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Abstract

Ligand binding sites in proteins are often localized to deeply buried cavities, inaccessible to

bulk solvent. Yet, in many cases binding of cognate ligands occurs rapidly. An intriguing sys-

tem is presented by the L99A cavity mutant of T4 Lysozyme (T4L L99A) that rapidly binds

benzene (~106 M-1s-1). Although the protein has long served as a model system for protein

thermodynamics and crystal structures of both free and benzene-bound T4L L99A are avail-

able, the kinetic pathways by which benzene reaches its solvent-inaccessible binding cavity

remain elusive. The current work, using extensive molecular dynamics simulation, achieves

this by capturing the complete process of spontaneous recognition of benzene by T4L L99A

at atomistic resolution. A series of multi-microsecond unbiased molecular dynamics simula-

tion trajectories unequivocally reveal how benzene, starting in bulk solvent, diffuses to the

protein and spontaneously reaches the solvent inaccessible cavity of T4L L99A. The simu-

lated and high-resolution X-ray derived bound structures are in excellent agreement. A

robust four-state Markov model, developed using cumulative 60 μs trajectories, identifies

and quantifies multiple ligand binding pathways with low activation barriers. Interestingly,

none of these identified binding pathways required large conformational changes for ligand

access to the buried cavity. Rather, these involve transient but crucial opening of a channel

to the cavity via subtle displacements in the positions of key helices (helix4/helix6, helix7/

helix9) leading to rapid binding. Free energy simulations further elucidate that these chan-

nel-opening events would have been unfavorable in wild type T4L. Taken together and via

integrating with results from experiments, these simulations provide unprecedented mecha-

nistic insights into the complete ligand recognition process in a buried cavity. By illustrating

the power of subtle helix movements in opening up multiple pathways for ligand access, this

work offers an alternate view of ligand recognition in a solvent-inaccessible cavity, contrary

to the common perception of a single dominant pathway for ligand binding.
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Author summary

Proteins often bind ligands in buried cavities that appear to be inaccessible based on static

structures. The mechanisms and pathways by which ligands reach their binding sites in

such cases are, thus, often unknown. Yet, ligand recognition by occluded cavities can hap-

pen rapidly. A central question remains: How does such a process occur? Experiments

that provide insight at atomic resolution are currently lacking. In the current work, we

have used a computational approach to capture the process by which a ligand, benzene,

binds to a buried cavity in the L99A cavity mutant of T4 Lysozyme. Using multiple long,

unbiased atomistic simulations, we have discovered how benzene, starting from bulk sol-

vent, finds and binds the solvent-inaccessible cavity. We find that there is no single domi-

nant pathway. Rather, simulated trajectories discover multiple binding pathways with low

activation barriers, facilitating a rapid recognition process. We highlight the role of subtle

movements in helix positions in opening up multiple crucial paths for benzene to reach

its binding cavity without the need for large-scale distortions of the protein structure,

explaining the small activation energies.

Introduction

Measurements of affinities of small molecules to specific binding sites in proteins have become

routine, especially in the context of drug discovery studies where such experiments are often

among the first to be performed. These thermodynamic measurements are routinely supple-

mented by kinetic studies of drug-receptor interactions [1–3]. However, in contrast to these

standard kinetic and thermodynamic measurements, experiments that provide atomic level

insights into the kinetic pathways by which small cognate molecules find their binding sites

and the roles that protein conformational dynamics play in this process are lacking. This is

particularly the case for ligand binding sites that are deeply buried in the receptor protein

core, precluding access, in the absence of structural rearrangements, even for bulk solvent

molecules. Yet, many ligands recognize these deeply buried, solvent-inaccessible cavities very

efficiently, and often at rates that approach those which are diffusion limited. Effective meth-

odologies for the study of such binding processes in atomistic detail would have significant

implications for the rational design of pharmaceuticals at a practical level and would provide

important insights into molecular recognition and the role of protein dynamics in ligand bind-

ing, in general.

