Supporting Text for ‘A Hybrid Deterministic-Stochastic Model for Mutation Acquisition in Stem Cell Driven Cancers’
Alexandra Jilkine1,2, Ryan Gutenkunst1*
1 Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
* rgutenk@email.arizona.edu

Progenitor cells

Analytic solution for progenitor model

If we neglect mutation, each subpopulation of progenitor cells is governed by a single PDE (Eq. (1)), which can be solved by the method of characteristics. Without loss of generality, assume
\[
\frac{da}{dt} = 1 \quad \text{on} \quad \frac{dp_i}{dt} = (\sigma(a) - \mu(a))p_i.
\]

For \(a > t_0\) the solution is
\[
p_i(a, t_0) = p_i(a_0, 0)e^{\int_{a_0}^{a} (\sigma(s) - \mu(s))ds}.
\] (S1)

The behavior of this solution is determined by the initial condition \(p_i(a_0, 0)\). For \(a < t_0\) the solution is
\[
p_i(a, t_0) = p_i(0, t_0)e^{\int_{0}^{a} (\sigma(s) - \mu(s))ds},
\] (S2)

which results in
\[
p_i(a, t) = p_i(0, t - a)e^{\int_{a}^{0} (\sigma(s) - \mu(s))ds}, \quad a < t.
\] (S3)

Because we are interested in long term behavior, we are only concerned with the solution for \(t > a\), which is determined by the boundary condition.

For the stem cell boundary condition (Eq. (3)), the boundary condition does not depend on the state of the population at a previous time, and for \(t > a\) equation (S3) becomes
\[
p_i(a, t) = (2\alpha_{D,i} + \alpha_{A,i})n_i(t - a)e^{\int_{a}^{0} (\sigma(s) - \mu(s))ds}.
\] (S4)

Note that the solution has the form \(p_i(a, t) = \alpha n_i(t-a)e^{r(a)}\), where \(e^{r(a)}\) is a steady state age distribution, which multiplies the boundary condition provided by the stem cells. Hence, the shape of the age-distribution is largely determined by the functional forms of the the birth and death of the differentiated cells, which are given by Eq. (5). (Alternatively Hill functions to model age-dependent proliferation/death rates does not qualitatively change the obtained results and uses the same number of parameters with identical meanings.)

Using equation (S4) it is possible to analytically calculate the the steady state age distribution
\[
e^{\int_{a}^{0} (\sigma(s) - \mu(s))ds} = e^{r(a)}.
\]

For the switch-like birth and death rates given by Eq. (5) we obtain
\[
r(a) = \frac{(b - d)a}{2} - \frac{b}{2\rho_b}\left[\ln\left(\frac{\cosh(\rho_b(a - \omega_b))}{\cosh(\rho_b\omega_b)}\right)\right] - \frac{d}{2\rho_d}\left[\ln\left(\frac{\cosh(\rho_d(a - \omega_d))}{\cosh(\rho_d\omega_d)}\right)\right].
\] (S5)

The progenitor equation (Eq. (1)) can be easily modified to have a maximal carrying capacity \(K_i\) for each sub-population.
\[
\frac{\partial p_i}{\partial t} + \frac{da}{dt} \frac{\partial p_i}{\partial a} = \sigma(a)p_i(1 - p_i/K_i) - \mu(a)p_i.
\] (S6)

This does not change the qualitative nature of the solutions (See Fig. S1B,C).
Robustness to parameter variations in the progenitor model

To test which parameters in the model have the largest effect on the steady state age distribution of differentiated cells, we varied all the parameters in Eq. (5). For each parameter the age dependent growth rate \(r(a) = \int_0^a (\sigma(s) - \mu(s)) ds \) and the steady state age distribution \(N_{sc} \times e^{r(a)} \) are plotted in Fig. S2. Note that the proliferation rate \(b \) has a great effect on the age distribution of the population. On the other hand, increasing the removal/clearance rate \(d \) does not change the maximal value of the age distribution, only the location at which the peak begins to fall off, because it speeds up the removal of older cells that are not proliferating. Increasing \(b \) two-fold, from 1 to 2, increases the maximal value of the age distribution 10,000 fold (Fig. S2B), but changing \(d \) only marginally moves the point at which the age distribution begins to fall off, and does not affect the peak value (Fig. S2D). Note that this result was obtained with the assumption that \(\omega_d > \omega_b \), i.e., most cells begin to die off after they are done proliferating. We also tested the effect of shifting \(\omega_d \) and \(\omega_b \). (Note that \(\omega_b = \omega_d = 0 \) indicates that the rate is constant for all maturity levels.) A mutation that enables progenitor cells to undergo more divisions before entering senescence and apoptosis has much greater effects on population dynamics than one that enables cell removal to begin earlier. We can also conclude that enhanced cell clearance rate, whether by the immune system or other methods will not make much difference in this model if the proliferation rate is increased. Increasing the steepness of either switch (\(\rho_b \) and \(\rho_d \)) did not greatly affect the maximal value of the age distribution, but made the distribution more box-shaped (Fig. S2F,H).

