
Programming for Bioscientists Supporting Information, S2 Text

Supporting Information (S2 Text)
An Introduction to Programming for Bioscientists: A

Python-based Primer

Berk EkmekciY, Charles E. McAnanyY, Cameron Mura*

Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319 USA;
*cmura@muralab.org; YThese authors contributed equally to this work.

March 26, 2016

Contents

1 Python in Broader Context: A Tool for Scientific Computing 1

2 An Overview of Bioinformatics Software 3
2.1 Sequence-level Bioinformatics . 3
2.2 Structural Bioinformatics . 4
2.3 Phylogenetics and Molecular Evolution . 5
2.4 Omics-scale Data-processing . 6
2.5 Informatics Workflow Management Systems . 6
2.6 The Bio* Projects, and Where to Go Next . 7

3 Sample Python Chapters 8
3.1 Working with Python: Interpreters, Shells, IDEs . 8
3.2 Sample Introductory Topic: Chapter 2 on Variables . 8
3.3 Sample Advanced Topic: Chapter 16 on Classes, Objects, OOP 10

References 17

1 Python and the Broader Scientific Computing Ecosystem

Programming languages can be loosely classified, based on various criteria, into distinct lineages or tax-
onomies. Imperative programming languages require the programmer to specify the detailed steps necessary
for the program to run, including explicit instructions for modifying data. In an imperative program, the series
of statements that comprise the program alter the runtime’s state in a predictable and fairly obvious manner;
C and Fortran are examples of popular languages that are often used to program in an imperative manner. The
Unix shells (bash, csh, etc.) are also examples of imperative languages: the user types commands one-by-one
and the shell executes them in order as it receives them.

Ekmekci, McAnany, Mura 1 of 19

mailto:cmura@muralab.org

Programming for Bioscientists Supporting Information, S2 Text

In contrast, declarative languages emphasize expressions rather than statements. The programmer
specifies not the precise steps necessary to generate an answer, but rather expresses the answer directly
in terms of the input to the program. For example, in the Prolog programming language, one defines a
set of rules (like a system of algebraic equations) and then asks the interpreter if a certain input could
satisfy those rules. The interpreter will either find a valid solution or prove that no solutions exist. Regular
expressions specify a set of strings and the regex engine tries to match an input string with a given regex.
Functional languages are declarative programming languages that consider programs to be functions that
can be evaluated. As an example, the parallel pipelines in Python (PaPy) toolkit was written in Python,
making extensive use of higher-order functions (e.g., map, reduce), anonymous or ‘lambda’ functions
(see Chapter 13, Functions III), lazy (non-strict) evaluation as its dataflow model, and other elements of
functional programming design [1]. Functional languages discourage, and in some cases prohibit, mutation.
While x=x+1 is valid in most imperative languages (the value of x is incremented by one), many functional
languages have no easy way to change a variable—the programmer would usually refer to x+1 when that
value was needed.

A number of other programming paradigms can be defined, and many of them overlap. Python is
considered a multi-paradigm language: it provides many of the tools used in functional programming,
including a powerful list comprehension syntax, and it also allows the user to define functions as sequences
of statements to be executed (the imperative style).

Regardless of the classification scheme, all programs are characterized by two essential features. As
mentioned in the main text, these two characteristics are: (i) algorithms or, loosely, the ‘programming
logic’, and (ii) data structures, or how data are represented/structured, whether they are mutable, etc. [2]
Python treats these two features of a program as inseparable, thereby making it particularly well-suited to the
object-oriented programming (OOP) paradigm. Indeed, literally everything is an object in Python.

Python has become an especially popular language in scientific computing largely because (i) its clean
syntax and straightforward semantics make it a lucid and readily accessible first language in which to
learn/extend/maintain code; (ii) as a language, Python is quite expressive [3, 4], and is inherently amenable
to modern programming paradigms such as OOP and functional programming [5]; (iii) Python’s widespread
popularity has translated into the development of a rich variety of libraries and third-party toolkits that extend
the functionality of the core language into every biological domain, including sequence- and structure-based
bioinformatics (e.g., BioPython [6]), comparative genomics (e.g., PyCogent [7]), molecular visualization
and modelling toolkits (e.g., PyMOL [8], MMTK [9]), ‘omics’ data-analysis, data processing pipelines and
workflow management systems (e.g., [1]), and even parallel programming [10]. Many of these points are
further elucidated in [11].

Several languages other than Python have been widely used in the biosciences; see, e.g., [3] for a
comparative analysis. The R programming language provides rich functionality for statistical analysis, and
has been widely adopted in bioinformatics (e.g., the Bioconductor project [12]). Perl became an early mainstay
in bioinformatics programming (e.g., [13, 14]) largely because of its string-processing capabilities (pattern
matching, regular expression handling, etc.). The Fortran, C, and C++ languages offer excellent numerical
performance with minimal overhead, making them ubiquitous in computationally-intensive tasks such as
molecular dynamics (MD) simulation engines; however, these languages require greater care in memory
management and other low-level aspects of writing code, versus higher-level languages such as Python or Perl.
The D programming language provides performance near that of C, with many convenient language features
for high-level programming; however, the resulting language is complex. Though not a suitable tool for
numerical computing, Unix shells (bash, csh, zsh, etc. [15]) are often used to link together other standalone
programs (shell scripts, Python code, binary executables, etc.) into ad hoc data-processing pipelines.

Ekmekci, McAnany, Mura 2 of 19

Programming for Bioscientists Supporting Information, S2 Text

2 A Glimpse of the Bioinformatics Software Landscape

There is a vast array of possible options and starting points for software resources in bioinformatics (and,
more generally, computational biology), even if we limit our consideration to software that (i) is freely
distributed under an open-source license and (ii) provides low-level libraries or modular toolkits†, rather
than feature-complete end-products intended for general purpose usage (including by novices). Monolithic,
‘all-in-one’ software suites typically have many external dependencies, and these dependencies generally
correspond to low-level libraries; an example from crystallographic computing is the usage of mmdb, Clipper,
and various general-purpose graphics libraries (e.g., OpenGL) to achieve the high-level functionality of the
popular Coot molecular graphics program [16].

We can only scratch the surface of available software packages, and the subsections that appear be-
low cover but a handful of the programs often encountered in computational biology. The discussion is
intentionally biased towards software written in Python, purely for the pedagogical purposes of this primer.
Note that the material which appears below is inherently a moving target (and a fast one, at that). It is not
uncommon for scientific software projects and databases to be in various states of flux (see, e.g., the editorial
in [17])—new packages appear every few weeks, others disappear or become obsolete, and most software
codebases undergo extensive modification on the timescale of months. For these reasons, the material in
the following subsections strives to point the reader to various lists and meta-lists (lists of lists). Such lists
are often more stably persistent (e.g., curated on Wikipedia), and they are inherently able to provide more
recently updated catalogs of software than can be provided here. Ultimately, a web-search is often the most
effective strategy to discover new information, troubleshoot software, ask programming questions, etc.

The remainder of this section is arranged as subsections based on the following major categories: (i)
Sequence-level bioinformatics, (ii) Structural bioinformatics, (iii) Phylogenetics and molecular evolution, (iv)
Omics-scale data-processing, (v) Informatics workflow management systems, and (vi) The Bio* projects (and
some assorted tips). These categories are the common domains of activity in computational biology, both in
terms of software development and practical applications. Within each section we offer pointers to online
resources that catalog, in an at least somewhat structured way, some of the codes that exist in that application
domain; such information often appears as lists and meta-lists.