The current work provides an atomistic view of the complete kinetic processes by which a

hydrophobic ligand binds rapidly to the occluded and solvent-inaccessible cavity of a well-

known system, namely the L99A mutant of lysozyme from the T4 bacteriophage (T4L L99A).

Substitution of Ala for Leu at position 99 results in a 150 Å3 cavity [5] that can accommodate a

range of ligands, including benzene, (Fig 1) [4–7]. Over the past several decades this protein

has been used as a model system for understanding how buried cavities affect protein stability

and structure, in general, and how ligands might navigate the protein landscape to bind rapidly

to their proper sites. To this end, high-resolution X-ray structures of both the apo form of the

protein and the benzene-bound complex have been solved by Mathews and coworkers [4,5]

and pioneering studies have been undertaken that relate cavity size to protein stability [6].

NMR measurements have shown that the binding of benzene to T4L L99A occurs with an on

rate constant of approximately 106 M−1s−1 [8]. While certainly slower than the diffusion-lim-

ited rate (~109 M−1s−1), binding is more rapid than what is generally perceived for ligand-rec-

ognition in solvent-inaccessible buried protein cavities. Additional NMR studies, based on
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relaxation dispersion approaches [9], established that T4L L99A exchanges in solution between

a major conformer similar to the crystal structure of the protein and a minor state that is popu-

lated to 3% with a millisecond lifetime at room temperature [10,11]. However, the structure of

this rare state shows that the cavity is occluded by the aromatic side-chain of Phe114 that pre-

vents the binding of benzene so that the dynamic process that has been characterized is not rel-

evant to ligand binding [11,12]. Oxygen and xenon binding studies have also been performed

that have helped to identify hydrophobic cavities in the protein [13–15]. Further, this system

has served as a prototype for many binding free energy calculations [16,17].

Despite the availability of macroscopic kinetic rate constants for aromatic ligand binding,

high resolution structures of the bound and free forms of T4L L99A, and NMR spin relaxation

data that indicate conformational flexibility in the region surrounding the ligand binding site,

a detailed description of how ligands bind to the protein remains elusive. Recent innovations

in experimental and computational techniques, notwithstanding, the mechanism by which

ligands bind to buried sites in a protein has remained difficult to address, because the process

often involves the formation of transient metastable states that are challenging to characterize

at high resolution and because the conformational fluctuations leading to binding can be

rapid, complicating detailed characterization by most biophysical techniques. To this end,

molecular dynamics simulations are emerging as a complementary tool to experiment for

the study of molecular recognition processes because of recent innovations in GPU-based

technologies, access to distributed computing, and the development of special-purpose com-

puters [18–21], that have facilitated studies of many pertinent biochemical processes at atomic

resolution.

Fig 1. Benzene binds to a buried hydrophobic cavity in T4L L99A that is inaccessible from the surface. A) Ribbon

representation of T4L L99A bound to benzene (PDB 3DMX) [4]. Bound benzene is shown in black CPK

representation, helix 4 (residues 83 to 91) in navy blue, helix 5 (92–113) in dark green, helix 6 (114–123) in red, helix 7

(125–134) in orchid, helix 8 (136–142) in light blue and helix 9 (142–156) in gold. B) The benzene molecule is not

visible in the surface representation of T4L L99A because the binding site is buried in the protein with no pathway to

the surface in the crystal structure.

https://doi.org/10.1371/journal.pcbi.1006180.g001

Ligand binding to inaccessible cavity of T4 lysozyme

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006180 May 18, 2018 3 / 20

https://doi.org/10.1371/journal.pcbi.1006180.g001
https://doi.org/10.1371/journal.pcbi.1006180


In this work, we elucidate the mechanism by which benzene binds to the solvent-inaccessible

cavity of T4L L99A by capturing the entire binding process using unbiased molecular dynamics

(MD) simulations. Despite the fact that the simulations contained no a priori knowledge of the

T4L L99A binding site, the resulting bound conformations that were obtained in a series of

microsecond-long simulations and independent trajectories matched that of the crystal struc-

ture. Underlying Markov state model analyses [22–24] of our simulation trajectories established

multiple binding pathways, each with transient opening of a channel involving a distinct pair of

helices in the C-terminal domain of T4L L99A. Using an enhanced sampling technique, infre-

quently biased metadynamics simulations [25,26], the ligand unbinding pathways from the

bound state have also been established. The resulting estimates for ligand binding on- and

off-rates as well as binding free energies are in reasonable agreement with the experimentally

reported values, lending support to the conclusions of this study. Our work establishes that

the fast binding of benzene to T4L L99A derives from its access to multiple pathways that are

formed from low barrier concerted protein fluctuations that only occur in the mutated protein.

