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Supplementary results

Sense-strand bias of EvoFold scores

Further assessment of the efficacy of the EvoFold algorithm can be made by
noting that its score is not strand-symmetric. The asymmetry is primarily
caused by the ability of GU (or UG) to pair, but not its reverse complement AC
(CA). Since the most common types of substitution in RNA stems involve GU
(or UG) pairs, this effect can have a pronounced effect on the EvoFold score,
thus allowing the strand association of a fold to be inferred by comparing the
score of an alignment with the score of its reverse complement. Since genes are
expected to harbor fRNAs in their UTRs and to a lesser extent in their introns,
the true folds should show a tendency to correlate with the transcribed strand.
A highly significant correlation is indeed observed in these regions, ranking as
one would expect: 3'UTR > 5" UTR > intronic. Curiously, the coding regions
show a tendency to be associated with the reverse strand (Table S1).

EvoFold was used to make predictions on both the sense (i.e. the strand com-
plementary to the template strand for transcription) and the anti-sense strands
of protein-coding gene transcripts. The folding-potential score of each pre-
dicted fold was subsequently evaluated on both strands and assigned a strand-
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Table S1: Strand bias of EvoFold predictions
Genic region count ass. statistic ~ P-value ?

coding 10551 0.496 0.47
5UTR 207 0.553 0.164
3'UTR 2725 0.646 < 2.2¢—16
intron 9603 0.558 < 2.2¢—16
combined 23086 0.549 < 22e—-16

bThe association statistic was assumed to be binomial distributed with parameter p=0.5.
The alternative hypothesis is that p deviates from 0.5.

preference score: one if the sense strand scored highest, 0.5 if both strands
scored equally, and zero if the anti-sense strand scored highest. These statistics
were then used to calculate the degree and significance of association with the
sense strand (Table S1). Only folds completely embedded within a given genic
region were used. The Known Genes track of the UCSC Browser was used to
define the genic regions (see main text, methods).

The conserved elements of all the genic regions, apart from the coding, have
a compositional bias toward G and T (coding: 48.2%, 5’'UTR: 51.2%, 3’UTR:
50.7%, and intron: 52.1%, based on 1000 random samples of each type). Such
a compositional bias has previously been obsersved on the sense-strand of tran-
scribed regions and has been hypothesized to be caused by a repair mediated
substitution bias ([1]). However, the conserved elements we analyze are under
negative selection, which appears to be a stronger force in shaping their compo-
sition, as coding regions are slightly depleted for G and T and the stems of our
train set further enriched (55.1% G and T). In comparison, the overall G and
T content of the complete candidate set is 53.0%. The observed biases toward
G and T could be caused by encoded RNA structures, but could also be caused
by the encoding of some other type of G and T rich functional elements. A
high G and T content makes substitutions more likely to be consistent with the
prediction of RNA structure. Hence, even though the observed correlation is
consistent with a surplus of functional RNAs on the sense strand of transcribed
regions, we cannot rule out that the observed sense-strand correlation is the
effect of an unrelated functional bias toward high G and T content nor that it
is influenced by the compositional bias observed by Green et al..
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Figure S1: Length of folds (top) and conserved segments (bottom) versus fre-
quency counts. There are 252 folds longer than 250 nucleotides and 1727 con-
served segments longer than 1000 nucleotides, which are not included in the
above plots.
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Table S2: Count statistics for short fold classes

See legend of Table S2.

type\location 5'UTR 3'UTR coding intronic intergenic any location
hairpin 263 (20%) 53 2567 (44%) 1139 10945 (20%) 2217 8965 (41%) 3668 15667 (42%) 6538 38407 (35%) 13614
Y-shaped 3 (67%) 2 49 (11%) 5 327 (30%) 99 120 (50%) 60 160 (33%) 52 659 (33%) 219
clover-shaped 0 (na.) O 0 (n.a.) 0 6 (80%) 5 1 (0%) 0 1 (100%) 1 8 (75%) 6
complex shapes 0 (na.) 0 0 (n.a.) 0 0 (n.a.) 0 1 (0%) 0 0 (na.) 0 1 (0%) 0
any shape 266 (21%) 55 2616 (44%) 1144 11278 (21%) 2321 9087 (41%) 3728 15828 (42%) 6591 39075 (35%) 13839
The fold counts, estimated true positive rate (in parenthesis), and estimated true
positive counts are given for each location/shape-class of short folds. The “any shape”
row and the “any location” column gives the marginalized counts for each set of fold
classes. The entry at the lower right corner thus holds the overall counts for the set
of long folds.