2.1 Sequence-level Bioinformatics

This section’s content includes: (i) pointers to lists of available sequence analysis software packages that
are mostly feature-rich, meaning they can be applied as-is to address a production-grade research task;
(ii) an example of an educational piece of software (‘B.A.B.A.’) that covers the dynamic programming
algorithm, found in many bioinformatics software packages; and (iii) practical advice on locating more
detailed information and resources, for Python coding and beyond.

• Lists of software: An extensive list of sequence alignment codes is at [18]. A wiki is an ideal format
for maintaining oft-changing lists of software, as the information can be readily updated by developers,
users, and other members of the scientific community. The wiki content cited above is structured
by type of application (pairwise sequence alignment, multiple sequence alignment, sequence motif
detection, etc.), and a major subsection is dedicated to software for visualization of alignments [19].
Also, a closely related list is at [20], which supplies some programming tools (typically lower-level
than the previous two cited URLs) for statistical computing, of the sort that often factors into sequence

†Software can be described as a low-level library or toolkit if it provides a generic, modular, and reusable set of functions (e.g., a
PDB file parser), independent of specific application domains or highly specific instances of tasks (e.g., splitting a PDB file by chain
identifier and writing each chain as a separate file); see also §1 of the main text for more discussion of the terms ‘low-level’ and
‘high-level’.

Ekmekci, McAnany, Mura 3 of 19

Programming for Bioscientists Supporting Information, S2 Text

alignment methods. For instance, this latter list describes the software ‘Orange’ as “an open source
machine learning and data mining software (written in Python). It has a visual programming front-end
for explorative data analysis and visualization, and can also be used as a Python library.” Many of
the software packages in the above list are open-source, meaning that one can freely access and study
the code in order to identify useful chunks of code; these modular units of code can be adapted and
re-used for one’s own purposes.

• An educational code: B.A.B.A.: Though written as a Java applet rather than as Python source
code, we mention the ‘Basic-Algorithms-of-Bioinformatics Applet’ (B.A.B.A.; [21]) because of its
pedagogical value in learning the dynamic programming algorithm that underlies many sequence-
based methods [22]. Given a user-specified input problem (e.g., two sequence strings to align),
the B.A.B.A. applet visually builds the dynamic programming matrix. Users can watch the matrix
elements be updated as the algorithm progresses, including for such methods as the Needleman-
Wunsch algorithm (globally optimal sequence alignment [23]), the Smith-Waterman method (local
sequence alignment [24]) at the heart of the BLAST search method, and the Nussinov algorithm (for
prediction of RNA secondary structural regions [25]). Using a tool like B.A.B.A., one can learn the
dynamic programming algorithm and play with toy-models in preparation for implementing one’s
own code in Python.

• Further resources for coding: For the hands-on activity of actually implementing an algorithm in
Python, the most effective and general path to helpful information is a web search, e.g. using Google.
By searching the web, one can discover, for instance, valuable and comprehensive discussions of the
‘bottom-up’ (exhaustive tabulation) and ‘top-down’ (recursion, memoization) approaches to dynamic
programming (see, e.g., [26], [27], and [28]). This same advice holds true for any algorithm or data
structure that one is attempting to implement in Python: websites, and online communities of coders,
are invaluable resources for both novice and seasoned programmers.

2.2 Structural Bioinformatics

Both types of software resources for structural bioinformatics—(i) feature-rich suites that can be immediately
applied to a research task and (ii) lower-level Python libraries that are intended more as modules to incorporate
into one’s own code—can be discovered and used via similar strategies as mentioned above. Namely, we
suggest a combination of (i) web-search, (ii) consulting lists of software on various wikis and other websites
(curated sites are particularly helpful), and (iii) inspection of existing code from open-source packages. Some
more specific notes follow:

• Structure alignment/analysis: As an example of a frequent computational task in structural bioin-
formatics, consider the comparison of two (or more) 3D structures. There are many available packages
for optimal pairwise superimposition of two protein structures; the multiple alignment problem is more
difficult (and fewer software solutions exist). Many of the available structural alignment packages are
tabulated at [29] and, as of this writing, that web resource offers good coverage of existing packages.
To visualize the results of structure alignment calculations, one can find numerous possibilities in
such lists as [30] and Table 1 of [31].

• Python-centric suites: There are many feature-rich, research-grade software suites available for
structural analysis tasks (in many cases, these programs also provide advanced visualization capa-
bilities). Several such programs provide a Python API, or a built-in scripting language or shell that
resembles Python’s syntax. Examples include the Python-based molecular viewing environment
PMV [32], the popular PyMOL molecular graphic program [8], and the macromolecular modelling
toolkit (MMTK; [9]). PMV supplies extensive functionality for protein structural analysis, with an

Ekmekci, McAnany, Mura 4 of 19

Programming for Bioscientists Supporting Information, S2 Text

emphasis on geometric characteristics (surface curvature, shape properties, etc.). MMTK is “an
open-source program library for molecular simulation applications”, and it provides users with a
vast array of Python-based tools. Using MMTK’s Python bindings, one can write Python scripts to
perform a coarse-grained normal mode calculation for a protein, a simple molecular dynamics (MD)
simulation, or molecular surface calculations as part of a broader analysis pipeline.

• Molecular simulations: Another type of activity in structural bioinformatics entails molecular
modeling and simulation, ranging from simple energy minimization to MD simulations, Monte Carlo
sampling, etc. Software packages that are suitable for these purposes are tabulated at [33]. The Bahar
lab’s ‘ProDy’ software is an example of a package in this scientific domain that makes substantial use
of Python [34]. This “free and open-source Python package for protein structural dynamics analysis”
is “designed as a flexible and responsive API suitable for [...] application development”; this code
provides much functionality for principal component analysis and normal mode calculations.

• Pure Python: Finally, note that the purely Python-based SciPy toolkit supplies many types of
computational geometry utilities that are useful in analyzing macromolecular 3D structures [35].
For instance, the Python module on spatial data structures and algorithms (scipy.spatial [36]) can
compute Delaunay triangulations (and, inversely, Voronoi diagrams) and convex hulls of a point-set;
this module also supplies data structures, such as kD-trees, that are indispensable in the geometric
analysis of proteins and other shapes.

2.3 Phylogenetics and Molecular Evolution

This section describes software resources for computational phylogenetics, a major goal of which is the
calculation of phylogenetic trees that accuratey capture the likely evolutionary history of the entities under
consideration (be they protein sequences, genes, entire genomes, etc.).

• Wikipedia’s list of phylogenetics packages is quite well-developed [37]. Also, a long-time pioneer
of the field, J. Felsenstein, maintains a thoroughly curated list of several hundreds of phylogeny-
related software packages at [38]. Notably, the software cataloged at this resource can be listed by
methodology (general-purpose packages, codes for maximum likelihood methods, Bayesian inference,
comparative analysis of trees, etc.); also, that URL provides a list of pointers to other lists. Many
of the phylogeny packages listed on the above web-pages are feature-complete and ready for direct
application to a research problem (perhaps in a Python script, depending on the package and its API),
while others are libraries that serve as sources of lower-level functionality.

• PyCogent: The comparative genomics toolkit, PyCogent, is an example of a Python-based code
in the evolutionary genomics domain. This software package supplies “a fully integrated and
thoroughly tested framework for novel probabilistic analyses of biological sequences, devising
workflows, etc.” [7]. As a concrete example of the benefits of the open-source approach, low-
level Python functionality for protein 3D structural analysis was added to PyCogent by third-party
developers [39], thereby expanding the scope of this (largely sequence-based) code to include
structural approaches to molecular phylogenetics.