It also establishes the utility of molecular dynamics simulations, in general, in providing detailed

descriptions of binding processes that are subsequently validated by comparison of the resulting

calculated kinetic and thermodynamic parameters with those obtained via experiment.

Results

Long unbiased simulations place benzene at the target-binding site of L99A

T4L with atomic precision

We performed six independent all-atom unbiased MD simulations with lengths varying

between 2 and 8 μs, resulting in a total simulation time of 29 μs. In each of the simulations a

benzene molecule, starting from a random position in solution, was correctly placed in the tar-

get-binding site, corresponding to the hydrophobic and solvent-inaccessible cavity created by

the L99A mutation in T4L. Ligands were initially positioned at least 4 nm away from the bind-

ing pocket in random orientations. As shown in three representative trajectories (Fig 2 and

S1–S3 Movies), the ligand diffused extensively in the solvent, occasionally contacting different

parts of the protein surface, before entering the binding pocket. Fig 2A quantifies the time-evo-

lution of pocket-ligand distances en route to binding in three representative binding trajecto-

ries, where the distance between the binding cavity and benzene gradually decreases as the

ligand finds its target. As depicted in Fig 2B, the MD derived structure converges to within 1–2

Å of the X-ray based model for the holo-form of the protein [4], as quantified by the root-

mean-squared deviation (RMSD) of heavy atoms from residues defining the cavity and includ-

ing the ligand (detailed in Materials and methods). The excellent agreement between the simu-

lated and crystallographic binding regions, including the orientation of benzene (Fig 2C),

provides confidence in the underlying force field used to model the T4L L99A benzene binding

process. Unlike standard docking approaches which search for the best ligand orientation

within a predefined binding site, our long and unguided atomistic MD simulations reproduc-

ibly identified and maintained the correct ligand-bound pose without user intervention or

incorporation of any prior knowledge of the binding site. As shown in Fig A in S1 Supporting

Information in each of the trajectories substantial dehydration accompanies benzene entry

into the hydrophobic and solvent-inaccessible binding pocket.

Simulation trajectories reveal multiple binding pathways

One of the key findings of the current work is that there are multiple distinct pathways by

which benzene binds the solvent-inaccessible cavity in T4L L99A. Contrary to the belief of a
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single dominant pathway in protein-ligand binding events, as exemplified by Shaw and

coworkers in studies of GPCRs and kinases [18,19], our post simulation analyses of the six suc-

cessful binding trajectories specifically identified three distinct pathways, each involving open-

ing of channels between pairs of helices near the C-terminus of the protein. Fig 3A and S1–S3

Movies illustrate the three representative binding pathways via the time evolution of a benzene

molecule as it reaches the binding pocket. The three pathways involve crucial conformational

fluctuations of the protein and specifically, creation of crevices across certain inter-helical

interfaces in the C-terminal domain. Notably, these helices were different in each of the three

identified pathways as illustrated in Fig 3. For example, in trajectory 1, helices 4 and 6 tempo-

rarily move away from one another, creating a pathway to the binding site as seen in the snap-

shot at 7.388 μs where Ala 99 colored in orange is visible from the surface (Fig 3B). This is in

contrast to the snapshot at 7.375 μs where the distance between the two helices is considerably

shorter, prohibiting the entry of benzene. In trajectory 2 (Fig 3C) benzene goes through a path

created between helices 7 and 9. Benzene first associates with the surface as seen in the snap-

shot at 2.08875 μs. The subsequent transient displacement between helices 7 and 9 creates a

tunnel through which benzene enters, as shown in the snapshot at 2.090 μs. After residing at

an alternate site for ~2 ns the ligand reaches the final binding site (Fig 3C). In trajectory 3, ben-

zene enters through an opening created at the junction between helices 5, 6, 7 and 8 (compare

snapshots at 3.874 and 3.876 μs, Fig 3D). After a period of approximately 10 ns the ligand local-

izes to the correct binding site, as illustrated in Fig 3D.