Table S3: Count statistics for long fold classes
type\location 5UTR 3'UTR coding intronic intergenic any location
hairpin 32 (56%) 18 359 (37%) 132 666 (36%) 237 1262 (56%) 702 2238 (59%) 1325 4557 (53%) 2413
Y-shaped 20 (0%) 0 205 (36%) T4 548 (39%) 213 803 (49%) 397 1244 (50%) 623 2820 (46%) 1307
clover-shaped 4 (0%) O 17 (100%) 17 39 3%) 14 71 (61%) 43 111 (69%) 77 242 (63%) 152
complex shapes 12 (33%) 4 134 (29%) 39 205 (39%) 81 554 (55%) 307 880 (46%) 402 1785 (47%) 833
any shape 68 (32%) 22 715 (37%) 261 1458 (37%) 546 2690 (54%) 1449 4473 (54%) 2427 9404 (50%) 4705



Estimating false positive rates for EvoFold

The false positive rate of prediction was assessed through shuffling (randomiza-
tion) experiments as explained in the fold analysis subsection of the materials
and methods section of the main text. The shuffling was done for each con-
served element separately and the predicted folds were annotated with their
size, genomic location, and fold shape, thereby allowing the false positive rate
(and hence the true positive rate) to be estimated for each fold class. A subset
of the conserved elements span several genomic regions. Since the shuffling pro-
cedure preserves the conservation pattern along the alignments, the predictions
in shuffled alignments are assigned genomic locations based on the locations of
genomic regions in the original alignments. Table S3 and Table S2 give the raw
fold count, the estimated true positive rate, and the estimated true positive
count within each class of long and short folds, respectively.

The accuracy of the true positive estimates are dependent on the abillity of
the shuffling approach to generate alignments with the same folding potentials
as the originals. Although care has been taken to achieve this, significant differ-
ences may still persist. The estimates of true positive rates (and thereby true
positive counts) are therefore affiliated with huge uncertainties and should be
interpreted with caution. Furthermore, studies based on pairwise genomic scans
have found only a small fraction of the predictions to be verifiable [2, 3]. Some
of the defined fold classes contain very few folds (and some none), which will
add a further level of uncertainty to their false positive rate estimates. Albeit
the above stated reservations, we still believe the true positive estimates are
indicative of the fraction of true positives and that they can be meaningfully
compared between classes.

The estimated false positive rate for the complete set is around 62%. How-
ever, the estimates varies greatly between the different classes as well as with
score-rank, level of conservation, and the fraction of bulges in the stems of the
folds (see fig.S2 and fig.S3.

The short folds (<15 pairing bases) have the highest false positive rate and
make up the majority (81%) of the folds, and therefore dominate the overall
estimates (see fig. S2a). The estimated false positive rates of the highest ranking
folds are much lower than the average (see fig. S2b,c). This coincides well with
the high proportion of annotated and biologically plausible folds found among
the top-15 ranking folds of various classes of long hairpins (see Table 2 and 3 of
main text).

The false positive rate is strongly dependent on the level of conservation of
the input elements and attains levels around 80% for both short and long folds
in extremely conserved regions (see fig. S3a). The absence of substitutions in the
highly conserved regions will often allow spurious stems to be predicted without
a contradictory evolutionary signal. On the other hand, In the least conserved
half of the input elements, the estimated false positive level is significantly below
average (around 34%), due to fewer a stronger evolutionary signal.

The false positive rate also varies with the fraction of bulges in stems, albeit
not as significantly as for, e.g., conservation (see fig. S3b). For the long folds,
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Figure S2: Estimated fraction of false positive predictions. a: Count of false
positives for different size-ranges of folds. Black bars indicate number of pre-
dictions made in randomized alignments (false positives), gray bars indicate the
additional number of predictions made in original alignments (true positives).
The estimated fraction of false positives is indicated above each column. b,c:
Fraction of false positives in different top-score-ranked subsets of short folds
(fig. b) and long folds (fig. ¢). Same color coding as for fig. a.
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Figure S3: Estimated fraction of false positive predictions as a function of vari-
ous fold properties for short (left) as well as long (right) folds. For all figures the
x-axis gives a measure (or type) of the property in question and the y-axis gives
the corresponding fraction of false positive. Definition of properties: a: The
sequence conservation scores are measured at the input element level and the
percentiles are relative to their distribution among all the folds. b: The bulge
fraction is the percentage of bases in stems found in bulges. ¢ and d: The
genic location and the fold shape is taken from the fold classification scheme
(see methods section of main text for definitions).
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structures with few bulges achieve the lowest false positive rate.