Alternative Models of Progenitor Dedifferentiation and Competition

Alternative model for progenitor cells including competition

The solutions to our progenitor model in the main text are entirely determined by the dynamics of the stem cells, with no interactions between the different mutants. Here we considered an alternate model including competition between multiple progenitor cell subpopulations. Taking into account competition, our PDE system becomes

\[
\frac{\partial p_i}{\partial t} + \frac{\partial p_i}{\partial a} = (1 - u)\sigma_i(a) \left(1 - \frac{\sum_{j=0}^{M} p_j}{K_i \sum_{j=0}^{M} p_j} \right) n_i - \mu_i(a)p_i,
\]

where the local carrying capacity of the progenitors in the absence of other subpopulations is \(K_i \left(1 - \frac{\mu_i}{(1-u)\sigma_i} \right) \).

We can compare system (S7) to the classic Lotka-Volterra model. Note that, in general, for a Lotka-Volterra system with multiple species and non-redundant values of reaction constants, it can be shown that there is only one stable homogeneous equilibrium with one species dominant and the other species extinct (i.e., no co-existence steady state). However, for PDE system (S7) we observe coexistence of all three populations for different growth rates. This advection mediated coexistence for competing populations has been previously described for spatial models of competing species [1], although in our model advection is a maturation process with constant velocity, and no diffusive dispersal takes place.

Note that in system (S7), competition is between individuals of the same maturity stage only. This is appropriate if cells of different maturities can be considered as different cell types or occupy different locations in the body. If the competition is between cells of all maturity stages, rather than just cells of a given age cohort, then the competition term becomes global rather than local:

\[
\frac{\partial p_i}{\partial t} + \frac{\partial p_i}{\partial a} = (1 - u)\sigma_i(a) \left(1 - \frac{\sum_{j=1}^{M} \int_{a}^{b} p_j(a,t) dt}{N_k \sum_{j=1}^{M} p_j(a,t) dt} \right) n_i - \mu_i(a)p_i(a),
\]

Adding either local or global competition does not influence the proportion of \(M \)-mutation cells in the progenitor model (Fig. S3). We also looked at the effect of competition between differentiated cells
can have on time to cancer acquisition in the full deterministic-stochastic model. Considering either local or global competition between progenitor subpopulations does not greatly affect time to mutation acquisition in the full model (Fig. S4B). Hence, without dedifferentiation subpopulation competition in the progenitor model is not significant in altering the time to fixation of mutant in the total cell population for neutral stem cell dynamics.

Alternative model of dedifferentiation for constant N_{sc}

In the main text, we assumed that only two-mutation progenitor cells could dedifferentiate. We also considered the waiting time to fixation when all progenitor cells have a non-zero probability ε of dedifferentiating and becoming a cancer stem cell. Every $\frac{T_{gen}}{N_{sc}}$ time units, a single randomly chosen stem cell j is removed and one cell i is born with probability given by

$$P(n \rightarrow n + \mathbf{e}_i - \mathbf{e}_j) = (1 - \varepsilon) \frac{n_j}{N_{sc}} \left[\sum_{h=0}^{M} m_{h,i} \frac{n_h}{N_{sc}} \right] + \varepsilon \frac{\int_a p_i(a) da}{\sum_i \int_a p_i(a) da},$$

(S9)

where $p_i(a)$ is the density of differentiated cells of age a carrying i mutations, and ε is the proportion of cells in the stem cell pool that come from dedifferentiated cells at each replication event. We also considered a model in which all progenitor cells can dedifferentiate, but dedifferentiation is weighted by proliferation rate $\sigma(a)$ of the progenitors, with faster replicating mutants being more likely to end up dedifferentiating.

