Protocol S1: Proof for Proposition 1

Equations 3 and 5 can be rewritten as follows:

$$m_{iq} = \prod_{k=3}^{B} f_{k} \times \begin{cases} Q_{00} & \text{if } s_{2} = 0 \& s_{3} = 0 \\ Q_{01} & \text{if } s_{2} = 0 \& s_{3} = 1 \\ Q_{10} & \text{if } s_{2} = 1 \& s_{3} = 0 \\ Q_{11} & \text{if } s_{2} = 1 \& s_{3} = 1 \end{cases}$$
(13)
$$p_{i} = \sum_{q=0}^{2^{M-1}-1} m_{iq} / P,$$
(14)

where:

$$Q_{00} = P(1-\lambda)(1-\alpha_1)(1-\alpha_2) + P\lambda\beta_1\beta_2, \qquad (15)$$

$$Q_{01} = P(1-\lambda)(1-\alpha_1)\alpha_2 + P\lambda\beta_1(1-\beta_2), \qquad (16)$$

$$Q_{10} = P(1-\lambda)\alpha_1(1-\alpha_2) + P\lambda(1-\beta_1)\beta_2, \qquad (17)$$

$$Q_{11} = P(1-\lambda)\alpha_1\alpha_2 + P\lambda(1-\beta_1)(1-\beta_2).$$
⁽¹⁸⁾

Here, m_{iq} ($i = 0, 1, ..., 2^N - 1, q = 0, 1, ..., 2^{M-l} - 1$) is the expected number of cases for the intron pattern iq, which is the combination of the *i*th external pattern with the *q*th internal pattern excluding the root node. s_2 and s_3 are the intron states of the two nodes, which are children of the root node.

It is clear from equations 13 and 14 that p_i (and consequently the log-likelihood value) will be invariant if Q_{00} , Q_{01} , Q_{10} , Q_{11} , α_k , and β_k (k = 3, 4, ..., B) are constant. Moreover, the sum of Q_{00} , Q_{01} , Q_{10} , and Q_{11} is P, so there is one redundant equation in the four equations 15–18. As a result, there will be infinite sets of parameters λ , α_1 , β_1 , α_2 , and β_2 that produce the same values for Q_{00} , Q_{01} , Q_{10} , and Q_{11} (since there are five variables but only three equations). It follows that there will be infinite sets of MLEs $\hat{\lambda}$, $\hat{\alpha}_1$, $\hat{\beta}_1$, $\hat{\alpha}_2$, $\hat{\beta}_2$.