Original logical network model

Stable motifs of the original network model

Reduced logical network models

Stable motifs of the reduced network models

\[f_A = A \text{ AND } B \]
\[f_B = A \text{ OR } C \text{ OR NOT } E \]
\[f_C = (A \text{ AND } B) \text{ OR } D \]
\[f_D = (\text{NOT } B \text{ AND NOT } A) \text{ OR (D AND NOT } A) \text{ OR (D AND NOT } B) \text{ OR NOT } E \]
\[f_E = E \text{ OR NOT } C \]

\[f_A = A \text{ AND } B \]
\[f_B = A \text{ OR } C \text{ OR NOT } E \]
\[f_C = D \]
\[f_D = \text{NOT } B \text{ OR } D \text{ OR NOT } E \]
\[f_E = E \text{ OR NOT } C \]

\[f_A = A \text{ AND } B \]
\[f_B = A \text{ OR } C \]
\[f_C = (A \text{ AND } B) \text{ OR } D \]
\[f_D = (\text{NOT } B \text{ AND NOT } A) \text{ OR (D AND NOT } A) \text{ OR (D AND NOT } B) \]
\[f_E = E = 1 \]

\[f_A = A \]
\[f_B = 1 \]
\[f_C = 1 \]
\[f_D = \text{NOT } E \]
\[f_E = E \]

\[f_A = A \]
\[f_B = 1 \]
\[f_C = 1 \]
\[f_D = \text{NOT } E \]
\[f_E = E \]

\[f_A = 0 \]
\[f_B = C \text{ OR NOT } E \]
\[f_C = D \]
\[f_D = \text{NOT } B \text{ OR } D \text{ OR NOT } E \]
\[f_E = E \text{ OR NOT } C \]

\[f_A = 0 \]
\[f_B = 0 \]
\[f_C = 0 \]
\[f_D = 0 \]
\[f_E = 0 \]

\[f_A = 0 \]
\[f_B = 0 \]
\[f_C = 0 \]
\[f_D = 0 \]
\[f_E = 0 \]