• DendroPy: A “Python library for phylogenetic computing”, DendroPy is a codebase that provides
“classes and functions for the simulation, processing, and manipulation of phylogenetic trees and
character matrices”. It also “supports the reading and writing of phylogenetic data in a range of
formats, such as NEXUS, NEWICK, NeXML, Phylip, FASTA, etc.” [40] DendroPy is described by
its authors as being able to “function as a stand-alone library for phylogenetics, a component of
more complex multi-library phyloinformatic pipelines, or as a scripting ‘glue’ that assembles and

Ekmekci, McAnany, Mura 5 of 19

Programming for Bioscientists Supporting Information, S2 Text

drives such pipelines.” This statement perfectly captures the essence of a well-engineered, extensible,
open-source scientific software tool, which encourages modularity and code re-use.

• Finally, as an efficient, Python-based approach to developing one’s own code in the area of phylo-
genetics and molecular evolution, the wide-ranging BioPython project (see below) now includes a
Bio.Phylo module. This module is described in [41] as supplying “a unified toolkit for processing,
analyzing and visualizing phylogenetic trees in BioPython.”

2.4 Omics-scale Data-processing

The term omics refers to the acquisition, analysis, and integration of biological data on a system-wide scale.
Such studies have been enabled by the development and application of high-throughput next-generation
technologies. Specific sub-fields include, in roughly chronological order of their development, genomics,
proteomics, metabolomics, transcriptomics, and a panoply of other new omics (interactomics, connectomics,
etc.); the term NGS (next-gen sequencing) is closely associated with many of these endeavors. As would
be expected, the volume and heterogeneity of data collected on the omics scale present many computing
challenges, in terms of both basic algorithms as well as the high-performance software requirements for
practical data-processing scenarios. These challenges are largely responsible for spurring the development
of many open-source libraries and software packages. Berger et al. [42] recently presented an authoritative
review of many computational tools for analyzing omics-scale data, including tables of available software
packages sorted by helpful criteria (type of task, type of algorithm). For instance, the review describes
potential solutions for data-processing pipelines for transcriptomics data, as obtained from RNA-seq or
microarray experiments. An example of an omics-scale software package written chiefly in Python is ‘Omics
Pipe’ [43].

Historically, much of the statistical computing tools that can be used in omics-style bioinformatics has
been developed in the R language (see, e.g., the Bioconductor project). A low-level interface between Python
and R is available—namely, the RPy package and its recent successor (rpy2) enable the use of R code as
a module in Python. As a concrete example of a ‘cross-language’, integrated omics approach, note that
microarray datasets can be processed using established R tools, followed by seamless analysis in Python (via
hierarchical clustering) to obtain heat-maps and the corresponding dendrograms [44].

2.5 Informatics Workflow Management Systems

A bioinformatics research project is an inherently computationally-intensive pursuit, often entailing complex
workflows of data production or aggregation, statistical processing, and analysis. The data-processing logic,
which fundamentally consists of chained transformations of data, can be represented as a workflow. Several
workflow management systems (WMS) have been developed in recent years, in biology and beyond, with the
goal of providing robust solutions for data processing, analysis, and provenancing†. Available libraries and
toolkits enable users to create and execute custom data-processing pipelines (in Python), and feature-rich
software frameworks also exist. As mentioned in this section (below), some lightweight, production-grade
solutions are written entirely in Python.

WMS software is well-suited to the computational and informatics demands that accompany virtually
any major data-processing task. A WMS software suite provides the functional components to enable one to
create custom data-processing pipelines, and then deploy (enact) these pipelines on either local or distributed
compute resources (in the cloud, on an e-science grid, etc.). A WMS can be a high-level, feature-rich,
domain-independent software suite (e.g., Taverna [45], KNIME [46]), or a lightweight library that exposes

†Loosely, data provenance involves carefully logging results (and errors, exceptions, etc.), ensuring reproducibility of workflows by
automatically recording run-time parameters, and so on.

Ekmekci, McAnany, Mura 6 of 19

Programming for Bioscientists Supporting Information, S2 Text

modular software components to users (e.g., PaPy [1]). Usage of a WMS is roughly similar in spirit to using,
say, a series of low-level Unix scripts as wrappers for data-processing tools; however, compared to the one-off
scripting approach, most WMS solutions feature greater flexibility and extensibility, enhanced robustness,
and are generally applicable in more than one scientific domain. WMS suites that are often employed in
bioinformatics are described, including literature references and software reviews, in an article that reports
the creation of a lightweight Python library known as PaPy [1]. PaPy is a purely Python-based tool that
enables users to create and execute modular data-processing pipelines, using the functional programming and
flow-based programming paradigms. Alongside the PaPy toolkit, other Python-based WMS solutions include
Ruffus [47] and Omics Pipe [43].

2.6 The Bio* Projects, and Where to Go Next

This final section lists the many available ‘Bio*’ projects, where the ‘*’ wildcard is a placeholder for a
particular programming language; typically, the language at the core of a given Bio* project has seen
sufficiently widespread usage in computational biology to warrant the concerted development of general-
purpose libraries in that language; notable examples are the the BioPython and BioPerl projects. The table
below provides a sampling of these projects, which are cataloged more thoroughly at the Open Bioinformatics
Foundation [48]. The table is followed by a few assorted tips and pointers to aid in the discovery of additional
resources.

Table S1: The Bio* projects
Project Description (from each respective website)
BioPython [6] "Biopython is a set of freely available tools for biological computation written in Python by an

international team of developers. It is a distributed collaborative effort to develop Python libraries
and applications which address the needs of current and future work in bioinformatics."

BioPerl [13] "a community effort to produce Perl code which is useful in biology"
BioJava [49] "BioJava is an open-source project dedicated to providing a Java framework for processing

biological data. It provides analytical and statistical routines, parsers for common file formats
and allows the manipulation of sequences and 3D structures. The goal of the biojava project is to
facilitate rapid application development for bioinformatics."

BioSQL [50] "BioSQL is a generic relational model covering sequences, features, sequence and feature annota-
tion, a reference taxonomy, and ontologies (or controlled vocabularies)."

BioRuby [51] "Open source bioinformatics library for Ruby"

We conclude by noting the following potentially useful resources:

• Wikipedia’s top-level page on bioinformatics software, organized by categories, is at [52]. At a similar
level of detail, there exist open-access journals that will be of interest (e.g., Algorithms for Molecular
Biology); also, PLOS Computational Biology publishes new contributions in a dedicated ‘Software
Collection’ [53].

• The bioinformatics.org site [54] includes a list of hundreds of packages for bioinformatics software
development; brief annotations for many of these packages are available at a related URL [55]. In
addition, ref [56] lists software for Linux, sorted by categories. One can search for ‘python’ on that
page, and will find numerous codes of potential interest.

• Another useful online search strategy is to query PyPI, the Python Package Index [57]. Searching
PyPI with terms such as ‘bioinformatics’ will retrieve numerous potentially useful hits (a beneficial
feature of this approach is that the returned codes are likely to be under active, or at least recent,
development).

