Text S1. Mathematical model description.

Model is represented by the following set of equations: 
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Here KAHC is the equilibrium constant for the adenosylhomocysteinase reaction, Ado denotes adenosine, VMS and VMTHFR denote rates of the MS and MTHFR reactions, F denotes the pool of folates interconnected via highly active reversible enzymatic reactions, and F0 denotes total concentration of all intracellular folates except DHF. Model variables are extracellular concentration of methionine and intracellular concentrations of methionine, AdoMet, AdoHcy, Hcy, 5,10-CH2-THF, MTHF and the folate pool (F).


In order to further simplify the model, we made additional general assumptions. Concentrations of ATP, adenosine, betaine, dimethylglycine, glycine, NADPH, and serine, as well as a total concentration of all intracellular folates (F0) are assumed to be constant. In this way, either there is no dependence of reaction rates on these metabolites, or they are included in the relevant equations as parameters. Concentrations of metabolites, which are constant in the model, are presented in Table S2.

Equations for the rates of particular enzymatic reactions are shown below and values of kinetic parameters of enzymes are presented in Table S1.  

MAT I (EC 2.5.1.6). The equation for MATI reaction rate was taken from [1]. It includes the dependence of reaction rate on methionine as a substrate and product inhibition by AdoMet:
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(Eq.S2)

MAT III (EC 2.5.1.6). The equation for MATIII reaction rate includes positive cooperative dependence on methionine [2] as well as activation and inhibition at different AdoMet concentration [2,3]. The development of the equation is described in the Text S2.
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(Eq.S3)

Methionine consumption in protein turnover. We tried to estimate the amount of methionine consumed in hepatocytes in protein turnover. The rates of protein synthesis and degradation in hepatocytes reported in [4] are equal to 13.1 and 9.3 mg/h per g of protein, respectively. Taking into account that the mean molecular mass of amino acids in proteins is 110 [5], the frequency of methionine in eukaryotic proteins is 2% [6], and the protein content in rat liver is 200 g/l [7], we obtained rates for methionine incorporation into and release from proteins in liver, of 476 and 338 μmol/h•l tissue respectively. Thus, under normal conditions in hepatocytes, the net rate of methionine consumption in protein synthesis is 138 μmol/h•l cells. The first step in methionine consumption in protein synthesis is charging of Met-tRNA catalyzed by methionyl-tRNA-synthetase. We assumed that the dependence of methionine consumption for protein synthesis on methionine is determined by the dependence of methionyl-tRNA-synthetase on methionine [8].
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(Eq.S4)

Functional methylases.We represented all intracellular methylases (except GNMT) catalyzing methyl group transfer from AdoMet to different methyl group acceptors as a single activity catalyzed by a generalized enzyme that transfers methyl groups to a generalized methyl group acceptor, MGA. The concentration of MGA, [MGA], is assumed to be a constant. The ratio of the corresponding Michaelis–Menten constant to [MGA] is used as a parameter. The equation for the rate of functional methylation reactions includes the dependence on both substrates (AdoMet and MGA) and inhibition by AdoHcy and was taken from [1].
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(Eq.S5)

GNMT (EC 2.1.1.20).The equation for the GNMT reaction rate includes a cooperative dependence on AdoMet with a Hill coefficient of 2.3 [9] as well as competitive inhibition by AdoHcy [10,11] and noncompetitive inhibition by MTHF [12].
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(Eq.S6)

AHC (EC 3.3.1.1). This enzyme catalyses reversible reaction of AdoHcy hydrolysis with formation of Hcy and adenosine. Since AHC activity in hepatocytes greatly exceeds activities of other enzymes of methionine metabolism (Supporting Table 1), we assumed that AHC reaction is in equilibrium and used corresponding equation for homocysteine concentration (Eq.S1).

MS (EC 2.1.1.13).This enzyme catalyses an irreversible reaction via an ordered bi-bi mechanism with MTHF as the first substrate and methionine as the first product [13,14]. The reaction rate can be described by equation S7 [15].
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(Eq.S7)

BHMT (EC 2.1.1.5). This enzyme catalyses an irreversible reaction via an ordered bi-bi mechanism with Hcy as the first substrate and dimethylglycine as the first product [16]. The enzyme is inhibited by both products, methionine and dimethyglycine [16] and the reaction rate can be described by equation S8 [15].
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(Eq.S8)

CBS (EC 4.2.1.22). The rate equation for the CBS reaction was taken from [17]. It includes the dependence of the reaction rate on substrates and activation by AdoMet:
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(Eq.S9)
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MTHFR (EC 1.5.1.20). This enzyme catalyses a ping-pong reaction with NADPH as the first substrate and MTHF as the second product [18–21]. The first step in the reaction mechanism (i.e. NADPH oxidation) is irreversible, while the second step (i.e. MTHF reduction) is reversible [21]. MTHFR is allosterically inhibited by AdoMet and exhibits 4.6% of residual enzyme activity under conditions of maximal inhibition [22]. This inhibition is diminished by AdoHcy [23,24]. To simulate this regulation in the model, we assumed that MTHFR has an allosteric site that can either bind AdoMet or AdoHcy. The binding of AdoMet diminishes enzyme activity whereas binding of AdoHcy does not change the kinetic parameters of the enzyme. We then included this regulation in the rate equation for a ping-pong mechanism [15]:
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(Eq.S10)
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For numeric analysis of the mathematical model we used Matlab software with Matlab continuation toolbox [25] and DBSolve software [26]. We used the complete equation set (Eq.S1) for analysis of the steady-state dependence of methionine metabolism on methionine influx rate and for simulation of in vitro kinetics of change in AdoMet and Met concentrations in hepatocytes. Simulation of the in vitro kinetics of methionine metabolism was examined at wmed/whep=99 (i.e. 1% cell suspension) and Vinflux = 0. All model variables except [Met] were set to physiological steady-state values (Table S3) and calculations were started at different initial [Met] values. 


When calculating the steady-state dependence of methionine metabolism on methionine concentration, we excluded the first equation from the system (Eq.S1), and in the remaining equations [Met] was included as a parameter. 


Analysis of the model shows that at a constant methionine concentration equal to the normal physiological value of 50 (M and at normal values of enzyme kinetic parameters (Table S1) and model parameters (Table S2) there is only one stable steady state with values for variables that are close to normal experimental concentrations for the corresponding metabolites (Table S3). Values of enzyme kinetic parameters listed in Table S1 provide the best description of results obtained in our experiments with suspension of murine hepatocytes. 
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