Genic location also affects the false positive rate, with the highest estimates
found for coding and 5’UTR regions (see fig. S3c¢). Only hairpins and Y-shaped
folds are present at noticable amount among the short folds, and they achieve
uniformly high false positive rates (around 66%) (see fig. S3d). Interestingly,
the clover-shaped folds achive the lowest false positive rate (42%) among the
long folds.

Transcription evidence for intergenic folds

We measured the genomic coverage (nucleotide level) of our intergenic and in-
tronic folds by different types of transcription evidence and compared it to the
coverage of conserved elements in the same genic regions (fig. S2d). The folds
show an enrichment for human as well as non-human cDNAs and ESTs relative
to the conserved elements, and both folds and conserved elements are enriched
relative to the background coverage in these genic regions. The enrichment for
the folds relative to the background ranges from 3.6x (human cDNA) to 11.4x
(non-human EST) while the enrichment of the conserved elements relative to
background ranges from 2.7x (human ¢cDNA) to 7.3x (non-human EST).

For comparison we also analyzed the coverage of transcription evidence in
different classes of known fRNAs in intronic and intergenic regions (fig. S4).
The observed enrichments differ widely between the different classes of fRNAs:
snoRNAs achieve the highest enrichments ranging from 8.6x (human ESTs) to
32.4x (non-human EST) and tRNAs the lowest enrichments ranging from 0.0x
(non-human ¢cDNA) to 4.1x (human EST). The transcription evidence coverage
depends on many factors, such as transcript abundance, transcript purification
procedures, masking of repetitive elements, ascertainment for known fRNAs,
copy number of fRNAs, cross hybridization, etc., and it is therefore not possible
to estimate the fraction of true fRNAs in the fold predictions from their coverage
by transcriptional evidence.

Substitution-ranked ncRNA candidates

The folding potential score highly ranks some types of fRNAs, particularly ones
with deeply conserved compact folds, but not some other types. In order to
define a set enriched for some of these other types of fRNAs, we defined a score
directly based on the observed substitutions and used it to rank long (;15 pairs)
intronic and intergenic folds. Only folds with less than 50% bulges in their stems
were considered.

The score is a normalized linear combination of the number of compensatory
double substitutions (z), compatible single substitutions (y), and contradictory
substitutions(z) observed in the input alignment:

score = (z + 0.25y — 0.52) /no. pairs

This score favors folds with many compensatory substitutions and few contra-
dictory substitutions.
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Figure S4: Transcription evidence for predicted folds, conserved elements,
and different classes of ncRNAs. The y-axis indicates the coverage in per-
cent. The different types of transcription evidence are given along the x-axis:
TF ployA+: Transfrags enriched in polyadenylated transcripts, TF polyA-
: Transfrags depleted of polyadenylated transcripts, cDINA: human cDNAs,
xeno cDNA non-human ¢cDNAs, EST: human ESTs, xeno EST: non-human
ESTs. The enrichment for a given type of transcription evidence relative to
the genome-wide coverage of intronic and intergenic regions is given above each
column. The combined class combines the tRNAs, miRNAs, snoRNAs, and the
Rfam Seed non-coding RNAs.
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Table S4: EvoFold sensitivity using only human and mouse sequences

Data set sensitivity relative sensitivity
miRNA registry [4] 48% (88/183) 56% (88/157)
Histone 3'UTR stem-loops [5] 0% (0/64) 0% (0/62)
snoRNAs [6] 2%  (4/190) 40% (4/10)
tRNAs [7] 0% (0/2) 0% (0/2)
Rfam Seed [5] 18% (41/231) 41% (41/100)

The sensitivity column gives the number of known fRNAs recognized by EvoFold using
the human-mouse sub-alignment divided by the total number of fRNAs in the input
segments. The relative sensitivity column gives the ratio between the sensitivity using
only the human and mouse sub-alignment and the complete 8-way alignment.