$$P(n \rightarrow n + \mathbf{e}_i - \mathbf{e}_j) = (1 - \varepsilon) \frac{n_j}{N_{sc}} \left[\sum_{h=0}^{M} m_{h,i} \frac{n_h}{N_{sc}} \right] + \varepsilon \frac{\int_a \sigma_a(a) p_i(a) da}{\sum_i \int_a \sigma_i(a) p_i(a) da}. $$

(S10)

These assumptions do not significantly change the distribution of waiting times for intermediate dedifferentiation rate ε (Fig. S4B). However, the waiting time for 2 mutations in this model is faster than model Ib for high values of ε, particularly for small u values (Fig. S4D).

Derivation of exponential growth rate and critical dedifferentiation rate

In our variable stem cell population size model, the expected number of two-mutation stem cells produced per stem cell reproduction event is

$$\lambda = \frac{\delta T_{gen}}{S(t)} P(t). $$

(S11)

A stem cell reproduction event takes place every $\frac{T_{gen}}{S(t)}$ time units, and the stem cell population in changes by $\Delta S = \lambda - (1 - \eta)$, where η is the probability of an asymmetric division. Taking the continuum limit, we have

$$\frac{dS}{dt} = \frac{\lambda - (1 - \eta)}{T_{gen}} S.$$

(S12)

Note that if the mean number of dedifferentiated cells λ exceeds $1 - \eta$, then $S(t)$ grows exponentially at rate

$$k = \frac{\lambda - (1 - \eta)}{T_{gen}}.$$

To calculate the growth rate k, recall that the two-mutation progenitor population is given by

$$p_2(a, t) = \alpha S(t - a) e^{\int_a^\infty r(x) dx} = \alpha S(t) e^{-ka} e^{\int_a^\infty r(x) dx} $$

(S13)
where $\alpha = 2\alpha_{D,2} + \alpha_{A,2}$. Here we are making the approximation that most stem cells carry two-mutations, which is valid once exponential growth has proceeded for some time.

It follows that

$$P(t) = \int_0^\infty p_2(a, t) \, da = \alpha S(t) \int_0^\infty e^{-ka} e^{r(a)} \, da.$$

Substituting into Eq. S12, we then have

$$\frac{dS}{dt} = S(t) \left[\alpha \delta \int_0^\infty e^{-ka} e^{r(a)} \, da - \frac{1 - \eta}{T_{gen}} \right].$$

It follows that k is given by the solution to the integral equation

$$k = \alpha \delta \int_0^\infty e^{-ka} e^{r(a)} \, da - \frac{1 - \eta}{T_{gen}},$$

which always has a unique solution for k.

If

$$\int_0^\infty e^{r(a)} \, da > \frac{1 - \eta}{\alpha \delta T_{gen}}$$

then $k = \frac{\lambda - (1 - \eta)}{T_{gen}} > 0$ and we have exponential growth of the stem cell population. This results in a minimum dedifferentiation rate (per stem cell replication event) necessary for exponential growth given by

$$\delta_{crit} = \frac{1 - \eta}{\alpha T_{gen} \int_0^\infty e^{r(a)} \, da}.$$

This is equivalent to the mean number of cells coming from the dedifferentiated progenitor population being given by

$$\lambda_{crit} = \frac{(1 - \eta)(1 + \alpha \int_0^\infty e^{r(a)} \, da)}{\alpha \int_0^\infty e^{r(a)} \, da}.$$

This threshold behavior is very similar to what one observes for the well-studied Foerster-McKendrick Equation with an integral boundary condition:

$$\frac{\partial p_i}{\partial t} + \frac{\partial p_i}{\partial a} = -\mu(a)p_i,$$

$$p(t, 0) = \int_0^\infty b(a) p(t, a) \, da.$$

There, the behavior of the solution depends on a critical quantity

$$s = \int_0^\infty b(a) \exp \left(-\int_0^a \mu(s) \, ds \right) \, da.$$

The solution undergoes exponential growth if $s > 1$, and exponential decay if $s < 1$ [2]. Our model, however, has a mixed boundary condition for $p_2(t, a)$. Hence, when $\delta < \delta_{crit}$ and $k < 0$, the stochastic term in the boundary condition dominates, and we get similar behaviour as the variable $S(t)$ case with no dedifferentiation. That is, there is neither exponential growth nor decay, and the waiting time distribution to fixation is equivalent to the fixed N case with $\delta = 0$.