In combination, these results show that key conformational fluctuations of T4L L99A lead

to the formation of transient conformers where the distance between sets of helices becomes

Fig 2. Benzene binds correctly to the L99A cavity in long unbiased MD simulations. A) Distance between the solvent-inaccessible cavity of T4L

L99A and benzene shows that benzene diffuses through the solvent before finally binding. Protein heavy atoms within 5 Å of benzene in the holo-

protein (PDB id: 3DMX) [4] are defined as the ‘binding pocket’ or ‘cavity’. Radial distances were computed between the respective centers of mass of

the pocket and the ligand. B) Time profile of the root-mean-squared deviation (RMSD) between the MD derived structure and the crystal structure of

the benzene-bound form of the protein. Heavy atoms from cavity residues plus ligand of the MD derived structure are compared with corresponding

positions in the crystal structure of the benzene-bound form of the protein (PDB id: 3DMX [4]) to calculate the RMSD values. Initial RMSDs are high

because benzene is not in the binding site and not because the protein is distorted. C) Overlay of a snapshot of the benzene-T4L L99A complex from

simulations with the crystal structure (PDB id: 3DMX). The crystal structure is shown in grey with the benzene in black CPK representation while the

protein in the MD snapshot is shown in red with the benzene in red CPK representation.

https://doi.org/10.1371/journal.pcbi.1006180.g002
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sufficiently large for benzene to reach the solvent-inaccessible cavity. As depicted in Fig B in

S1 Supporting Information, the spatial density profile of benzene around the protein, obtained

by combining the long trajectories, provides a cumulative picture of the different pathways

that lead to binding. The localization of benzene near the cavity and near the C-terminal

domain helices is evident from the time-averaged density profile. However, we also observe

certain locations near the N terminus where the ligand resides for significant periods of time

(Fig B in S1 Supporting Information). Whether these highly visited locations are ultimately

important for ligand binding is not clear.

Markov state model identifies and quantifies transitions between key

ligand-binding intermediates and pathways

We have used Markov State Model (MSM)-based analysis[24] of the MD trajectories to obtain

mechanistic insights into the ligand binding process and to calculate binding on- and off-rates

and thermodynamic parameters. Prior to building a meaningful Markov state model, an addi-

tional three hundred, 100 ns trajectories were obtained by initiating independent simulations

from different intermediates in the long trajectories. Analysis of the cumulative 59 μs of simu-

lated data (29 μs from long trajectories and another 30 μs from 300 short trajectories, see Mate-

rials and methods) using the MSM approach yielded estimates of the thermodynamic and

kinetic parameters for the binding process which are in reasonable agreement with experiment

(Table 1). The calculated kinetic on and off rate constants (kon and koff,) obtained by MSM-

Fig 3. Illustration of the different pathways by which benzene reaches the binding pocket. A) Paths from three highlighted trajectories are illustrated

by superimposing the backbone atoms of the protein from snapshots during the trajectories onto the crystal structure of the protein. In trajectory 1

benzene enters between helices 4 and 6, between helices 7 and 9 in trajectory 2 and through the junction region of helices 5, 6, 7 and 8 in trajectory 3.