Ekmekci, McAnany, Mura 7 of 19

Programming for Bioscientists Supporting Information, S2 Text

3 Supplemental Chapters of Python Code: Two Samples

In addition to the examples of Python code in the main text, a suite of Supplemental Chapters is provided
with this work. These freely-available Chapters cover the topics enumerated in Table 1 (main text), and the
latest source files are maintained at http://p4b.muralab.org. Each Chapter is written as a Python
file—i.e., each Chapter is a plaintext .py file that can be read, executed, modified, etc. as would any ordinary
Python source code. For pedagogical purposes, each Chapter is heavily annotated with explanatory material.
These explanations take the form of comments in the Python code (lines that begin with a pound sign, ‘#’),
thereby allowing the Chapters to be both descriptive and executable. The remainder of this section consists
of two sample chapters, following a brief subsection that describes some practicalities of interacting with
Python in a Unix shell environment. (Python is cross-platform, and various Python interpreters are freely
available on the Windows and Apple OS X operating systems too.)

3.1 The Python Interpreter, the Unix Shell, and IDEs

Virtually all modern Linux distributions include a recent version of Python. One can begin an interactive
Python session by accessing the interpreter (see §1 of the main text for more on this term). This, in turn, can
be achieved by opening a Unix shell (terminal) and typing the standard command python. (On systems
with multiple versions of Python installed [not an uncommon scenario], the command python3 may be
necessary—one should experiment with this on one’s own Linux system.) As a concrete example, if the first
Supplemental Chapter on control flow (the file ch05controlFlowI.py) is present in the current working directory,
then its contents can be imported into an interactive Python session by issuing the statement import
ch05controlFlowI (note the missing ‘.py’ suffix) at the Python prompt. The default Python prompt
is indicated by three greater-than signs (>>>); for line continuation, the prompt appears as three periods
(...). There are alternatives to the default Python interpreter, such as the freely-available IPython command
shell [58]. In IPython, one can ‘load’ this file by typing either import ch05controlFlowI (as above)
or else run ch05controlFlowI.py (note the file extension). Another Python interpreter (and source
code editor) is IDLE. This integrated development environment (IDE) for Python is fairly straightforward
to use, and IDLE is bundled with all standard, freely available distributions of Python. IDLE provides an
interactive session and a simple file editor for creating Python source code. The Supplemental Chapters
are simple text files that can be loaded into the IDLE editor and executed. Beyond the popular IPython
and IDLE, other options for Python IDEs also exist. For instance, many users on the Windows OS use the
Anaconda Python distribution, which is packaged with a large number of scientific computing extensions
already pre-configured [59].

3.2 A Sample Chapter at a Basic Level: Variables [Chap 2]

The following code is Supplemental Chapter ch02variables.py, which is an introductory-level treat-
ment of variables.

1 """Programming for Biochemists, lessons for Python programming.
2 Copyright (C) 2013, Charles McAnany. This program is free software: you can
3 redistribute it and/or modify it under the terms of the GNU Affero General
4 Public License as published by the Free Software Foundation, either version 3
5 of the License, or (at your option) any later version. This program is
6 distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
7 without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
8 PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
9 You should have received a copy of the GNU Affero General Public License along

10 with this program. If not, see <http://www.gnu.org/licenses/>."""
11 #Chapter 2: Using variables.
12 #We can tell Python to remember the result of a calculation, by storing it
13 #in a variable. The syntax is

Ekmekci, McAnany, Mura 8 of 19

http://p4b.muralab.org

Programming for Bioscientists Supporting Information, S2 Text

14 #variableName = calculation
15 #Here, let me make a variable to store seven times seven.
16 def sevSqu():
17 sevenSquared = 7 * 7
18 # I can now use sevenSquared anywhere in this function.
19 print(sevenSquared)
20

21 #Rules for variables:
22 #Variables must start with a letter or underscore. After that, any combination
23 #of numbers and letters is OK. These are some good variable names:
24 # value1
25 # fooBar
26 # juice_concentration_2
27 #But these are not valid variables.
28 # 1stValue (starts with a number)
29 # let me in (has spaces in it.)
30 # I1lIl1 (technically valid, but I'll kill you if you use this.)
31

32 ##### NOTA BENE:
33 #Variables in python are case sensitive!
34 # aNumber is a totally different variable than Anumber. This can lead to very
35 #subtle bugs. So:
36 # Use consistent naming schemes. I will almost always capitalize the first
37 # letter of each word in my variables, except the first one. My variables
38 # might be:
39 # aLittleBit
40 # numberOfRottenBananas
41 # counter (only one word, so no capitals.)
42 # (programmers refer to this capitalization scheme as camel casing.)
43

44

45 #Some variable use:
46 def onePlusMe():
47 number = 5
48 number = number + 1
49 print(number)
50 # Hm?! Okay, this deserves an explanation.
51 #When python sees this, here's what it will do.
52 # 1. it sees that you're assigning a variable.
53 # 2. it calculates the value you're going to assign. Here, it's number + 1
54 # 3. it sets number to that value.
55

56 #So remember, = is NOT a question. It's an instruction.
57 #In a mathematics course, if you were told that x=x+1, your initial
58 #response might be along the lines of "no it isn't", and rightly so!
59 #In Python, it means "Calculate number + 1. Number is now that value."
60

61 #Here's a program to convert temperatures from Celsius to Fahrenheit.
62 def celsToFahr():
63 celsiusTemperature = 30
64 fahrenheitTemperature = 9/5 * celsiusTemperature + 32
65 # Python does order of operations correctly.
66 print("the temperature is ", fahrenheitTemperature, "degrees Fahrenheit.")
67 # Print is a very strange function, in that it can take many arguments
68 # (separated by commas). For now, know that it will glue the arguments
69 # together and print the whole thing.
70

71 #For some of the programs you'll write, you need to look at the characters
72 #in strings. I'll cover the syntax in greater detail is CH08, collections I,
73 #but for now I'll just give you some useful syntax for strings:
74 #To read the kth character of a string, you say stringName[k-1]
75 #Most of the time, you'll just need the first character, which we can
76 #extract with stringName[0]
77 def stringManip():
78 initialString = "aoeu"
79 print("the string starts with ", initialString[0])
80 #We could get the third character like this:
81 print("The third character is ", initialString[2])

Ekmekci, McAnany, Mura 9 of 19

Programming for Bioscientists Supporting Information, S2 Text

82 #It's 2, not 3, because we use k-1 for the number, not k.
83 #(the reason becomes much clearer in CH08)
84

85 #Good? Good.
86

87

88 ###################
89 ## Exercises ##
90 ###################
91 # 1. Rewrite the temperature program to convert a Fahrenheit temperature to
92 # a celsius one. What is the celsius temperature when it is 100 F?
93 # Reminder: Celsius = 5/9 (Fahrenheit - 32)
94 def fahrToCels():
95 pass #again, delete the pass, replace this function with your code.
96

97

98

99 #2. Track the value of each of the following variables during this program.
100 #Just fill out the table with the values as they change.
101 #(don't run the code, do it by hand.)
102 def exercise2():
103 # a | b | c #
104 a = 1 # 1 | ? | ? #
105 b = 1 # 1 | 1 | ? #
106 c = 1 # 1 | 1 | 1 #
107 a = b + c # 2 | 1 | 1 #
108 b = a + c # 2 | | #
109 c = b + a # | | #
110 b = c # | | 5 #
111 a = a + b # | | #
112 c = c * c # 7 | 5 | #
113

114 #3. Print the first three characters of the specified string:
115 def printChars():
116 someChars = "aoeuhtns"

3.3 A Sample Chapter at a More Advanced Level: Classes & Objects, II [Chap 16]

The following code is Supplemental Chapter ch16ClassesObjectsII.py, which is a more advanced
presentation of classes, objects, and object-oriented programming.