References

Matlab code

Model I (Constant Stem Cell Population Size)

This code simulates trajectories for model with a constant stem cell population size with and without dedifferentiation.

function[Tmut]=ConstantN_dedifferentiation()

%%physical parameters
T=5000; %time of integration
L=20; %length of domain (age distribution of differentiated cells)

%%numerical paprameters
numx = 101; %number of grid points in x
dx = L/(numx - 1);
x = 0:dx:L; %vector of x values, to be used for plotting
N=length(x);
dt = 0.01;
CFL=dt/dx;
numt=T/dt;

%% matrices for output
A = zeros(numx,201); % normal cells
B = zeros(numx,201); % mutant 1 cells
C = zeros(numx,201); % mutant 2 cells
nplot= floor(numt/100);
counter=1;

%% matrices for computation
Atemp = zeros(numx,2); % normal cells
Btemp = zeros(numx,2); % mutant 1 cells
Ctemp = zeros(numx,2); % mutant 2 cells

%% biological stem cell parameters
alpha_D=.1; % probability of symmetric differentiation
alpha_A=0.8; % probability of asymmetric division
Nsc=100; % total number of stem cells
K=3; % number of mutations cells are allowed to accumulate
fitness=ones(1,K); % fitness of different stem cell mutants
%fitness=[1, 1.1, 1.2]; % fitness of different stem cell mutants
n=[Nsc, 0, 0]'; % initial number of normal and mutant stem cells
epsilon=0.0 % fraction of differentiated cells that de-differentiate
dediff_pop=0; % initialize de-differentiated progenitor cell population

%% specify mutation rate and iniitilize stem cell population
u=0.01 % mutation rate
% specify mutation matrix
mut = eye(K);
mut(1,1) = 1-u;
mut(1,2) = u;
mut(2,2) = 1-u;
mut(2,3) = u;

SC = zeros(K, numt); % initialize stem cell numbers
for jj = 1:K % prob matrix of producing diff number of offspring
 Prob(jj,:) = [0.1 0.8 0.1]
end

R1 = rand(1, numt);
R2 = rand(1, numt);

% specify proliferation and death rate of differentiated cells
beta = zeros(K, length(x));
r = zeros(K, length(x));
dd = 1;
b_diff = [1.5, 1.7, 1.9]; % increasing proliferation of mutant cells
% b_diff = [1.5, (1+s)*1.5, (1+s)^2*1.5] % baseline times selection coefficient
for i = 1:K
 bb(i,:) = fitness(i)*birth(x, b_diff(i), 2, 10);
end
mu = dd*ones(K, numx); % constant death rate for simplicity

beta(1:end-1,:) = (1-u)*bb(1:end-1,:);
beta(end,:) = bb(end,:);
r = beta - mu;

SC(:,1) = n; % set stem cell population to initial condition

% specify initial conditions
Atemp(1:end,1) = 0;
A(:,1) = 0;
Btemp(1:end,1) = 0;
B(:,1) = 0;
Ctemp(1:end,1) = 0;
C(:,1) = 0;

% BC at x=0 at t=0 (needs to be updated at each time step)
Atemp(1,1) = n(1);
Btemp(1,1) = n(2);
ctemp(1,1) = n(3);
total=0; %total mutated cells
nt2=0;
nt3=0;
%iterate difference equations
for j=1:numt
 % if SC(2,j)==1 && SC(2,j-1)==0
 % T2=j*dt
 % nt2=nt2+1;
 % end

 if SC(3,j)==1 && SC(3,j-1)==0
 T3=j*dt
 nt3=nt3+1;
 end

 if SC(end,j)==Nsc
 Tmut= j*dt
 for kk=1:K
 SC(kk,j+1:end)=SC(kk,j);
 end
 break
 else
 SC(:,j+1)=SC(:,j);
 end

 stem_tot=sum(SC(:,j))

