Bridge types

Unicycler makes SPAdes contig bridges from paths in SPAdes’ contigs paths file. These bridges connect two single-copy contigs with the contigs in the path.

Example

SPAdes contig path: 1, 17, 16, 18, 3, 1, 1

Bridge: 2-24=15=5

Score functions

Depth agreement: \(d \)

- Applies to all bridge types
- \(a, y = \frac{x}{1+10^d(x-y)} \)
- \(x = \) contig 1 depth
- \(y = \) contig 2 depth
- \(d \) is the depth difference for the two contigs

Good case

\(0 \leq d < 0.3 \)

Bad case

\(0.3 \leq d < 0.6 \)

Single-copy contigs have the same depth (1.8x).

Depth consistency: \(c \)

- Applies to SPAdes contig bridges
- \(\sum_{i=1}^{n} a_i \cdot y_i \cdot z_i \)
 - \(a_i \): set of alignment identities to contig 1
 - \(y_i \): set of alignment identities to contig 2
 - \(z_i \): set of alignment identities to contig 3
- \(d = \) length of contig 1
- \(e = \) length of contig 2
- \(f = \) length of contig 3
- \(k = \) minimum alignment length
- \(m = \) minimum alignment length
- \(n = \) total number of dead ends
- \(o = \) total number of dead-end contigs
- \(p = \) number of contig bridges
- \(q = \) number of contig bridges with path
- \(r = \) number of reads supporting the bridge
- \(s = \) number of reads supporting the bridge
- \(t = \) number of reads supporting the bridge
- \(u = \) number of reads supporting the bridge
- \(v = \) number of reads supporting the bridge
- \(w = \) number of reads supporting the bridge
- \(x = \) total number of reads
- \(y = \) expected number of reads in bridge
- \(z = \) expected number of reads in bridge

Good case

\(1.05 \leq c \leq 1.1 \)

Bad case

\(c < 1.05 \)

Bridge length: \(l \)

- Applies to SPAdes contig bridges
- \((a_1, p_1, p_2) = \begin{cases} \text{if } h > p_1, & (a_1, p_1, p_2) \\ \text{otherwise,} & (a_1, p_1, p_2) \end{cases} \)
- \(h = \) bridge length
- \(p_1 = \) paired-end mean insert size
- \(p_2 = \) paired-end insert size standard deviation

Good case

\(1.1x \leq l \leq 2x \)

Bad case

\(l < 1.1x \)

Loop unrolling bridges

Loop unrolling bridges are a special case of SPAdes contig bridge for when a SPAdes contig bridge connects to a single-copy contig to the middle contig of a loop. In such cases, Unicycler concludes that the loop is contiguous with the contig and uses the contig depths to determine the number of times to traverse the loop.

Score: \(100 \sqrt[4]{44d_0} \)

Good case

\(1.6x \leq l \leq 1.8x \)

Bad case

\(l < 1.6x \)

Long-read bridge with path

Unicycler finds long reads which contains two single-copy contigs and uses them to form a long-read bridge. It then searches for a graph path corresponding to the long-read consensus sequence. If a graph path is found, that sequence is used for the bridge instead of the long-read consensus sequence.

Score: \(100 \sqrt[4]{46 rms} \)

Good case

\(1.3x \leq l \leq 1.5x \)

Bad case

\(l < 1.3x \)

Long-read bridge without path

When Unicycler cannot find a graph path corresponding to a bridge’s long-read consensus sequence (either due to poor homology or the absence of a path), it uses the consensus sequence directly.

This approach is less desirable, as the long-read consensus is likely to contain more errors than the short-read graph. However, it is necessary in cases when the short-read graph is incomplete and contains dead ends.

Score: \(100 \sqrt[4]{46 rms} \)

Good case

\(1.3x \leq l \leq 1.5x \)

Bad case

\(l < 1.3x \)

Databases

Bridge types

Graph is incomplete and contains dead ends. This approach is less desirable, as the long-read consensus is likely to contain more sequence (either due to poor homology or the absence of a path), it uses the long-read consensus instead of the long-read consensus sequence.

When Unicycler cannot find a graph path corresponding to a bridge’s long-read consensus sequence, the long-read consensus may not be homologous with the reads. The function penalizes bridges between long-read consensus and path, and this function penalizes cases where the agreement is poor.

Bridge: 1 read

Example

Bridge: 1-4.5=17=5

Depth count penalty: \(p \)

- Applies to loop unrolling bridges
- \(a = \) loop count (not rounded)
- \(b = \) loop count (rounded to nearest integer)
- \(c = \) loop count
- \(d = \) total number of dead ends at the end of contig 1
- \(e = \) start of contig 2 (0, 1 or 2)
- \(f = \) end of contig 1 and the closest dead-end contig

Good case

\(0.7x \leq p \leq 1.0x \)

Bad case

\(p < 0.7x \)

Long loop

If a bridge’s read consensus aligns poorly to the graph path, this suggests the graph path may not be homologous with the reads. The function penalizes bridges where the read consensus has a low alignment identity to the graph path.

Alignments

Bridge connecting long contigs.

Good case

\(1.05 \leq g \leq 1.2x \)

Bad case

\(g < 1.05 \)

Contig length: \(X \)

- Applies to all long-read bridges
- \(\sum_{i=1}^{n} a_i \cdot x_i \)
 - \(a_i \): set of alignment identities to contig 1
 - \(x_i \): length of contig 1
- \(m = \) minimum alignment length

Good case

\(1.8x \leq X \leq 2x \)

Bad case

\(X < 1.8x \)

Dead ends: \(q \)

- Applies to long-read bridges without path
- \(d = \) total number of dead ends at the end of contig 1 and the start of contig 2

Good case

\(0.7x \leq q \leq 0.8x \)

Bad case

\(q < 0.7x \)