S5 Table. Plasticity

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| **mSTDP** | W and Q initialized separately, uniformly distributed in range $(0, W_{\text{init}})$. For visible unit i, hidden unit j, feedforward learning rate η:
 $\Delta w_{ij} = \Delta q_{ji} = \eta \sum_{k \in S_i} \sum_{l \in S_j} \left\{ +e^{-|t_l-t_k|/\tau_+} \quad \text{if } t_l > t_k \\
 -e^{-|t_l-t_k|/\tau_-} \quad \text{if } t_l \leq t_k \right\}$
 Weights to-from inhibitory pools $W_{\text{Vis,Inh}}$ initialized separately from exponential distributions with means $W_{\text{Vis,Inh}}$ etc, and do not undergo plasticity. |
| **Homeostatic adaptation** | Synaptic scaling factors initialized to ϕ_{init} or Φ_{init}. $\Delta \phi_j = \Delta \Phi_j = \beta (\rho - A_j)$
 ρ = target activation rate, A_j = average activation, initialized equal to 0 and updated after each presentation via
 $A_j \left\{ \begin{array}{ll}
 e^{1/\tau_r} A_j + (1 - e^{1/\tau_r}) & \text{if neuron } j \text{ active during the presentation} \\
 e^{1/\tau_r} A_j & \text{otherwise}
 \end{array} \right.$ |