Pseudo code and additional details of the MERLIN algorithm

As described in the text the MERLIN algorithm is an iterative algorithm that infers module-constrained per-gene regulatory networks. Here we describe the pseudo code for the MERLIN algorithm. There are two phases in the network inference: learning the regulators per gene (Steps 7-13) given the current module membership, and updating the module membership given the current regulator network (Steps 15-18). The algorithm starts with an empty regulator set \(R_i \) for each gene \(X_i \). During the regulator identification steps (Step 6-11), it updates the \(R_i \) by identifying the next best regulator that improves the score of a gene \(X_i \). It repeats this procedure for each target gene either until there is no more score improvement for \(X_i \) or a fixed number of steps have been executed. While it is adding regulators to a gene, it also updates the regulator-module relationship, which influences which regulators get selected for subsequent genes.

Once the regulator sets of all variables have been examined, we update the module memberships (Steps 13-16). This is done efficiently by making use of a min-heap data structure. We also do not merge any nodes that have a greater than the specified threshold of clustering. When we merge two nodes, \(k \) and \(l \) in the hierarchy we use average linkage to define the distance of the new node, \(m \) from all other nodes, \(n \) (Step 15-16). This step defines our modules. Next using these modules we update the regulators associated with each gene to see if adding more regulators helps improve the score associated with a gene.

Algorithm 1 Learning in MERLIN

1: **Input:**
 - Initial module assignment for each gene, \(M_{init} \)
 - Dataset \(D \)
 - Candidate regulators \(\mathcal{R} \)
 - Sparsity: \(p \), Module prior: \(r \), Minimum similarity between two modules: \(h \)

2: **Output:**
 - Inferred module for each gene, \(M_{final} \)
 - Regulatory network, specifying the set of regulators, \(R \) per gene as well as their parameters, \(\theta_i \)

3: \(M_{curr} = M_{init} \)
4: \(R_i = \emptyset, \forall i \) /*Initialize regulators for each gene*/
5: while not converged do
6: /*Update regulators \(R_i \) \(\forall X_i \) given \(M_{curr} \)*/
7: for \(X_i \in \mathbf{X} \) do
8: repeat
9: \(X_k = \arg \max_{X_j \in \mathcal{R}\setminus\mathcal{R}_i} S(X_i; \mathcal{R}_i \cup X_j) - S(X_i; \mathcal{R}_i) \)
10: \(\mathcal{R}_i = \mathcal{R}_i \cup \{X_k\} \).
11: Add \(X_k \) to \(X_i \)’s module, \(M_i \).
12: until A fixed number of iterations or until adding regulators does not improve \(X_i \)’s score
13: end for
14: /*Hierarchically cluster genes using co-expression and co-regulator for pairs of genes to obtain new \(M_{curr} \)*/
15: while There exists a node pair \(k \) and \(l \) such that \(dist(k, l) \leq h \) do
16: Merge \(k \), \(l \) into new node \(m \).
17: Compute distance \(dist(m, n) \) for all nodes other than \(k \) and \(l \) and insert pair into min heap.
18: end while
19: end while
20: \(M_{final} = M_{curr} \)
Parameter estimation in MERLIN

To compute the score $S(X_i, R_i)$ for each gene, X_i and its regulators R_i, we assume that X_i and R_i are distributed according to a $|R_i| + 1$-dimensional multi-variate Gaussian, with mean m_i, a $|R_i| + 1$-dimensional mean vector, and a $|R_i| + 1 \times |R_i| + 1$-dimensional co-variance matrix Σ_i. To estimate the conditional probability distributions of a gene’s expression level given its regulators’ expression level in sample d we estimate a conditional mean $\mu_{i|R_i}$ and conditional variance $\sigma_{i|R_i}$ as follows:

$$
\mu_{i|R_i} = \mu_i + \Sigma_i(i, -i)\text{inv}(\Sigma_i (-i, -i))(x_{R_i}^d - m_{-i})^T.
$$

$$
\sigma_{i|R_i} = \sigma_{ii} - \Sigma_i(i, -i)\text{inv}(\Sigma_i (-i, -i))\Sigma_i^T(i, -i).
$$

Here μ_i is the mean expression level of gene i, σ_{ii} is the variance of X_i, m_{-i} is the mean of all elements in R_i, and $x_{R_i}^d$ is the assignment to all elements of R_i in the d^{th} sample. $\Sigma_i(-i, -i)$ is the original Σ_i after dropping the row and column corresponding to X_i. $\Sigma_i(i, -i)$ is the row in $\Sigma_i(-i, -i)$ corresponding to X_i.