Protocol S1: Proof for Proposition 1

Equations 3 and 5 can be rewritten as follows:

$$
\begin{align*}
& m_{i q}=\prod_{k=3}^{B} f_{k} \times \begin{cases}Q_{00} & \text { if } s_{2}=0 \& s_{3}=0 \\
Q_{01} & \text { if } s_{2}=0 \& s_{3}=1 \\
Q_{10} & \text { if } s_{2}=1 \& s_{3}=0 \\
Q_{11} & \text { if } s_{2}=1 \& s_{3}=1\end{cases} \tag{13}\\
& p_{i}=\sum_{q=0}^{2^{n-1}-1} m_{i q} / P, \tag{14}
\end{align*}
$$

where:

$$
\begin{align*}
& Q_{00}=P(1-\lambda)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)+P \lambda \beta_{1} \beta_{2}, \tag{15}\\
& Q_{01}=P(1-\lambda)\left(1-\alpha_{1}\right) \alpha_{2}+P \lambda \beta_{1}\left(1-\beta_{2}\right), \tag{16}\\
& Q_{10}=P(1-\lambda) \alpha_{1}\left(1-\alpha_{2}\right)+P \lambda\left(1-\beta_{1}\right) \beta_{2}, \tag{17}\\
& Q_{11}=P(1-\lambda) \alpha_{1} \alpha_{2}+P \lambda\left(1-\beta_{1}\right)\left(1-\beta_{2}\right) . \tag{18}
\end{align*}
$$

Here, $m_{i q}\left(i=0,1, \ldots, 2^{N}-1, q=0,1, \ldots, 2^{M-1}-1\right)$ is the expected number of cases for the intron pattern $i q$, which is the combination of the i th external pattern with the q th internal pattern excluding the root node. s_{2} and s_{3} are the intron states of the two nodes, which are children of the root node.

It is clear from equations 13 and 14 that p_{i} (and consequently the log-likelihood value) will be invariant if $Q_{00}, Q_{01}, Q_{10}, Q_{11}, \alpha_{k}$, and $\beta_{k}(k=3,4, \ldots, B)$ are constant. Moreover, the sum of Q_{00}, Q_{01}, Q_{10}, and Q_{11} is P, so there is one redundant equation in the four equations 15-18. As a result, there will be infinite sets of parameters $\lambda, \alpha_{1}, \beta_{1}, \alpha_{2}$, and β_{2} that produce the same values for Q_{00}, Q_{01}, Q_{10}, and Q_{11} (since there are five variables but only three equations). It follows that there will be infinite sets of MLEs $\hat{\lambda}, \hat{\alpha}_{1}, \hat{\beta}_{1}, \hat{\alpha}_{2}, \hat{\beta}_{2}$.

