Figure S2: From the main dataset, four subsets were extracted, each containing 200 records: genes of the lowest $B$ (number of protein molecules produced), genes of the highest $B$, genes of the lowest $g$ (ribosome density), and genes of the highest $g$. We compared the translational parameters between genes of high and low $B$, as well as between genes of high and low $g$. Genes having elevated values of $B$ or $g$ tend to have shorter times of translation initiation. In cases of genes with elevated $B$, the difference is caused mainly by the elevated value of parameter $P_z$ (the relative rate of binding of free ribosomes to the 5’ end of a transcript), while the parameter $P_s$ (the relative rate of successful accomplishments of initiation once the ribosome-mRNA complex is formed) seems not to affect the time of translation initiation significantly. On the other hand, genes with elevated $g$ have shorter times of initiation, because of the elevated value of the $P_s$ parameter, while the $P_z$ parameter seems not to affect the time of translation initiation significantly. The boxplots show the distributions of the values of $P_s$ and $P_z$ in all four sets of genes: (A) comparison of $P_z$ values between genes of high and low protein production rate $B$; (B) comparison of $P_s$ values between genes of high and low protein production rate $B$; (C) comparison of $P_z$ values between genes of high and low ribosome density $g$; and (D) comparison of $P_z$ values between genes of high and low ribosome density $g$. 