Supplemental Text S1

Orientational Order Parameter (OOP)

The OOP characterizes the order of orientation of a single construct. For disordered systems the OOP is zero and for perfectly aligned systems it is one. The OOP is calculated by using a set of vectors, \vec{p}_i, and forming a tensor for each of the vectors. The mean tensor is:

$$T = \left\langle \begin{bmatrix} p_{i,x}p_{i,x} & p_{i,x}p_{i,y} \\ p_{i,x}p_{i,y} & p_{i,y}p_{i,y} \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\rangle = \{\text{Mean tensor}\}. \tag{1}$$

The OOP is defined as the maximum eigenvalue of the mean tensor

$$OOP = \max \left[\text{eigenvalue}(T) \right] = \{\text{Orientational order parameter}\}$$

$$= \left\langle 2(\vec{p}_i \cdot \hat{n}_p)^2 - 1 \right\rangle = \left\langle \cos(2(\alpha - \alpha_0)) \right\rangle \tag{2}$$

where \hat{n}_p and α_0 are the director and mean angle, respectively.

Symmetry of OOP

The OOP also has pseudo-vector symmetry and this can be easily shown. To check for symmetry we need to vary the sign of \vec{p}_i and \hat{n}_p. If we change the sign of \vec{p}_i, \hat{n}_p or both we obtain:

$$\left\langle 2\left\{ -\vec{p}_i \cdot \hat{n}_p \right\}^2 - 1 \right\rangle = \left\langle 2\left\{ \vec{p}_i \cdot (-\hat{n}_p) \right\}^2 - 1 \right\rangle = \left\langle 2\left\{ -\vec{p}_i \cdot (-\hat{n}_p) \right\}^2 - 1 \right\rangle = \left\langle 2\left\{ \vec{p}_i \cdot \hat{n}_p \right\}^2 - 1 \right\rangle. \tag{3}$$

Thus, we will produce the same OOP no matter the sign of \vec{p}_i and \hat{n}_p, therefore the OOP is symmetric.

Second order correlations

The OOP is not able to characterize second order correlations. To prove this define P as:

$$\vec{p}_i = \left[\cos\left(\frac{\pi}{2}\right), \sin\left(\frac{\pi}{2}\right) \right] \text{ and } \vec{p}_{i+n} = \left[\cos(-\frac{\pi}{2}), \sin(-\frac{\pi}{2}) \right] \tag{4}$$
for \(i = 1, ..., n \). Thus, \(\hat{\alpha}_p = 0 \) and \(\alpha_0 = 0 \):

\[
OOP_p = \sum_{i=1}^{2n} \cos(2\alpha) = n \cdot \cos \left(\frac{2\pi}{2} \right) + n \cdot \cos \left(2 \left(-\frac{\pi}{2} \right) \right) = 0. \quad (5)
\]

Thus, OOP=0 even though there is obvious organization in P.

Circular Statistics (assume period of \(\pi \))

It is possible to show that the R of circular statistics [1] is the same as the OOP. If the data is distributed:

\[
\alpha = \frac{2\pi x}{k} \quad (6)
\]

where, \(x \) is the data in the original scale, \(k \) is the total number of steps on the \(x \) scale, and \(\alpha \) is the variable on the new directional scale (i.e. with a standard \(2\pi \) period). In our case a rod that is \(\beta \) degrees away from the director is physically the same rod as the one \(\beta + \pi \) degrees away. Therefore in our case \(k = \pi \) and:

\[
\alpha = 2\theta \quad (7)
\]

where, \(\theta \) is defined as the angle that we measured from the director. From this it follows:

\[
S = \frac{1}{N} \sum_{i=1}^{N} \sin 2\theta_i \quad (8)
\]
\[
C = \frac{1}{N} \sum_{i=1}^{N} \cos 2\theta_i \quad (9)
\]
\[
R = \sqrt{S^2 + C^2}. \quad (10)
\]

If we assume that the director is orientated such that \(\theta_n = 0 \), then the angles are evenly distributed between positive and negative and therefore \(S = 0 \). We can then write \(R \) as:

\[
R = C = \frac{1}{N} \sum_{i=1}^{N} \cos 2\theta_i = \langle \cos 2\theta_i \rangle. \quad (11)
\]
Therefore, by definition of the director we will have the range $0 < R < 1$ and it is equivalent to the

$$OOP = 2\langle \cos^2 \theta_i \rangle - 1 = \langle \cos 2\theta_i \rangle = R.$$

Circular Correlation

In the special case, with both constructs having a uniform distribution, i.e. both being perfectly isotropic, the correlation coefficient and COOP converge to the same equation. If the angles are uniformly distributed on the circle the correlation coefficient [2] can be written as

$$r = \sqrt{\left(\frac{1}{N} \sum_{i=1}^{N} \cos 2\theta_i\right)^2 + \left(\frac{1}{N} \sum_{i=1}^{N} \sin 2\theta_i\right)^2}$$ \hspace{1cm} (12)

where θ represents the angle between two biological constructs. If the director is to be assumed $\hat{n} = [1,0]$ then $\langle \sin 2\theta_i \rangle = 0$, and therefore

$$r = \sqrt{\left(\frac{1}{N} \sum_{i=1}^{N} \cos 2\theta_i\right)^2} = \langle \cos 2\theta_i \rangle.$$ \hspace{1cm} (13)

Thus, $COOP = 2\langle \cos^2 \theta_i \rangle - 1 = \langle \cos 2\theta_i \rangle = r$.

References