Atemp(1,2)=(2*alpha_D+alpha_A)*SC(1,j); %BC at x=0 updated at each timestep
Btemp(1,2)=(2*alpha_D+alpha_A)*SC(2,j); %BC at x=0 updated at each timestep
Ctemp(1,2)=(2*alpha_D+alpha_A)*SC(3,j); %BC at x=0 updated at each timestep

for i=2:numx %equations for aging of differentiated cells
 Atemp(i,2) = Atemp(i,1) + CFL*(Atemp(i-1,1) -Atemp(i,1))+dt.*(beta(1,i)*Atemp(i,1)
 -mu(1,i)*Atemp(i,1));
 Btemp(i,2) = Btemp(i,1) + CFL*(Btemp(i-1,1) -Btemp(i,1))+dt.*(beta(2,i)*Btemp(i,1)
 -mu(2,i).*Btemp(i,1)+u*bb(2,i)*Atemp(i,1));
 Ctemp(i,2) = Ctemp(i,1) +CFL*(Ctemp(i-1,1) -Ctemp(i,1))+dt.*(beta(3,i)*Ctemp(i,1)
 -mu(3,i).*Ctemp(i,1)+u*bb(3,i)*Btemp(i,1));
end

dediff_pop= floor([trapz(x,beta(1,:)'.*Atemp(:,2)) trapz(x,beta(2,:)'.*Btemp(:,2)) trapz(x,beta(3,:)'.*Ctemp(:,2))])*eye(K);

if dediff_pop==0
 new_pop=zeros(1,K);
else
 new_pop= cumsum(dediff_pop)/sum(dediff_pop);
end
P_plus=cumsum(prob_distribution_reproduction(Nsc, K, fitness, SC(:,j), mut));
P_new=(1-epsilon)*P_plus+epsilon*new_pop;
Pp=zeros(1,length(P_new)+1);
Pp(2:end)= P_new;
for i=1:K
 if Pp(i)<R2(j) && R2(j)<Pp(i+1)
 SC(i,j+1)=SC(i,j)+1;
 end %end reproduction loop
end
%remove one member of population proportional to frequency of the
%allele at prev time step
P_minus=cumsum(SC(:,j)/Nsc);
Pm=zeros(1,length(P_minus)+1);
Pm(2:end)= P_minus;
for i=1:K
 if Pm(i)<R1(j) && R1(j)<Pm(i+1)
 SC(i,j+1)=SC(i,j)+1;
 end %end removal loop
end

if mod(j,nplot)==0
 A(:,counter)=Atemp(:,2);
 B(:,counter)=Btemp(:,2);
 C(:,counter)=Ctemp(:,2);
 counter=counter+1;
end

end %end iterating difference equations

function [Prob] = prob_distribution_reproduction(Nsc, K, r, n, mu)
%starting with allele distribution n generate the probability of each of K
%subtypes reproducing
%mu= K*K mutation matrix
%r=1*K matrix
%n=K*1 matrix
if (nargin==0)
 Nsc=30;
 K=3;
 r=ones(1,K);
 n=10*ones(K,1);
 mu=eye(K);
 u=0.1;
 mu(1,1)=1-u;
 mu(1,2)=u;
end

$$\mu(2,2) = 1 - u;$$
$$\mu(2,3) = u;$$

end

phi = (r*n); % mean fitness
Prob = zeros(K, K);
P = 1;
fitness = mu'*(n.*r'); % sum(mu_(k,i)*r_k*n_k) k=1..K
Prob = P*fitness';
Prob = Prob/phi; % divide by mean fitness

function beta = birth(x, b, rho, w)
if (nargin < 1)
x = 0:0.01:10;
b = 2;
rho = 5;
w = 5;
end
beta = -b/2*tanh(rho*(x-w)) + b/2;

Model II (Variable Stem Cell Population Size)
This code simulates trajectories for model with a variable stem cell population size with and without dedifferentiation.