A set of 517 top-ranking folds (hairpins, Y-shaped, and clover-shaped) were
defined. The thus defined set of ncRNA candidates represent an alternative
to the ranked sets we present from the overall classification scheme. The set
is, as is the case for all candidate sets, available from the EvoFold web-site
(http://www.cbse.ucsc.edu/~jsp/EvoFold).

Performance on pairwise alignment

The benefit of using a multiple alignment instead of just a pairwise align-
ment was assessed by redoing sensitivity and specificity experiments on pairwise
human-mouse alignments extracted from the multiple alignments. The original
input data was used such that these experiments differ only by the number of
sequences in the alignments.

Pairwise sensitivity

The five-fold cross evaluation described in the main text was repeated on the
pairwise alignments. The training was done on the 8-way alignments, while the
testing was done on the pairwise alignments.

The decrease in performance varies between different types of functional
RNAs (see Table S4). The miRNAs maintain little more than half of the sen-
sitivity obtained with the full 8-way alignment, snoRNAs little less than half,
while no tRNAs or histone 3’UTR stem-loops are detected. The sensitivity on
the mixed set of Rfam Seed fRNAs falls to 41% of the level obtained on the full
alignments.

It is interesting to note that the histone 3’UTR stem-loops are identified very
efficiently using the 8-way alignments but missed entirely using the pairwise
human-mouse alignments. This can be attributed to their short stems, which
require a strong evolutionary signal to be detected.
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Pairwise specificity

Because of the high computational costs, the specificity experiments were only
performed on Chromosome 22, which spans 1.7% of the genome. The overall
false positive rate estimated on the mouse-human alignments was 58% (63/109),
which is slightly higher than the 54% (300/552) estimated from Chromosome
22 using the 8-way alignment. The false positive estimates for the long folds are
based on sparse data but exhibit the same pattern: 30% (3/10) using the the
mouse-human alignments and 26% (19/74) using the 8-way alignments.

Both the sensitivity and the specificity experiments reveal that EvoFold
makes fewer predictions when little evolutionary information is available. Prob-
ably because, with few sequences the cost of predicting a structure by the SCFG
will often not be compensated by the evolutionary signal (supporting substitu-
tions or conservation).

MirScan evaluation of DGCRS8 5’UTR hairpin

The DGCRS transcript contains the second-highest-scoring long 5’UTR hairpin.
This hairpin strongly resembles our predictions for known miRNAs and we
therefore evaluated its miRNA potential using MirScan [8].

A 100-bases-long human region (chr22:18447817-18447917) including the
fold was extracted from the 8-way alignment together with the homologous
sequence from fugu:

human TCACTTAAGCTGAGTGCATTGTGATTTCCAATAATTGAGGCAGTGGTTCT
fugu TCCCGTAAGCTGAATGCATTGTGATTTCCAATAATTGAGACAGTGATTCT

AAAAGCTGTCTACATTAATGAAAAGAGCAATGTGGCCAGCTTGACTAAGC
AAAAGCTGTCTACATTAATGAAAAGAACAATGTAGTCAGCTTAGCGTTTT

This alignment was given as input to the MirScan Web Server (http://genes.
mit.edu/mirscan/), which assigned it a score of 14.24. This score is highly
significant according to the histogram presented in fig. 1 of Lim et al. (2003)

[8].

EvoFold specification

EvoFold is based on a pair of phylo-SCFGs (phylogenetic stochastic context-
free grammars) as outlined in the “Materials and methods” section of the main
text. This section will start with a brief introduction to SCFGs and then give
more detail on the phylogenetic models and the grammars which make up the
phylo-SCFGs. A brief description of the algorithms used with the phylo-SCFGs
is also included.

S11



SCFGs

SCFGs are probabilistic models which define distributions over sequences with
associated structure annotations. SCFGs can be seen to extend HMMs (hid-
den Markov models): not only can they model neighbor dependencies but also
far-ranging nested dependencies. This last property makes them well-suited
for modeling the nested, far-ranging base-pair interactions of RNA secondary
structures.