For clarity only the crystal structure of the protein is shown in A, with Ala 99 and Phe 114 in orange and blue CPK representations, respectively. All

helices are colored as in Fig 1. B) In trajectory 1 helices 4 and 6 transiently move away from one another, temporarily creating a pathway resulting in

Ala 99 (colored in orange) becoming visible from the surface in the snapshot at 7.388 μs. The separation between these helices returns to the starting

value of ~1 nm later in the trajectory (see Fig C in S1 Supporting Information). C) In trajectory 2 benzene (shown in black) enters through a pathway

created between helices 7 and 9 (2.09 μs snapshot) after associating with the protein surface (2.08875 μs snapshot). D) In trajectory 3 benzene enters

through an opening created at the helix 5, 6, 7 and 8 junction region. On the right side of panels B, C, D benzene entry is illustrated as in A, except that

the protein is shown as a grey ribbon in each snapshot and the color of benzene changes from red to green to blue as time progresses and benzene

reaches the binding site. Ala 99 is shown in orange in the structures.

https://doi.org/10.1371/journal.pcbi.1006180.g003
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derived mean first passage time (MFPT) values (see caption of Table 1 and Material and

methods for equations), are, respectively, kon = 21 ± 9 x 106 M-1 s-1 (MFPTon = 5163 ns) and

koff = 311 ± 130 s-1 (MFPToff = 3.2 x 106 ns). As compared in Table 1, the MSM-derived kon is

larger than that measured experimentally, kexpon = 0.8–1 x 106 M-1 s-1. We also note that the

kon value calculated from the average binding times from six long unbiased multi-microsecond

MD trajectories yields an on-rate constant of 25 x 106 M-1 s-1, very close to the MSM-derived

kon rate (21 ± 9 x 106 M-1 s-1). This implies that the underlying deviation of the simulated kon
value from the experimental kexpon rate does not result from MSM analysis but is due to limita-

tions in the force field. For example, the TIP3P [27] water model used in our MD simulations

leads to water diffusion rates that are two to three times higher than those based on experi-

ment. The ligand unbinding rate constant, i.e. the so-called off-rate constant koff, computed

using both MSM (koff = 310 ± 130 s-1) and Metadynamics approaches (koff = 270 ± 100 s-1)

(detailed later) is in reasonable agreement with experiment (kexpoff = 950 s-1). In this context,

we note that there are several reports highlighting systematic deviations of MSM-derived off-

rate constants from those determined experimentally [20,21]. However, it should also be

emphasized that the MD estimate of koff is less precise than for kon because spontaneous

unbinding events were not observed. Finally, we have also computed the standard binding free

energy (ΔG0
binding) of benzene to T4L L99A using the MSM-derived stationary population of

the unbound and bound conformations (see Table 2). The computed standard binding free

energy of -6.9 ± 0.8 kcal/mol predicts slightly higher binding affinity than the experimentally

measured ΔG0
binding = -5.2 ± 0.1 kcal/mol.

A simple four state MSM was constructed from our simulated data, as described in Materi-

als and Methods. The four macrostates are illustrated in Fig 4, where MS0 and MS3 are identi-

fied with the unbound solvated benzene state and the final bound conformation, respectively,

and MS1 and MS2 are two intermediates, with benzene localized near different entry points.

Populations and lifetimes of each of the states, along with the committor values that measure

the progress of the binding process, are summarized in Table 2. As shown in Table 2, the sta-

tionary population of the bound state, MS3, is highest and as described above, the binding free

energy of -6.9 ± 0.8 kcal/mol, derived from the stationary state populations, is in reasonable

agreement with the experimental measurement. The location of the benzene ligand is distinct

Table 1. Thermodynamic and kinetic parameters estimated from MD simulations are in reasonable agreement with experimentally measured values. The thermo-

dynamic and kinetic parameters were calculated from the four state MSM based on the mean first passage time (MFPT), kon = 1/(MFPTonC), koff = 1/MFPToff where C is

the benzene concentration, 9.55 mM. The standard binding free energies were calculated based on the stationary populations (shown in Table 2) of bound and unbound

macrostates as obtained from the MSM [20]. Unless specified, the experimental values refer to those from the NMR study by Dahlquist and coworkers [8] and are used for

all comparisons.

