Local Linearisation

If the deterministic part of the dynamics evolve according to a linear differential equation

\[\dot{x} = Ax + Bu \]

then a discrete time update is given by

\[x(t) = \exp(At)x(0) + \int_0^t \exp(A(t-\tau))Bu(\tau)d\tau \]

For time step \(n \), if we assume that \(u(t) = 0 \) except at \(t = t(n) \) then we have

\[x_n = \exp(Adt)x_{n-1} + Bu_n \]

where \(dt \) is the time step. If \(u_n \) is not changing quickly we have \(u_n = u_{n-1} \). For nonlinear dynamics

\[\dot{x} = f(x, u) \]

then we can write

\[x_n = F_n x_{n-1} + H_n u_{n-1} \]

where the flow matrices are given by

\[F_n = \exp(Jf(x, x)dt) \]
\[H_n = J(f, v)dt \]

and \(J(f, x) \) is the Jacobian matrix of the function \(f \) with respect to \(x \) (matrix of first derivatives). In forward inference, these are evaluated at \(x = m_{n-1} \) and \(u = u_{n-1} \) (for known causes) or \(u = r_{n-1} \) (for estimated causes).

However, our evaluations of the above approximations for \(F_n \) and \(H_n \) showed considerable inaccuracies for a range of angles, \(\phi \). We therefore adopted the following ‘local regression’ approach which is similar to that proposed by Schaal [28]. This used multiple, typically 10, expansion points sampled from the previous posterior \((m_{n-1}, P_{n-1}) \). For each, we evaluated the gradient \(f(x, u) \) and estimated the next state based on a first order Euler method. We then regressed the next states onto previous states and computed \(F_n \) and \(H_n \) using least squares regression.