, the neuron
will develop sensitivity to one of the two directions. When the initial weights are equal (the solid lines),
the winning input is selected at random.

Although the shape of the output distribution enforced by IP may suggest a bias for finding exponential
tails in the input, we found that our rule generally selects the heaviest tail distribution in the input.
Specifically, when the input consists of a Laplace and a Cauchy distribution, the latter is preferred, as
required in ICA (see Fig. 3B).



ICA with spiking neurons 4

Figure 3. Maximizing the kurtosis of the output by IP. (A) Evolution of the weight vector
when the IP and STDP rule are acting in parallel for the case of two Laplacian inputs. As function of
initial conditions, the learned receptive field prefers one of the directions, maximizing kurtosis. (B) In
the case of a Cauchy (red) and Laplace (blue) distribution, the more heavy-tailed direction is preferred.

IP speeds up learning

We have shown in the main text that a bar cannot be reliably learned with a fixed transfer function.
However, for a linear superposition of independent sources, theoretical studies suggest that —with some
preprocessing and an appropriate fixed nonlinearity— a receptive field could develop by nonlinear PCA [4]
in a rate neuron model. Even for the linear superposition of inputs, adapting the transfer function online
may be advantageous, e.g. in terms of convergence time. To analyze this, we consider again the problem of
learning the heavy tail direction in a two-dimensional input, with a Gaussian and Laplacian component,
normalized to zero mean and unit variance. Although in this simplified case a fixed nonlinearity is
sufficient for discovering the heavy-tailed direction, as predicted, learning is faster in the case when IP
interacts with synaptic learning, compared to the case when the final transfer function obtained after
learning is used (Fig. 4).

Figure 4. IP speeds learning. Evolution of weights for a Gaussian and a Laplacian input, with
(solid line) and without IP (dotted line). In the second case, the neuron transfer function is fixed to the
parameters obtained by IP at the time of convergence.
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