% make this function return Teps if you want to find first time when stem
% cell population exceeds a pre-determined threshold
% make the function return Tmut if you're interested in first time 2-mutant
% occurs.
function [Teps] = age_progression_dedifferentiation_variable(u0, epsilon0, Hill, eta)
if (nargin == 0)
u0 = 0.001; % mutation rate for the Moran model (per Moran timestep/cell division)
epsilon0 = 10 % de-differentiation rate
Hill = 1 % Hill coefficient for probability
eta = 0. % eta is prob of asymmetric division
s = 0.01;
% proliferation advantage of differentiated mutant cells (mutant stem cells are neutral)
end
Teps = 0;
Tmut = 1;
% time step at which fixation of 2 mutant stem cells occurs

% physical parameters
L = 20; % length of domain (age distribution of differentiated cells)
Tgen = 5; % timescales on which generation of stem cells turns over
u = u0; % constant mutation rate

% numerical parameters
numx = 101; % number of grid points in x
dx = L/(numx - 1);
x = 0:dx:L; \%vector of x values, to be used for plotting
N=length(x);
dt = 0.05;
CFL=1*dt/dx;
numt=100/u;

\% matrices for output
\%initialize everything to zero
A = zeros(numx,3001); \%wild-type differentiated cells
B = zeros(numx,3001); \%1-mutation differentiated cells
C = zeros(numx,3001); \%2-mutation differentiated cells
time = zeros(1,3001); \%chronological time
dediff_pop=0; \%initialize de-differentiated progenitor cell population

\% matrices for computation (get overwritten)
Atemp = zeros(numx,2); \%normal cells
Btemp = zeros(numx,2); \%mutant 1 cells
Ctemp = zeros(numx,2); \%mutant 2 cells
tt=zeros(numt,1);

\%biological stem cell parameters
Nsc=100; \%total number of stem cells
K=3;
\% number of subpopulations based on number of mutations cells are allowed to accumulate
fitness=ones(1,K); \%fitness of different stem cell mutants
fitness=[1, 1.1, 1.2]; \%fitness of different stem cell mutants
n=[Nsc, 0, 0]'; \%initial number of normal and mutant stem cells
KP=Nsc*ones(K,1);
SC=zeros(K,numt+1); \%initialize stem cell numbers
SC(:,1) =n; \%set stem cell population to initial condition

\%initial prob matrix of producing diff. number of offspring
Prob(3,:)=(1-eta)*KP.'Hill./(KP.'Hill+sum(n).'Hill);
Prob(2,:)=eta ;
Prob(1,:)=(1-eta)*sum(n).'Hill./(KP.'Hill+sum(n).'Hill);

\%generate random numbers in advance of simulation
R1=rand(1,numt);
R2=rand(1,numt);

\% specify proliferation and death rate of differentiated cells
beta=zeros(K,length(x)); \%initialize birth rate matrix
bb=zeros(K,length(x)); \%initialize birth rate matrix
r=zeros(K,length(x)); \%initialize growth rate
dd=1.; \%initialize death rate

\%set basal birth rate
b_diff=[1.5, 1.7, 1.9]; %increasing proliferation of mutant cells

% baseline times selection coefficient
for i=1:K
 bb(i,:)=fitness(i)*birth(x,b_diff(i),2,5);
end

mu=dd*ones(K,numx); %constant death rate for simplicity

beta(1:end-1,:)=(1-u)*bb(1:end-1,:);
beta(end,:)=bb(end,:);

r=beta-mu;

% specify initial conditions
Atemp(1:end,1) = 0;
A(:,1) = 0;
Btemp(1:end,1) = 0;
B(:,1) = 0;
Ctemp(1:end,1) = 0;
C(:,1) = 0;
time(1)=0;

% BC at x=0 at t=0 (needs to be updated at each time step)
Atemp(1,1)=n(1);
Btemp(1,1)=n(2);
Ctemp(1,1)=n(3);

% iterate difference equations
for j=1:numt
 % return Teps, time when deterministic growth takes over
 if SC(3,j)>= 10*Nsc && SC(3,j-1)<10*Nsc
 Teps= sum(tt(1:j))
 % returns time point when 2-mutant stem cell pop is 10 times larger than initial Nsc.
 break
 end

