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A comparison between the model in Lee et al. [1] and BTDP

Here we discuss in what aspects the model for ON/OFF segregation in ferret presented in [1] is similar
to, and how it differs from our model of BTDP. Since the ferret model used the covariance matrix of
one ON and one OFF recordings as inputs, we explored consistency with our reduced linear model of
BTDP. Denoting the synaptic weight between the i-th RGC and the postsynaptic cell with wi, Lee et
al. [1] represented a small change in wi as a function of the presynaptic activities xi and the postsynaptic
activity y. The presynaptic threshold parameter θ was used to model an inter-synaptic interaction to
induce synaptic competition, giving an equation for the change in wi

∆wi = ηy(xi − θ) (1)

(Equation 6 [1]), where η is a small parameter to ensure slow weight modification compared to the rate at
which RGCs fire. Ignoring the inhibition term Γ, the equation for postsynaptic activity (Equation 8 [1])
becomes

y =
∑

j

wjxj . (2)

Substituting this into Equation 1 above, yields

∆wi = η
∑

j

(xjxi − xjθ)wj (3)

(Equation 9 without Γ [1]). Averaging over the ensemble of presynaptic activity xj , this results in
(Equation 10 without Γ [1])

∆wi ≈ 〈∆wi〉 = η
∑

j

(Cij − xjθ)wj , (4)

where Cij = 〈xjxi〉 is the raw input correlation matrix and xj is the average activity of xj .
To show how the form of Equation 4 compares to our linear system for ON/OFF segregation under

BTDP, we let
Q∗ = C− x (θn)T, (5)

where x = (x1, x2)T, n = (1, 1)T and T denotes the transpose. Then Equation 4 becomes

ẇ = Q∗w. (6)

This corresponds to Equation 7 (Materials and Methods) in the our linear model of BTDP with plasticity
matrix Q given by Equation 8 (Materials and Methods). Expanding the 2× 2 covariance matrix Q∗ for
the ON and OFF weight dynamics in ferret,

Q∗ =

(
〈x1x1〉 − x1θ 〈x2x1〉 − x1θ

〈x1x2〉 − x2θ 〈x2x2〉 − x2θ

)
(7)

we can make a direct correspondence between the role of R in the plasticity matrix Q (Equation 1
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in Results and Figure 7A,B), and the role of θ in Q∗. As we previously reported (see Results), the
competition between the ON and OFF weights in the linear model of BTDP arises due to the negative
off-diagonal terms in the plasticity matrix Q (Equation 1, Results). Since the larger area of the ON/ON
and OFF/OFF input correlations (Figure 7A, left and middle) falls under the positive part of BTDP, the
main diagonal entries qON/ON and qOFF/OFF of Q (Equation 1, Results) are always positive and determine
which weight wins the competition. In a similar fashion, we can show that the matrix Q∗ in the Lee et
al. [1] model has negative off-diagonal entries inducing weight competition, and positive main diagonal
entries determining the winning weight. Lee et al. [1], showed that the same-cell type correlation matrix
elements are larger than the different-cell type correlation matrix elements in C (Table 1 [1])

Cii > Cij and Cii > Cji (with Cij = Cji and i 6= j).

Therefore, subtracting the amount xiθ from row i in C gives positive terms on the main diagonal (due to
the larger entries Cii), and negative terms otherwise (due to the smaller off-diagonal entries Cij). Thus,
the main diagonal entries in Q∗ are positive and the off-diagonal entries are negative, i.e.

Cij − xjθ > 0 for i = j, and Cij − xjθ < 0 for i 6= j.

With this formulation, the off-diagonal terms in Q∗ of the Lee et al. [1] model are not equal as the
terms x in Q of our linear model with BTDP (even though Cij = Cji, a different amount xjθ was
subtracted from each Cij). In this sense, our linear model of BTDP differs from the covariance-based
model of Lee et al. [1]. As we discussed in Results, and in agreement with models of ocular dominance
segregation, however, competition between the ON and OFF weights arises provided the off-diagonal
entries in the plasticity matrix Q or Q∗ are negative [2]. Which cell wins the competition depends on
the dominant term on the main diagonal in the plasticity matrix. Both of these conditions hold in our
model with BTDP and in the Lee et al. [1] model. For the mouse data, we found a natural division
among the sets (Table 1): some sets showed dominance of ON segregation (1–3), while others showed
dominance of OFF segregation (4–6). For the ferret data, however, the segregation outcome was in favor
of the more frequently-firing OFF cell (Table S1), consistent with the model in Lee et al. [1]. To allow
for ON segregation (as LGN neurons are both ON- and OFF-responsive [3]), Lee at al. [1] introduced
an inhibition term Γ which silenced the more-active (OFF) cell allowing the less-active (ON) cell to win.
The functional implications of this term are further discussed in [1].

This text demonstrates how different plasticity rules can be reduced to the same mechanism to ex-
plain ON/OFF segregation in two different species. We showed that a simple covariance-based Hebbian
plasticity rule with an interaction term θ which can explain ON/OFF segregation in ferret, can be related
to a realistic plasticity rule, BTDP, which successfully captures ON/OFF segregation in both mouse and
ferret. This suggests that the rules which govern ON/OFF segregation may be shared between species.
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