SCFGs originate from formal grammars [9, 10] and have traditionally been
described as generative models in the terminology of production rules operating
on non-terminals and terminals. The non-terminals represent the underlying
structural annotation of a sequence. The terminals, on the other hand, represent
the observed symbols of a sequence. This formalism does not normally separate
the modeling of the underlying structure (involving only non-terminals) from the
modeling of the observed sequence (involving both non-terminal and terminals).
But in the case of phylo-SCFGs such a separation becomes convenient and allows
for a more compact representation of the model [11].

By adopting the terminology of states, transitions, and emission distribu-
tions, traditionally used with HMMs, a conceptual separation of the modeling
of non-terminals from terminals becomes possible. A state corresponds to a
non-terminal, a transition defines the probability of generating a given non-
terminal from the current non-terminal, and an emission-distribution defines a
probability distribution over all the possible productions of terminals given a
certain non-terminal. This approach is described in Durbin et al. as well as
Pedersen et al. (2004) and will only be outlined below.

Durbin et al. (1998) suggested the use of a limited number of state types
for RNA-grammars, each of which can only be used with a certain form of
production rule: pair (P) (W, — z;Wyx;), left (L) (W, — z;W,), start (S)
(W, — W), bifurcate (B) (W, — W,Wy), and end (E) (W, — ¢), where €
denotes the empty sequence, W,, W, and W, denote different states, z denotes
the observed sequence, and ¢ and j positions within the observed sequence .

Given this set of possible production rules an SCFG can be completely spec-
ified by a four-tuple ¢ = (W,t, A,e), where W is a set of states, ¢ is a set of
state transitions, A is a set of state-associated emission distributions, and e is
a set of state-associated emission distributions [11]. Alphabets and emission
distributions are only defined for the subset of emitting states, which are either
of type pair or type left.

In the case of phylo-SCFGs, the alphabets are composed of alignment columns
and the emission distributions are defined by phylogenetic models.

Phylo-SCFGs

EvoFold is based on two phylo-SCFGs: an fRNA model (¢¢rna), which models
regions with functional RNA structures, and a background model (¢,), which
models region without any structures. The fRNA model is composed both
of a non-structural component (fig. Sha and fig. S6a), a structural component
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a)
begin_non-structrual — unpaired

unpaired — unpaired z | end z

b)
begin_structrual — stem_pair
stem_pair — x; stem_pair z, | z; bifurcation x,
bifurcation — emit intermediate
emit — loop_&_bulge |stem_pair
loop_&_bulge — end z
intermediate —  bifurcation | emit

Figure S5: Production rules of the non-structural component (a) and the struc-
tural component (b). Nomenclature: ’|” denotes a choice between different
productions; x denotes single column emissions; x; and x, denotes the left and
right part of pair emissions, respectively. A corresponding graphical overview
of these grammar components are given in fig. S6.

(fig. S5b and fig. S6b), and a high-level component (not shown), which combines
the two other components. In contrast, the background model consists of only
the non-structural component.

The overall structure of the fRNA grammar is identical to the grammar used
by RNA-decoder [11], but the structural and the non-structural components are
different. The structural component uses the RNA-grammar proposed by [13].
Note that we write these grammars using the restricted set of production rules
given above, this causes the structural grammar to be written with three more
states than originally used by Knudsen and Hein. A minimum loop-size of
three bases is enforced by the emission distribution of the stem pair state. No
minimum stem size is enforced.

Phylogenetic models

Since the input of EvoFold is multiple sequence alignments, the emission dis-
tributions of its SCFGs are defined over sets of alignments columns. There
are exceedingly many such alignment columns for even a moderate number of
aligned sequences: 16" in the case of paired columns with n sequences in the
alignment. Explicitly defining a distribution over these columns is therefore
infeasible.

The use of phylogenetic models for studying molecular evolution and evo-
lutionary relationships has a long history [14, 15], and they are now becoming
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Figure S6: Transition graphs of the non-structural component (a) and the struc-
tural component (b) of the phylo-SCFGs. The state types are given in parenthe-
sis. Arrows indicate possible state transitions. The transition from the bifurca-
tion state leads to two states, a left (1) and a right (r), as indicated on the graph.
The unpaired and the loop & bulge states have associated single-column emis-
sion distributions (specified by a single-nucleotide phylogenetic model). The
stem pair state has an associated di-column emission distribution (specified by
a di-nucleotide phylogenetic model).
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an integral model component in comparative genomics [13, 16-18]. They de-
scribe the substitution process along the branches of a tree, and can be used to
efficiently calculate the probability of any given alignment column. They are
normally highly parameterized but still able to capture characteristics of the
substitution process, such as rate of substitution, nucleotide bias, and unequal
rates of substitution.