1 """Programming for Biochemists, lessons for Python programming.
2 Copyright (C) 2013, Charles McAnany. This program is free software: you can
3 redistribute it and/or modify it under the terms of the GNU Affero General
4 Public License as published by the Free Software Foundation, either version 3
5 of the License, or (at your option) any later version. This program is
6 distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
7 without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
8 PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
9 You should have received a copy of the GNU Affero General Public License along

10 with this program. If not, see <http://www.gnu.org/licenses/>."""
11 #Chapter 16: Objects and classes: philosophy and iterators.
12 #This is it, the penultimate chapter! You will use everything you've learned
13 #up to this point in this chapter. It should be fun!
14

15 #I'm going to start this chapter by giving you something practical:
16 #an example of a fully-formed class that shows you how classes
17 #are used. A rational number is one of the form a/b, where a and b are
18 #integers. Python does not have built-in support for rationals
19 #and rational arithmetic.
20 class RationalNumber:
21 """A class that implements a rational number and the necessary
22 Arithmetic operations on it."""
23 def __init__(self,numerator, denominator):
24 """Arguments should be numbers or RationalNumbers, and will
25 be the values of this rational number's numerator and denominator."""

Ekmekci, McAnany, Mura 10 of 19

Programming for Bioscientists Supporting Information, S2 Text

26 if(isinstance(numerator, RationalNumber)):
27 if(isinstance(denominator, RationalNumber)):
28 #The constructor was called with RationalNumbers
29 self._n = numerator._n * denominator._d
30 self._d = denominator._n * numerator._d
31 else:
32 #The numerator, but not denominator, is a RationalNumber
33 self._n = numerator._n
34 self._d = denominator* numerator._d
35 else:
36 if(isinstance(denominator, RationalNumber)):
37 #The denominator, but not numerator, is a RationalNumber
38 self._n = numerator * denominator._d
39 self._d = denominator._n
40 else:
41 #Both arguments are plain old numbers
42 self._n = numerator
43 self._d = denominator
44 if(self._n != 0):
45 self.reduceFraction()
46 else:
47 self._d = 1
48

49 def reduceFraction(self):
50 gcd = greatestDivisor(self._n, self._d)
51 self._n //= gcd
52 self._d //= gcd
53

54 def add(self, otherNum):
55 """Adds a rational number to this one, using the fact that
56 a/b + c/d = (a*d + c*b)/(b*d)"""
57 return RationalNumber(self._n*otherNum._d+otherNum._n*self._d, self._d*otherNum._d)
58

59 def subtract(self,otherNum):
60 negOther = RationalNumber(-otherNum._n, otherNum._d)
61 return self.add(negOther)
62

63 def mult(self, otherNum):
64 return RationalNumber(self._n * otherNum._n, self._d * otherNum._d)
65

66 def divide(self, otherNum):
67 return RationalNumber(self._n * otherNum._d, self._d * otherNum._n)
68 def __str__(self):
69 return "{0:d}/{1:d}".format(self._n, self._d)
70

71 #I put the code for GCD outside the class - it's not really associated with
72 #rational numbers, so it should be in a different place.
73 def greatestDivisor(a,b):
74 if(b == 0):
75 return a
76 return greatestDivisor(b,a % b)
77

78 def useRational():
79 #a = 1/2
80 a = RationalNumber(1,2)
81 #b = 1/3
82 b = RationalNumber(1,3)
83 #c = a + b
84 c = a.add(b)
85 print(c)
86 #Now to demonstrate that rationals are truly precise...
87 storage = RationalNumber(0,1)
88 floatSum = 0
89 for i in range(1000):
90 storage = storage.add(RationalNumber(1,1000))
91 floatSum += 0.001
92 print(floatSum)
93 print(storage)

Ekmekci, McAnany, Mura 11 of 19

Programming for Bioscientists Supporting Information, S2 Text

94 floatZero = floatSum - 1.0
95 storageZero = storage.subtract(RationalNumber(1,1))
96 print(floatZero)
97 print(storageZero)
98 #The floating point version has some noise that has accumulated during
99 #the computation. The rational does not have this noise.

100

101

102

103 #Next: Something practical. You know how you can do
104 #for i in range(10):
105 #, right? Well, range is just a class with a few methods defined.
106 #A class is iterable (may be used with a for loop) if it defines the
107 #method __iter__() that returns an object with a method called __next__().
108 #__next__() should return the next value in the sequence or raise
109 #a StopIteration exception.
110

111 class NewRange():
112 def __init__(self, start, stop):
113 print("NewRange.__init__")
114 self._start = start
115 self._stop = stop
116 def __iter__(self):
117 print("NewRange.__iter__")
118 return RangeIterator(self._start,self._stop)
119

120 class RangeIterator():
121 def __init__(self,start,stop):
122 print("RangeIterator.__init__")
123 self._currPos = start
124 self._endPos = stop
125 def __next__(self):
126 print("RangeIterator.__next__", end = " ")
127 if self._currPos < self._endPos:
128 self._currPos = self._currPos + 1
129 print(" -> {0:d}".format(self._curPos-1))
130 return self._currPos - 1 #-1 because I already incremented, return
131 else: #what the value was, not what it is.
132 print(" -> StopIteration")
133 raise StopIteration
134

135

136 #If your class contains a method called __next__(), you can have __iter__
137 #just return self:
138

139 class SimpleRange:
140 def __init__(self,start,stop):
141 self._currPos = start
142 self._endPos = stop
143 def __next__(self):
144 if self._currPos < self._endPos:
145 self._currPos = self._currPos + 1
146 return self._currPos - 1 #-1 because I already incremented, return
147 else: #what the value was, not what it is.
148 raise StopIteration
149 def __iter__(self):
150 return self
151

152 #When Python comes to a for loop, it first calls __iter__(), then repeatedly
153 #calls __next__() on that iterator until it throws StopIteration.
154 #The advantage is we can just use it like a normal range.
155 def useNewRange():
156 nr = NewRange(0,10)
157 for i in nr:
158 print (i)
159 sr = SimpleRange(0,10)
160 for i in sr:
161 print(i)

Ekmekci, McAnany, Mura 12 of 19

Programming for Bioscientists Supporting Information, S2 Text

162

163

164 #Okay, let's get biochemical again. Consider a class that stores DNA:
165 class DNAStore:
166 """Represents a strand of DNA. Accepts new dna as strings or collections
167 of strings. """
168 _bases = "" #Currently empty.
169

170 def __init__(self, bases):
171 """bases is a string or a sequence of strings that will be added to
172 this objects' dna store."""
173 self.add(bases)
174 print("Initialized DNA strand with {0:s}".format(self._bases))
175

176 def add(self, newDNA):
177 """Adds new dna to the end of this strand. Rules for dna are the same
178 as for the initializer."""
179 if isinstance(newDNA, str):
180 for base in newDNA:
181 self._addLetter(base)
182 elif isinstance(newDNA, (tuple,list)):
183 for thing in newDNA:
184 self.add(thing) #If it's a tuple or list, split it and add
185 #each part of it recursively.
186 else:
187 raise Exception("Invalid DNA.")
188

189 def _addLetter(self, base):
190 if base in "AGTC":
191 self._bases = self._bases + base
192 else:
193 raise Exception("Unknown letter for DNA: {0:s}".format(base))
194

195 def getBases(self):
196 return self._bases
197

198

199 #I'd like to extend this class to allow me to iterate over the codons.
200 class IterableDNA(DNAStore):
201 """An iterable version of a DNA store. Iterates by *codon*, not by
202 *base*."""
203 _bases = "" #Currently empty.
204