 % Uncomment this and return Tmut, first occurrence of mutant
 if SC(1,j)==0 && SC(2,j)==0 && SC(3,j)>0 && Tmut==1
 Tmut= sum(tt(1:j))
 % break
 %
 end

 dt = Tgen/sum(SC(:,j));
 % update dt for PDE simulation based on current stem cell pop size
 tt(j)=dt; % update time matrix
 CFL=1*dt/dx;
 if CFL>0.9 % exit if CFL condition for PDE not satisfied
 break
 end
end
for i=2:numx %solve equations for aging of differentiated cells by upwinding
 Atemp(i,2) = Atemp(i,1)
 + CFL*(Atemp(i-1,1) - Atemp(i,1))/dt.*r(1,i)*Atemp(i,1);
 Btemp(i,2) = Btemp(i,1)
 + CFL*(Btemp(i-1,1) - Btemp(i,1))/dt.*r(2,i)*Btemp(i,1)/dt.*u*bb(1,i)*Atemp(i,1);
 Ctemp(i,2) = Ctemp(i,1)
 + CFL*(Ctemp(i-1,1) - Ctemp(i,1))/dt.*r(3,i)*Ctemp(i,1)/dt.*u*bb(2,i)*Btemp(i,1);
end %end looping over all ages

lambdap=epsilon0*dt*trapz(x,Ctemp(:,2));
dediff_pop=[0,0,poissrnd(lambdap)];
new_pop=SC(:,j)+(dediff_pop)';
Prob(3,:)=(1-eta)*KP.^Hill./(KP.^Hill+sum(new_pop).^Hill);
Prob(2,:)=eta;
Prob(1,:)=(1-eta)*sum(new_pop).^Hill./(KP.^Hill+sum(new_pop).^Hill)
%run Moran model with updated total stem cell pop size
BC=moran_variable_pop_size(new_pop, sum(new_pop) ,K,Prob,2,u0,KP, Hill);
%call moran_variable_pop_size to calculate new population size
SC(:,j+1) = BC(:,end);
Atemp(:,1)=Atemp(:,2);
Btemp(:,1)=Btemp(:,2);
Ctemp(:,1)=Ctemp(:,2);
end %end PDE solver

function [trajectory] = moran_variable_pop_size(initsize, N,K,prob,numt,u,KP,Hill)
 if nargin==0
 N=100;
 K=3;
 prob=zeros(3,K);
 numt=N*10;
 Hill=1;
 KP=sum(initsize)*ones(K,1) %carrying capacity set to initial population size
 u=0.01; %mutation rate
 end
%set-up mutation matrix
mu=eye(K);
mu(1,1)=1-u;
mu(1,2)=u;
mu(2,2)=1-u;
mu(2,3)=u;
r=ones(1,K); %initialize fitness
for jj=1:K
 r(jj)=exp(prob(3,jj)-prob(1,jj));
end

%if (sum(initsize) ~= N)
% error('Initial conditions do not sum up to N');
%end

trajectory=zeros(K,numt);

x=initsize;
z=1; %initialize numt counter
trajectory(:,1)=x;
tot(1)=N;
R1=rand(1,numt);
R2=rand(1,numt);
eta=0;
while (z<numt & all(x)>=0)
 %remove one member of population proportional to frequency of the allele
 P_minus=cumsum(x/N);
Pm=zeros(1,length(P_minus)+1);
Pm(2:end)= P_minus;
 for i=1:K
 if Pm(i)<R1(z) && R1(z)<Pm(i+1)
 x(i)=x(i)-1;
 N=N-1;
 end %end removal loop
 end %end removal loop

 P_plus=cumsum(prob_distribution_reproduction(N, K, r, x, mu));
Pp=zeros(1,length(P_plus)+1);
Pp(2:end)= P_plus;
 for i=1:K
 if Pp(i)<R2(z) && R2(z)<Pp(i+1)
 %new=1; %produce 1 offspring
 new=offspring(1,prob(:,i));
x(i)=x(i)+new;
 N=N+new;
 end %end reproduction loop
 end %end reproduction loop
z=z+1;
trajectory(:,z)=x;
tot(z)=N;

% update logistic process
prob(3,:)=(1-eta)*KP.^Hill./(KP.^Hill+N.^Hill);
prob(2,:)=eta;
prob(1,:)=(1-eta)*N.^Hill./(KP.^Hill+N.^Hill);
end; %end while

function nu=offspring(k,p)

z=[cumsum(p)];
n=length(p); % nmb of possible offspring
offmu=dot(0:n-1,p); % offspring mean
u1=sort(rand(1,k));

for j=1:n
 u2(j)=length(find(u1<z(j)));
end

u2=diff([0 u2]);
nu=u2*(0:n-1)';