A phylogenetic model is defined by ¢ = (Q,7,3), where @ is an instan-
taneous rate matrix, 7 is a tree topology, and ( is a set of branch lengths.
Phylogenetic models are normally based on a stationary, reversible continuous-
time Markov process. Stationarity implies that the initial distribution of the
process equals the equilibrium distribution 7. Reversibility is normally achieved
by parameterizing () in terms of pi. The resulting process is defined with re-
spect to a set of states, which in our case is represented by a nucleotide or a
di-nucleotide alphabet. The tree topology and the set of branch lengths specify
the phylogenetic tree.

The fRNA model makes use of two emission distributions: The two left
emitting states (unpaired and loop & bulge) use the same emission distribu-
tion, which is specified by a single-nucleotide phylogenetic model (1*"9'¢). The
pair-emitting state (stemn pair) uses an emission distribution defined by a di-
nucleotide phylogenetic model ()%). Since the background model is defined
as the non-structural component of the fRNA model, it uses the same single-
nucleotide model.

Phylogenetic tree

The phylogenetic tree represents the evolutionary relationship between the se-
quences (i.e. species) of the multiple alignment. It is specified by both a topol-
ogy and a set of branch lengths, as stated above. The branch lengths are mea-
sured in expected number of nucleotide substitutions per site. By increasing the
branch lengths, alignment columns with many substitutions become more likely.
The phylogenetic trees of the two phylogenetic models are based on the same
input tree, but their branch lengths are scaled differently (e.g., 3 = rPair ginput,
where r% is the scaling factor used for the di-nucleotide model). The branch
lengths of the di-nucleotide are down-scaled with a factor of 2.4 relative to the
single-nucleotide model (i.e., 759 = 2.4pd%).

The phylogenetic tree is estimated using the phastCons model of the PHAST
software package http://www.soe.ucsc.edu/~acs/software.html [19]. The
phastCons model was estimated from the genome-wide 8-way alignment (see ma-
terials and methods, main text), and the phylogenetic tree of the non-conserved
state used. This approximates an estimate of a phylogenetic tree from all the
unconstrained sites in the genome.

Di-nucleotide model

The di-nucleotide model is used to define the probability of combined columns
of paired nucleotides (main text, fig. 6). It should therefore capture the charac-
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teristics of their substitution process, which includes an overall low probability
of observing non-pairing di-nucleotides and a low probability of observing sub-
stitutions from pairing di-nucleotides to non-pairing di-nucleotides.

We found that the following parameterization achieved this with a reasonable
number of free parameters: Let a and b be two di-nucleotides (i.e. states of the
process), and let g% be the off diagonal entries of the 16x16 rate matrix (Q%).
We then define Q% as follows:

_ TpQqp  if both a and b are pairing
q% =< my if either @ or b is pairing
0 if neither a nor b is pairing

The set of pairing nucleotides is defined as AP%""9 = {AT, TA,GC,CG,GT, TG}
(T is used instead of U since the input is DNA). ayp, v, 0 define free param-
eters, which determine the flux (rate of change) between the different pairs of
di-nucleotides. The flux between each pair of pairing di-nucleotides is described
by its own free parameter

Qap = Qpg  Va,b e APTTINI,

There are thus 15 (6 * 5/2) such free parameters. The flux between the set of
pairing di-nucleotides and the set of non-pairing di-nucleotides is defined by a
single parameter (v), and the flux between any pair of non-pairing di-nucleotides
is defined by a single parameter (6). This model thus has 17 free flux parameters
and 15 free equilibrium distribution parameters, for a total of 32 free parameters.

This di-nucleotide model can be seen as a hybrid between a heavily con-
strained 16-state model and a general reversible six-state model [20]. It is im-
portant to use a 16-state model when detecting stem-pairing regions, since the
six and seven-state models [20] cannot take changes between non-pairing di-
nucleotides into account and will make columns with many such changes too
probable.

Single-nucleotide model

The single-nucleotide model is used to define the probability of single unpaired
columns both within the loop and bulge regions of the RNA structures and in
the surrounding unstructured regions.