205 def __init__(self, bases):
206 """bases is a string or a sequence of strings that will be added to
207 this objects' dna store."""
208 self.add(bases)
209 print("Initialized DNA strand with {0:s}".format(self._bases))
210

211 def add(self, newDNA):
212 """Adds new dna to the end of this strand. Rules for dna are the same
213 as for the initializer."""
214 if isinstance(newDNA, str):
215 for base in newDNA:
216 self._addLetter(base)
217 elif isinstance(newDNA, (tuple,list)):
218 for thing in newDNA:
219 self.add(thing) #If it's a tuple or list, split it and add
220 #each part of it recursively.
221 else:
222 raise Exception("Invalid DNA.")
223

224 def _addLetter(self, base):
225 if base in "AGTC":
226 self._bases = self._bases + base
227 else:
228 raise Exception("Unknown letter for DNA: {0:s}".format(base))
229

Ekmekci, McAnany, Mura 13 of 19

Programming for Bioscientists Supporting Information, S2 Text

230 def getBases(self):
231 return self._bases
232

233 def __iter__(self):
234 #Initialize the iteration.
235 self._iterPos = 0
236 return self
237 def __next__(self):
238 start = self._iterPos
239 self._iterPos = start + 3
240 if(len(self._bases) - start < 3):
241 raise StopIteration
242 codon = self._bases[start:start + 3]
243 return codon
244

245 def iterateDNA():
246 idna = IterableDNA("AGTGACTAGTCACTACTAGCATGAGACATGACGAT")
247 for cdn in idna:
248 print(cdn)
249 #The big point here is that the person using your class needn't
250 #think about how the iteration works; it "just works" and is clear
251 #and simple.
252

253 ###################
254 ## Exercises ##
255 ###################
256 #1. Add a method to DNAStore that calculates the GC content of its stored
257 #dna.
258

259 #2. Add a method to DNAStore that accepts another DNAStore, and calculates
260 #the Hamming distance between itself and the other strand.
261

262 # 3.Explain the behavior of this function:
263 def rangeMess():
264 def printNest(iterable):
265 for i in iterable:
266 for j in iterable:
267 print("i = {0}, j = {1}.".format(i,j))
268

269 a = range(0,10)
270 b = NewRange(0,10)
271 c = SimpleRange(0,10)
272 print("built-in range:")
273 printNest(a)
274 print("NewRange:")
275 printNest(b)
276 print("SimpleRange:")
277 printNest(c)
278

279 #4. If you play with IterableDNA, you'll notice it has the behavior of
280 #SimpleRange: You can't nest iteration. Fix it.
281 class BetterIterableDNA:
282 pass
283

284 #5. Implement a deque class. (See CH12, circles() for a brief discussion of
285 #deques.)
286 #It should support these operations
287 #pushLeft(thing) :: appends thing to the left end of the deque.
288 #popLeft() :: removes the leftmost item from the deque.
289 #peekLeft() :: returns the leftmost item from the deque.
290 #and their corresponding right-side methods.
291 class Deque:
292 pass
293

294 #I have provided this test method for your use:
295 def testDeque():
296 def checkEqual(a,b):
297 if (a != b):

Ekmekci, McAnany, Mura 14 of 19

Programming for Bioscientists Supporting Information, S2 Text

298 raise Exception("unequal: {0}, {1}".format(a,b))
299 def checkBroken(op):
300 """Tries to run op (which should be a zero-argument function). If op raises
301 an exception, this catches it and returns gracefully. If op does *not* raise
302 an exception, this raises its own to indicate that the code did not fail."""
303 try:
304 op()
305 except(Exception):
306 print("Error occured as expected.")
307 return
308 raise Exception("Code did not indicate an error.")
309 # D1 D2
310 d1 = Deque() # <>
311 d1.pushLeft(1) # <1>
312 d1.pushRight(2) # <1, 2>
313 checkEqual(d1.peekLeft(), 1) # <1, 2>
314 checkEqual(d1.peekLeft(), 1) # <1, 2>
315 d1.popLeft() # <2>
316 checkEqual(d1.peekLeft(), 2) # <2>
317 #Can the class support being emptied?
318 d1.popRight() # <>
319 #Does the class support strange objects being inserted?
320 d1.pushRight((3,4)) # <(3,4)>
321 d1.pushLeft("aoeu") # <"aoeu", (3,4)>
322 checkEqual(d1.peekRight(), (3,4))#<"aoeu", (3,4)>
323 d2 = Deque() # ' <>
324 d2.pushLeft(2) # ' <2>
325 #Are multiple objects truly independent?
326 checkEqual(d2.peekRight(), 2) # ' <2>
327 d1.popLeft() # <(3,4)> <2>
328 d1.popLeft() # <> <2>
329 #Beat up the class a bit...
330 for i in range(10000):
331 d1.pushLeft(i) # <10000, 9999, ... 1, 0>
332 for i in range(5000):
333 d1.popRight() #<10000, 9999, ... 5001, 5000>
334 checkEqual(d1.peekRight(), 5000)
335

336 d3 = Deque()
337 #Does it indicate a problem if I try to remove or read from an empty deque?
338 checkBroken(lambda:d3.popRight())
339 checkBroken(lambda:d3.peekLeft())
340 #Does the deque still work correctly after I try to manipulate it when
341 #empty?
342 d3.pushLeft(1)
343 checkEqual(d3.peekRight(),1)
344

345 #6. Make your deque class iterable. The iteration should start at the left and
346 #yield all the elements, just like for a list. Iterating should NOT destroy
347 #the deque being used. That is, after I iterate it, I should be able to push
348 #and pop and peek just as before and all the values must be the same. As an
349 #example, the following __next__() would violate this requirement:
350 #def __next__(self):
351 # if(self._isEmpty()):
352 # raise StopIteration
353 # self.popLeft()
354 # return self.peekLeft()
355 #(Assuming, of course, that self refers to the original deque)
356

357 #(If you implemented your deque well, this should not be hard!) Note: You may
358 #assume that the deque is not modified during the iteration, so, for example,
359 #the behavior of the following code is undefined, and will not be tested:
360 # for elem in deq:
361 # deq.popRight() #Undefined behavior: Deque is modified during iteration.
362 # print(elem)
363 # elem = elem+1 #Also undefined: I'm trying to modify the elements.
364 #You can assume that the iterator will not be nested; if it works like
365 #SimpleRange, that's okay.

Ekmekci, McAnany, Mura 15 of 19

Programming for Bioscientists Supporting Information, S2 Text

366

367

368 class IterableDeque(Deque):
369 pass
370

371 #7.
372 #Write a method to stress-test your deque, like the tests above.
373 def testIterableDeque():
374 pass

Ekmekci, McAnany, Mura 16 of 19

Programming for Bioscientists Supporting Information, S2 Text

References
1. Cieślik M, Mura C. A Lightweight, Flow-based Toolkit for Parallel and Distributed Bioinformatics Pipelines.

BMC Bioinformatics. 2011;12:61. Available from: http://dx.doi.org/10.1186/1471-2105-12-
61.

2. Wirth N. Algorithms + Data Structures = Programs. Prentice-Hall Series in Automatic Computation. Prentice
Hall; 1976.

3. Fourment M, Gillings MR. A Comparison of Common Programming Languages Used in Bioinformatics. BMC
Bioinformatics. 2008;9(1):82. Available from: http://dx.doi.org/10.1186/1471-2105-9-82.

