Maximally predictive and non-redundant molecular signatures are precisely the Markov boundaries and vice-versa

In the present paper capital letters in italics denote variables (e.g., A, B, C) and bold letters denote variable sets (e.g., X, Y, Z). We also adopt the following standard notation of statistical independence relations: $T \perp A$ means that T is independent of the variable set A. Similarly, if T is independent of the variable set A conditioned the variable set B, we denote this as $T \perp A | B$. If we use the sign “⊥” instead of “⊥”, this means dependence instead of independence.

Now we introduce several key definitions:

- **Molecular signature:** A molecular signature is a mathematical/computational model (e.g., classifier or regression model) that predicts a phenotypic response variable of interest T (e.g., diagnosis or response to treatment in human patients) given values of molecular variables (e.g., gene expression values).

- **Maximally predictive molecular signature:** A maximally predictive molecular signature is a molecular signature that maximizes predictivity of the phenotypic response variable T relative to all other signatures that can be constructed from the given dataset.

- **Maximally predictive and non-redundant molecular signature:** A maximally predictive and non-redundant molecular signature based on variables X is a maximally predictive signature such that any signature based on a proper subset of variables in X is not maximally predictive.

- **Markov blanket:** A Markov blanket M of the response variable $T \in V$ in the joint probability distribution P over variables V is a set of variables conditioned on which all other variables are independent of T, i.e. for every $X \in (V \setminus M \setminus \{T\})$, $T \perp X | M$.

- **Markov boundary:** If M is a Markov blanket of T and no proper subset of M satisfies the definition of Markov blanket of T, then M is called a Markov boundary of T.

Theorem: If W is a performance metric that is maximized only when $P(T \mid V \setminus \{T\})$ is estimated accurately and L is a learning algorithm that can approximate any probability distribution, then M is a Markov blanket of T if and only if the learner’s model induced using variables M is a maximally predictive signature of T.

Proof: First we prove that the learner’s model induced using any Markov blanket of T is a maximally predictive signature of T. If M is Markov blanket of T, then by definition it leads to a maximally predictive signature of T because $P(T \mid M) = P(T \mid V \setminus \{T\})$ and this distribution can be perfectly approximated by L, which implies that W will be maximized. Now we prove that any maximally predictive signature of T is the learner’s model induced using a Markov blanket of T. Assume that $X \subseteq V \setminus \{T\}$ is a set of variables used in the maximally predictive signature of T but it is not a Markov blanket of T. This implies that, $P(T \mid X) \neq P(T \mid V \setminus \{T\})$. By definition of the Markov blanket, $V \setminus \{T\}$ is always a Markov blanket of T. By first part of the theorem, $V \setminus \{T\}$ leads to a maximally predictive signature of T similarly to X. Therefore, the following should hold: $P(T \mid X) = P(T \mid V \setminus \{T\})$. This contradicts the assumption that X is not a Markov blanket of T. Therefore, X is a Markov blanket of T. (Q.E.D.)
Since the notion of non-redundancy is defined in the same way for maximally predictive signatures and for Markov blankets, under the assumptions of the above theorem it follows that \mathbf{M} is a Markov boundary of T if and only if the learner’s model induced using variables \mathbf{M} is a maximally predictive and non-redundant signature of T.