Algorithm HITON-PC (without “symmetry correction”)

Input: dataset with predictive variables (e.g., genes) \(V \), including a phenotypic response variable \(T \)

Output: a Markov boundary \(M \) of \(T \)

1. Initialize \(M \) with an empty set
2. Initialize the set of eligible variables \(E \leftarrow V \setminus \{T\} \)
3. Sort in descending order the variables in \(E \) according to their pairwise association with response variable \(T \)
4. Remove from \(E \) all variables \(X \) with zero association with \(T \), i.e. when \(T \perp X \)
5. Repeat
6. \(X \leftarrow \) first variable in \(E \)
7. \(\) Add \(X \) to \(M \) and remove it from \(E \)
8. If \(\exists Z \subseteq M \setminus \{X\} \), such that \(T \perp X | Z \), remove \(X \) from \(M \)
9. Until \(E \) is empty
10. For each \(X \in M \)
11. \(\) If \(\exists Z \subseteq M \setminus \{X\} \), such that \(T \perp X | Z \), remove \(X \) from \(M \)
12. Output \(M \)

Figure S2: HITON-PC algorithm. More details about the algorithm and characterization of distributions where it can correctly identify a Markov boundary are given in [1,2].

References