4. Evans D. Introduction to Computing: Explorations in Language, Logic, and Machines. CreateSpace Independent
Publishing Platform; 2011. Available from: http://www.computingbook.org.

5. Hinsen K. The Promises of Functional Programming. Comput Sci Eng. 2009 Jul;11(4):86–90. Available from:
http://dx.doi.org/10.1109/MCSE.2009.129.

6. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. BioPython: Freely Available Python
Tools for Computational Molecular Biology and Bioinformatics. Bioinformatics. 2009 Mar;25(11):1422–1423.
Available from: http://dx.doi.org/10.1093/bioinformatics/btp163.

7. Knight R, Maxwell P, Birmingham A, Carnes J, Caporaso JG, Easton BC, et al. PyCogent: A toolkit for
making sense from sequence. Genome Biology. 2007;8(8):R171. Available from: http://dx.doi.org/
10.1186/gb-2007-8-8-r171.

8. The PyMOL Molecular Graphics System, Schrödinger, LLC;. Available from: http://pymol.org.

9. Hinsen K. The Molecular Modeling Toolkit: A New Approach to Molecular Simulations. Journal of Com-
putational Chemistry. 2000 Jan;21(2):79–85. Available from: http://dx.doi.org/10.1002/(SICI)
1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B.

10. Hinsen K, Langtangen HP, Skavhaug O, Åsmund Ødegård. Using BSP and Python to simplify parallel
programming. Future Generation Computer Systems. 2006;22(1–2):123 – 157. Available from: http:
//www.sciencedirect.com/science/article/pii/S0167739X03002061.

11. Hinsen K. High-Level Scientific Programming with Python. In: Proceedings of the International Conference on
Computational Science-Part III. ICCS ’02. London, UK, UK: Springer-Verlag; 2002. p. 691–700.

12. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: Open Software
Development for Computational Biology and Bioinformatics. Genome Biology. 2004;5(10):R80. Available
from: http://dx.doi.org/10.1186/gb-2004-5-10-r80.

13. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, et al. The BioPerl Toolkit: Perl
Modules for the Life Sciences. Genome Research. 2002 Oct;12(10):1611–1618. Available from: http:
//dx.doi.org/10.1101/gr.361602.

14. Tisdall JD. Mastering Perl for Bioinformatics. O’Reilly Media; 2003.

15. Robbins A, Beebe NHF. Classic Shell Scripting: Hidden Commands that Unlock the Power of Unix. O’Reilly
Media; 2005.

16. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and Development of Coot. Acta Crystallographica
Section D—Biological Crystallography. 2010;66:486–501.

17. Wren JD, Bateman A. Databases, Data Tombs and Dust in the Wind. Bioinformatics. 2008
Sep;24(19):2127–2128. Available from: http://dx.doi.org/10.1093/bioinformatics/
btn464.

18. Wikipedia. List of Sequence Alignment Software; 2016. Available from: http://en.wikipedia.org/
wiki/List_of_sequence_alignment_software.

19. Wikipedia. List of Alignment Visualization Software; 2016. Available from: http://en.wikipedia.
org/wiki/List_of_alignment_visualization_software.

Ekmekci, McAnany, Mura 17 of 19

http://dx.doi.org/10.1186/1471-2105-12-61
http://dx.doi.org/10.1186/1471-2105-12-61
http://dx.doi.org/10.1186/1471-2105-9-82
http://www.computingbook.org
http://dx.doi.org/10.1109/MCSE.2009.129
http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1186/gb-2007-8-8-r171
http://dx.doi.org/10.1186/gb-2007-8-8-r171
http://pymol.org
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B
http://www.sciencedirect.com/science/article/pii/S0167739X03002061
http://www.sciencedirect.com/science/article/pii/S0167739X03002061
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1101/gr.361602
http://dx.doi.org/10.1101/gr.361602
http://dx.doi.org/10.1093/bioinformatics/btn464
http://dx.doi.org/10.1093/bioinformatics/btn464
http://en.wikipedia.org/wiki/List_of_sequence_alignment_software
http://en.wikipedia.org/wiki/List_of_sequence_alignment_software
http://en.wikipedia.org/wiki/List_of_alignment_visualization_software
http://en.wikipedia.org/wiki/List_of_alignment_visualization_software

Programming for Bioscientists Supporting Information, S2 Text

20. Wikipedia. List of Statistical Packages; 2016. Available from: http://en.wikipedia.org/wiki/
List_of_statistical_packages.

21. Casagrande N. Basic-Algorithms-of-Bioinformatics Applet; 2015. Available from: http://baba.
sourceforge.net.

22. Eddy SR. What is Dynamic Programming? Nat Biotechnol. 2004 Jul;22(7):909–910.

23. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid
sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453.

24. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981 Mar;147(1):195–
197.

25. Nussinov R, Jacobson AB. Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc
Natl Acad Sci USA. 1980 Nov;77(11):6309–6313.

26. Guest. Dynamic programming and memoization: bottom-up vs top-down approaches; 2011.
Available from: http://stackoverflow.com/questions/6164629/dynamic-programming-
and-memoization-bottom-up-vs-top-down-approaches.

27. Voithos. Dynamic programming solution to knapsack problem; 2016. Available from: http:
//codereview.stackexchange.com/questions/20569/dynamic-programming-
solution-to-knapsack-problem.

28. Miller B, Ranum D. Dynamic Programming—Problem Solving with Algorithms and Data Structures; 2014. Avail-
able from: http://interactivepython.org/runestone/static/pythonds/Recursion/
DynamicProgramming.html.

29. Wikipedia. Structural Alignment Software; 2015. Available from: http://en.wikipedia.org/wiki/
Structural_alignment_software.

30. Wikipedia. List of Molecular Graphics Systems; 2016. Available from: http://en.wikipedia.org/
wiki/List_of_molecular_graphics_systems.

31. O’Donoghue SI, Goodsell DS, Frangakis AS, Jossinet F, Laskowski RA, Nilges M, et al. Visualization of
Macromolecular Structures. Nature Methods. 2010 Mar;7(3s):S42–S55. Available from: http://dx.doi.
org/10.1038/nmeth.1427.

32. Sanner M. Python: a programming language for software integration and development. J Mol Graphics Mod.
1999;17:57–61.

33. Wikipedia. List of Software for Molecular Mechanics Modeling; 2016. Available from: http://en.
wikipedia.org/wiki/List_of_software_for_molecular_mechanics_modeling.

34. Bakan A, Meireles LM, Bahar I. ProDy: Protein Dynamics Inferred from Theory and Experiments. Bioinfor-
matics. 2011;27(11):1575–1577. Available from: http://bioinformatics.oxfordjournals.org/
content/27/11/1575.abstract.

35. Jones E, Oliphant T, Peterson P, et al.. SciPy: Open-source Scientific Tools for Python; 2001–. [Online; accessed
2015-06-30]. Available from: http://www.scipy.org/.

36. Scipy community. Spatial data structures and algorithms; 2016. Available from: http://scipy.github.
io/devdocs/tutorial/spatial.html.

37. Wikipedia. List of Phylogenetics Software; 2015. Available from: http://en.wikipedia.org/wiki/
List_of_phylogenetics_software.

38. Felsenstein J. Phylogeny Programs; 2014. Available from: http://evolution.genetics.
washington.edu/phylip/software.html.

39. Cieślik M, Derewenda ZS, Mura C. Abstractions, Algorithms and Data Structures for Structural Bioinformatics
in PyCogent. Journal of Applied Crystallography. 2011 Feb;44(2):424–428. Available from: http://dx.
doi.org/10.1107/S0021889811004481.

