S1 Impact Factor Analysis

Impact Factor (IF) analysis [1, 2] combines both ORA and FCS approach, while accounting for the topology of the pathway. IF analysis computes Perturbation Factor (PF) for each gene in each pathway, which is a gene-level statistic, as follows:

\[
P F(g_i) = \Delta F(g_i) + \sum_{j=1}^{n} \beta_{ji} \cdot \frac{P F(g_j)}{N_{ds}(g_j)}
\]

(1)

In Eq. 1, the first term, \(\Delta F(g_i) \), represents the signed normalized measured expression change (i.e., fold change) of the gene \(g_i \). The second term in Eq. 1 accounts for the topology of the pathway, where gene \(g_j \) is upstream of gene \(g_i \). In the second term, \(\beta_{ji} \) represents the type and strength of interaction between \(g_i \) and \(g_j \). If \(g_j \) activates \(g_i \), \(\beta_{ji} = 1 \), and if \(g_j \) inhibits \(g_i \), \(\beta_{ji} = -1 \). Note that the PF of the upstream gene \(g_j \) is normalized by the number of downstream genes it interacts with, \(N_{ds}(g_i) \). The second term is repeated for every gene \(g_j \) that is upstream of gene \(g_i \).

After computing PF for each gene, pathway-level statistic, Impact Factor (IF), is computed using Eq. 2:

\[
IF(P_i) = \log \left(\frac{1}{p_i} \right) + \left| \frac{\sum_{g \in P_i} P F(g)}{N_{de}(P_i)} \right|
\]

(2)

In Eq. 2, the first term captures the significance of the given pathway \(P_i \) as provided by ORA, where \(p_i \) corresponds to the probability of obtaining a value of the statistic used at least as extreme as the one observed when the null hypothesis is true. Because IF should be large for severely impacted pathways (i.e., small p-values), the first term uses \(1/p_i \) rather than \(p_i \). The log function is necessary to map the exponential scale of the p-values to a linear scale in order to keep the model linear. The second term sums up the values of the PFs for all genes \(g \) on the given pathway \(P_i \), and is normalized by the number of differentially expressed genes on the given pathway \(P_i \).

Note that Eq. 1 essentially describes the perturbation factor \(P F \) for a gene \(g_i \) as a linear function of the perturbation factors of all genes in a given pathway. Therefore, the set of all equations defining the PFs for all genes in a given pathway \(P_i \) form a system of simultaneous equations. Expanding and re-arranging Equation 1 for all genes \(g_1, g_2, \ldots, g_n \) in a pathway \(P_i \) can be re-written as follows:

\[
\begin{pmatrix}
P F(g_1) \\
P F(g_2) \\
\vdots \\
P F(g_n)
\end{pmatrix}
= \begin{pmatrix}
1 - \frac{\beta_{11}}{N_{ds}(g_1)} & -\frac{\beta_{12}}{N_{ds}(g_1)} & \ldots & -\frac{\beta_{1n}}{N_{ds}(g_1)} \\
-\frac{\beta_{21}}{N_{ds}(g_2)} & 1 - \frac{\beta_{22}}{N_{ds}(g_2)} & \ldots & -\frac{\beta_{2n}}{N_{ds}(g_2)} \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{\beta_{n1}}{N_{ds}(g_n)} & -\frac{\beta_{n2}}{N_{ds}(g_n)} & \ldots & 1 - \frac{\beta_{nn}}{N_{ds}(g_n)}
\end{pmatrix}^{-1}
\begin{pmatrix}
\alpha(g_1) \cdot \Delta E(g_1) \\
\alpha(g_2) \cdot \Delta E(g_2) \\
\vdots \\
\alpha(g_n) \cdot \Delta E(g_n)
\end{pmatrix}
\]

After computing the PFs of all genes in a given pathway as the solution of this linear system, Eq. 2 is used to calculate the impact factor of each pathway. The impact factor of each pathway is then used as...
a score to assess the impact of a given gene expression data set on all pathways (the higher the impact factor the more significant the pathway).

References