Differences in the probability of input columns under this model compared
to the di-nucleotide model determines if a structure will be predicted in a given
region. It is therefore important that the di-nucleotide model does not favor
some regions simply because of, e.g., their base composition, which would lead
to spurious structure predictions. On the other hand, it is important that the
two models assign significantly different probabilities to truly pairing columns.

We achieve this by defining the substitution process of the single-nucleotide
model as an average of the marginal substitution process observed in the left
and right positions of the di-nucleotide model. The rate matrix (Q*9'¢) and
the equilibrium distribution (7%9!¢) of the single nucleotide model (¢)*"9!¢) is
thus completely defined in terms of the di-nucleotide model.
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The marginalized rate matrix and equilibrium distribution of the single nu-
cleotide model are calculated as follows: Let a, b be states of the single nucleotide
substitution process and let ¢, d be states of the di-nucleotide substitution pro-
cess. Let ¢; and co denote the left and the right nucleotide of the di-nucleotide
¢, respectively. The entries of the the equilibrium distribution for the left process
are given by rleft = Yo er=a T 7dt and correspondlngly the entries of the right
process are given by 779t = ZC .ep—a e - The rate matrix entries g, for the
left and the right processes are:

di
quegt = Z Z lgft c, d

cicr=ad:di= b

right c
qa»b - Z Z nght qC d-

cica=a d:do= b

The final equilibrium distribution and rate matrix of the single nucleotide model
are now given by: ,/Tsingle _ %(Trleft + ,n.right) and Qsingle _ %(Qleft + Qright)'
This marginalization strategy is inspired by Yang et al. (1998) , who derived
an amino-acid substitution process from a codon substitution process.

This scheme thus removes all differences between the models, apart from the
ability of the di-nucleotide model to detect correlations between pairing columns.
The overall substitution rate is also kept as a free parameter, as explained above
(see Phylogenetic tree section).

Algorithms

The algorithms for the phylo-SCFGs are the traditional SCFG algorithms CYK,
inside, inside-outside [12, 22, 23]. The only difference is that the emission prob-
abilities are not explicitly defined, but calculated using Felsenstein’s algorithm
[24], which calculate the probability of an alignment column under a phyloge-
netic tree.

The SCFG algorithms have cubic running times (O(L?)) in the length of the
input sequence, and Felsenstein’s algorithm has a linear running time (O(n)) in

the number of sequences of the alignment. The overall running times of all the
phylo-SCFG algorithms are thus O(L3n) [11, 13].

Training

Only the fRNA model is trained, since its non-structural component completely
specifies the background model.

The state transitions are estimated from known RNA secondary structure
annotations, which completely specify the state transitions within the grammar.
The EM-algorithm was used to estimate the state transitions, but with no miss-
ing data the transition probabilities are in reality estimated by simple counting
[12].
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The set of pairing columns are also completely specified by the annota-
tion of the training data. A combination of the inside algorithm with Felsen-
stein’s algorithm is used to calculate the likelihood of the training data. The
maximum-likelihood estimates of the free parameters of the di-nucleotide sub-
stitution model (Q% and ©%) are found using the quasi-Newton method with
BFGS estimation of the Hessian as implemented in OPT++ [25].

The phylogenetic tree (7 and ) is taken as input (explained above).

Structure prediction

The CYK algorithm (combined with Felsenstein’s algorithm) is used to find the
most probable parse from the phylo-SCFG. EvoFold returns the corresponding
secondary structure as its prediction. The prior (defined by transition proba-
bilities) of the fRNA model is biased toward predictions devoid of structure.

Score calculation

The inside algorithm (combined with Felsenstein’s algorithm) is used to calcu-
late the likelihood of the input alignment (x) under both the fRNA model and
the background model. The returned folding potential score (FPS) is the log
odds between these:

FPS =log(P(z|¢prana)/P(x|dpg))-

The scores are calculated for specific folds, which are then length normalized.

Position-specific reliability scores

The position-specific reliability scores are given by the posterior probability
of observing the assigned annotation. It is calculated using the inside-outside
algorithm (combined with Felsenstein’s algorithm).