Ekmekci, McAnany, Mura 18 of 19

http://en.wikipedia.org/wiki/List_of_statistical_packages
http://en.wikipedia.org/wiki/List_of_statistical_packages
http://baba.sourceforge.net
http://baba.sourceforge.net
http://stackoverflow.com/questions/6164629/dynamic-programming-and-memoization-bottom-up-vs-top-down-approaches
http://stackoverflow.com/questions/6164629/dynamic-programming-and-memoization-bottom-up-vs-top-down-approaches
http://codereview.stackexchange.com/questions/20569/dynamic-programming-solution-to-knapsack-problem
http://codereview.stackexchange.com/questions/20569/dynamic-programming-solution-to-knapsack-problem
http://codereview.stackexchange.com/questions/20569/dynamic-programming-solution-to-knapsack-problem
http://interactivepython.org/runestone/static/pythonds/Recursion/DynamicProgramming.html
http://interactivepython.org/runestone/static/pythonds/Recursion/DynamicProgramming.html
http://en.wikipedia.org/wiki/Structural_alignment_software
http://en.wikipedia.org/wiki/Structural_alignment_software
http://en.wikipedia.org/wiki/List_of_molecular_graphics_systems
http://en.wikipedia.org/wiki/List_of_molecular_graphics_systems
http://dx.doi.org/10.1038/nmeth.1427
http://dx.doi.org/10.1038/nmeth.1427
http://en.wikipedia.org/wiki/List_of_software_for_molecular_mechanics_modeling
http://en.wikipedia.org/wiki/List_of_software_for_molecular_mechanics_modeling
http://bioinformatics.oxfordjournals.org/content/27/11/1575.abstract
http://bioinformatics.oxfordjournals.org/content/27/11/1575.abstract
http://www.scipy.org/
http://scipy.github.io/devdocs/tutorial/spatial.html
http://scipy.github.io/devdocs/tutorial/spatial.html
http://en.wikipedia.org/wiki/List_of_phylogenetics_software
http://en.wikipedia.org/wiki/List_of_phylogenetics_software
http://evolution.genetics.washington.edu/phylip/software.html
http://evolution.genetics.washington.edu/phylip/software.html
http://dx.doi.org/10.1107/S0021889811004481
http://dx.doi.org/10.1107/S0021889811004481

Programming for Bioscientists Supporting Information, S2 Text

40. Sukumaran J, Holder MT. DendroPy: a Python library for phylogenetic computing. Bioinformatics. 2010
Jun;26(12):1569–1571.

41. Talevich E, Invergo BM, Cock PJ, Chapman BA. Bio.Phylo: A unified toolkit for processing, analyzing
and visualizing phylogenetic trees in Biopython. BMC Bioinformatics. 2012;13(1):1–9. Available from:
http://dx.doi.org/10.1186/1471-2105-13-209.

42. Berger B, Peng J, Singh M. Computational Solutions for Omics Data. Nature Reviews, Genetics. 2013
Apr;14(5):333–346. Available from: http://dx.doi.org/10.1038/nrg3433.

43. Fisch KM, Meissner T, Gioia L, Ducom JC, Carland TM, Loguercio S, et al. Omics Pipe: a community-based
framework for reproducible multi-omics data analysis. Bioinformatics. 2015 Jun;31(11):1724–1728.

44. Cock P. Using Python (and R) to draw a Heatmap from Microarray Data; 2010. Available from: http://
www2.warwick.ac.uk/fac/sci/moac/people/students/peter_cock/python/heatmap.

45. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, et al. Taverna: A Tool for the Composition
and Enactment of Bioinformatics Workflows. Bioinformatics. 2004 Jun;20(17):3045–3054. Available from:
http://dx.doi.org/10.1093/bioinformatics/bth361.

46. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, et al. KNIME - The Konstanz Information Miner.
SIGKDD Explorations. 2009;11(1).

47. Goodstadt L. Ruffus: A Lightweight Python Library for Computational Pipelines. Bioinformatics. 2010
Nov;26(21):2778–2779.

48. Open Bioinformatics Foundation. Projects; 2015. Available from: http://www.open-bio.org/wiki/
Projects.

49. Pocock M, Down T, Hubbard T. BioJava: Open Source Components for Bioinformatics. SIGBIO Newsl. 2000
Aug;20(2):10–12. Available from: http://doi.acm.org/10.1145/360262.360266.

50. Main Page - BioSQL;. Available from: http://www.biosql.org/wiki/Main_Page.

51. Goto N, Prins P, Nakao M, Bonnal R, Aerts J, Katayama T. BioRuby: Bioinformatics Software for the Ruby
Programming Language. Bioinformatics. 2010 Oct;26(20):2617–2619.

52. Wikipedia. Category:Bioinformatics software; 2014. Available from: http://en.wikipedia.org/
wiki/Category:Bioinformatics_software.

53. Prlić A, Lapp H. The PLOS Computational Biology Software Section. PLOS Computational Biology. 2012
Nov;8(11):e1002799. Available from: http://dx.doi.org/10.1371/journal.pcbi.1002799.

54. Bioinformatics org. Bioinformatics.org; 2016. Available from: http://www.bioinformatics.org.

55. Bioinformatics org. Software Map; 2016. Available from: http://www.bioinformatics.org/
groups/categories.php?cat_id=2a.

56. Sicheritz-Ponten T. Molecular Biology related programs for Linux; 2016. Available from: http://www.
bioinformatics.org/software/mol_linux_cat.php3.

57. PyPI: The Python Package Index;. Available from: http://pypi.python.org.

58. Pérez F, Granger BE. IPython: a System for Interactive Scientific Computing. Computing in Science and
Engineering. 2007 May;9(3):21–29. Available from: http://ipython.org.

59. Anaconda;. Available from: https://www.continuum.io/.

Ekmekci, McAnany, Mura 19 of 19

http://dx.doi.org/10.1186/1471-2105-13-209
http://dx.doi.org/10.1038/nrg3433
http://www2.warwick.ac.uk/fac/sci/moac/people/students/peter_cock/python/heatmap
http://www2.warwick.ac.uk/fac/sci/moac/people/students/peter_cock/python/heatmap
http://dx.doi.org/10.1093/bioinformatics/bth361
http://www.open-bio.org/wiki/Projects
http://www.open-bio.org/wiki/Projects
http://doi.acm.org/10.1145/360262.360266
http://www.biosql.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Category:Bioinformatics_software
http://en.wikipedia.org/wiki/Category:Bioinformatics_software
http://dx.doi.org/10.1371/journal.pcbi.1002799
http://www.bioinformatics.org
http://www.bioinformatics.org/groups/categories.php?cat_id=2a
http://www.bioinformatics.org/groups/categories.php?cat_id=2a
http://www.bioinformatics.org/software/mol_linux_cat.php3
http://www.bioinformatics.org/software/mol_linux_cat.php3
http://pypi.python.org
http://ipython.org
https://www.continuum.io/

	Python in Broader Context: A Tool for Scientific Computing
	An Overview of Bioinformatics Software
	Sequence-level Bioinformatics
	Structural Bioinformatics
	Phylogenetics and Molecular Evolution
	Omics-scale Data-processing
	Informatics Workflow Management Systems
	The Bio* Projects, and Where to Go Next

	Sample Python Chapters
	Working with Python: Interpreters, Shells, IDEs
	Sample Introductory Topic: Chapter 2 on Variables
	Sample Advanced Topic: Chapter 16 on Classes, Objects, OOP

	References

