Sampling from an infinite metacommunity

To perform simulations of the LOGS metacommunity, we need an algorithm to obtain the relative abundance of species i in the metacommunity, P_i. There is a known algorithm to sample individuals from an infinite metacommunity but generating a large community would be a slow way to obtain P_i. The starting point of the algorithm is equation 6 which describes the metacommunity at the speciation-extinction equilibrium [14, 48, 60]:

$$f_M(x)dx = \frac{\theta}{x} (1 - x)^{\theta-1}dx. \quad (S.1)$$

$f_M(x)dx$ is the probability of extracting a species of relative abundance in the interval $(x; x+dx)$. θ is the fundamental biodiversity parameter obtained by combining the metacommunity size and the speciation rate [31].

To obtain P_i we first solve the equations:

$$\int_{y_n}^{y_n+1} f_M(x)dx = n \quad (S.2)$$

for $n \geq 1$. We keep the values of y_n for n in the interval $[1 : S_T]$ which is the number of species we consider in the metacommunity. S_T has to be introduced as otherwise we would have an infinite array that we could not store. y_{S_T} is the inverse population size in the metacommunity $\frac{1}{T}$. S_T can be taken as large as desired and equation S.2 can be solved very easily for large values of n thanks to an asymptotic approximation for small x. A large enough S_T is effectively equivalent to an infinite metacommunity for a finite simulation, because rare species are exponentially suppressed.

From equation 6 the probability of sampling an individual from a species of relative abundance in the interval $(x; x + dx)$ is [60] given by $p(x)dx$ where:

$$p(x)dx = xf_M(x)dx = \theta(1 - x)^{\theta-1}dx. \quad (S.3)$$

The second step is to integrate equation S.3 in the interval $[y_{n+1}; y_n]$ to obtain the probability of sampling an individual in the previously defined integer species group defined in step (1). Doing this we obtain:

$$P_i = \int_{y_{n+1}}^{y_n} \theta(1 - x)^{\theta-1}dx = (1 - y_{n+1})^{\theta} - (1 - y_n)^{\theta}. \quad (S.4)$$

This last expression is already normalized if the number of species is infinite but in the case it is finite the total $\sum P_i = P_{tot}$ is less than 1 (but close to it) we normalize it by dividing by P_{tot}. The array of P_i obtained by combining the previous two steps is what we use throughout this work. Notice that the last expression can also be regarded as the expected relative frequency of a species in a specified integer species group, so the P_i sequence corresponds to the expected rank abundance curve of an infinite metacommunity. If we sampled from the species pool according to the full infinite set of P_i, we would have an algorithm which is equivalent to the one developed by Ewens [31, 48, 60]. In practice, our algorithm is an approximation because (for reasons of computational efficiency) we truncate at a finite S_T.