Implementation

The phylo-SCFGs are specified in XML and implemented using the SCFG frame-
work presented in Pedersen et al. (2004) , with specific extensions to deal with
rate matrix marginalization, etc.. Post-processing of the outputs (to calculate
the FPS from likelihood values, etc.) is done using various python scripts.

Supplementary data

The complete set of predictions can be retrieved in bulk or browsed interac-
tively at the UCSC Human Genome Browser (http://genome.ucsc.edu/).
The top-ranking folds of each category as well as the set of paralogous fam-
ilies can be accessed from the EvoFold web-site (http://www.cbse.ucsc.edu/
~jsp/EvoFold). A statically linked linux binary of the EvoFold program can
also be downloaded from the EvoFold web-site (source-code is available upon
request).

S18



References

1]

Green P, Ewing B, Miller W, Thomas PJ, Green ED (2003) Transcription-
associated mutational asymmetry in mammalian evolution. Nat Genet 33:
514-517.

McCutcheon JP, Eddy SR (2003) Computational identification of non-
coding RNAs in Saccharomyces cerevisiae by comparative genomics. Nu-
cleic Acids Res 31: 4119-4128.

Babak T, Blencowe BJ, Hughes TR (2005) A systematic search for new
mammalian noncoding RNAs indicates little conserved intergenic transcrip-
tion. BMC Genomics 6: 104.

Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32:
D109-D111.

Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, et al. (2005)
Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids
Res 33: D121-D124.

Lestrade L, Weber MJ (2006) snoRNA-LBME-db, a comprehensive
database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res
34: 158-162.

Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detec-
tion of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:
955-964.

Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate
microRNA genes. Science 299: 1540.

Chomsky N (1959) On Certain Formal Properties of Grammars. Informa-
tion and Control 2: 137-167.

Baker JK (1979) Trainable grammars for speech recognition, in: Speech
Communication Papers for the 97th Meeting of the Acoustical Society of
America, Boston, MA, pp. 547-550.

Pedersen JS, Meyer IM, Forsberg R, Simmonds P, Hein J (2004) A com-
parative method for finding and folding RNA secondary structures within
protein-coding regions. Nucleic Acids Res 32: 4925-4936.

Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence ana-
lysis: Probabilistic models of proteins and nucleic acids, Cambridge: Cam-
bridge University Press.

Knudsen B, Hein J (1999) RNA Secondary Structure Prediction Using
stochastic context-free grammars and evolutionary history. Bioinformatics
15: 446-454.

519



[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

Jukes TH, Cantor CR (1969) Mammalian Protein Metabolism, New York:
Academic Press, chapter 24, pp. 21-132.

Felsenstein J (2003) Inferring Phylogenies., Sinauer Assoc., 664 pp.

Pedersen JS, Hein J (2003) Gene finding with a hidden Markov model of
genome structure and evolution. Bioinformatics 19: 219-227.

Boffelli D, McAuliffe J, Ovcharenko D, Lewis KD, Ovcharenko I, et al.
(2003) Phylogenetic shadowing of primate sequences to find functional re-
gions of the human genome. Science 299: 1391-1394.

Siepel A, Haussler D (2004) Computational Identification of Evolutionary
conserved exons, in: Proceedings of the Eighth Annual International Con-
ference on Computational Biology (RECOMB-04), New York: ACM Press.

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005)
Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Res 15: 1034-1050.

Savill NJ, Hoyle DC, Higgs PG (2001) Rna sequence evolution with sec-
ondary structure constraints: comparison of substitution rate models using
maximum-likelihood methods. Genetics 157: 399—411.

Yang Z, Nielsen R, Hasegawa M (1998) Models of amino acid substitu-
tion and applications to mitochondrial protein evolution. Mol Biol Evol 15:
1600-1611.

Sakakibara Y, Brown M, Underwood R, Mian IS, Haussler D (1994)
Stochastic Context-Free Grammars for Modeling RNA, in: Proceedings
of the 27th Hawaii International Conference on System Sciences, Honolulu:
IEEE Computer Society Press, pp. 284-283.

Eddy SR, Durbin R (1994) RNA sequence analysis using covariance models.
Nucleic Acids Res 22: 2079-2088.

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum
likelihood approach. J Mol Evol 17: 368-376.

Meza JC (1994) OPT++: An Object-Oriented Class Library for Nonlinear
Optimization, Technical Report SAND94-8225, Sandia National Laborato-
ries.

520