Methods kon (M-1s-1) x106 koff (s−1) ΔG0
binding (kcal/mol)

Experimental [7,8] 0.8–1 950 ± 20 -5.2±0.2[7] / -4.2 ± 0.1[8]

Unbiased MD (MSM analysis) 21 ± 9 310 ± 130 −6.9 ± 0.8

Metadynamics 270 ± 100

https://doi.org/10.1371/journal.pcbi.1006180.t001

Table 2. Properties of the four different MSM macrostates, with MS0 and MS3 corresponding to the unbound

and bound states, respectively.

State Population % Lifetime (ns) Committor Probability

MS0 0.11±0.06 2.6±4.4 x103 0.0

MS1 6.4±3.0 x 10−3 69±8 0.8±0.1

MS2 4.7±4.5 x 10−2 742±289 0.2±0.1

MS3 99.83±0.05 9±4 x105 1

https://doi.org/10.1371/journal.pcbi.1006180.t002
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in the intermediate structures, MS1 and MS2, highlighting again the different pathways of

entry (see above). Notably, benzene is bound to different positions of the protein in the MS1

state, potentially interconverting rapidly between the different sites. These include locations

near a pair of entry points that are comprised of helices 7 and 9 or the junction between helices

5, 6, 7 and 8 that place the ligand close to the cavity. The positions of benzene in MS1 are, thus,

as found in MD trajectories 2 and 3 (Fig 3C and 3D), so that MS1 is a crucial intermediate. In

contrast, benzene is further from the cavity in MS2, positioned instead on the surface of helices

4 and 6. MS2 is thus an intermediate of trajectory 1 that is elucidated from MD simulations

(Fig 3B). The computed committor probabilities from transition-path-theory based analysis

suggest a higher (0.8) commitment of MS1 towards the bound state than that of MS2 (0.2)

(Table 2). The conversion from unbound (MS0) to bound (MS3) macrostates proceeds via

multiple pathways involving states MS1 and MS2. Transition path theory was used to identify

paths connecting unbound and bound states and to calculate the flux through the different

pathways. The kinetic pathways are illustrated in Fig 4. The contributions of the four binding

pathways [MS0!MS1!MS3], [MS0!MS3], [MS0!MS2!MS1!MS3] and [MS0!

MS2!MS3] to the total flux from MS0 to MS3 are 52%, 39%, 5% and 4% respectively, show-

ing that there is no single dominant pathway. The direct conversion MS0!MS3 reflects the

very rapid transformation of ligand from unbound to bound macrostates with no detectable

intermediates. For the MS0!MS3 path there have been occurrences where the ligand tra-

verses rapidly through the helix7/helix9 or helix4/helix6 gateways or via the helix5/helix6/

helix7/helix8 interface. The direct transitions from unbound to bound conformations thus

Fig 4. MSM analysis shows that the binding process proceeds via distinct intermediates. The MD binding data can be described by a four state

(MS0-MS3) MSM network representation showing how binding proceeds via different paths through distinct intermediate states, from the free form

(MS0) to the bound form (MS3). Each node represents a macrostate, with the thickness of the arrows denoting the net flux between states. 500

snapshots for each of the states are superimposed on the crystal structure of the holo enzyme (PDB 3DMX) [4], where only benzene molecules from the

500 snapshots are rendered for clarity. The population, lifetime and committor value of each of the states is shown in Table 2. Coloring is as in Fig 1 and

the color-code of the helices is provided in the panel.

https://doi.org/10.1371/journal.pcbi.1006180.g004
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often involve ligand passage via helix gateways. Out of four pathways derived by the MSM

analysis two are dominant, involving MS0, MS1 and MS3, and jointly account for 90% of the

flux. However, long simulation trajectories also showed a distinct ligand-binding pathway via

MS2, even though its contribution to the overall flux is less. The observation of multiple path-

ways for this system argues that binding of ligands to proteins in general is likely to be more

complex than via a single pathway which is often the model used in the analysis of binding

data. As a final note, the [MS0!MS2!MS3] path can be identified with trajectory 1 (S1

Movie), while the [MS0!MS1!MS3] pathway is a composite of trajectories 2 and 3 (S2

and S3 Movies).

Insight into the low activation barrier for ligand binding to T4L L99A

The fact that benzene is able to rapidly bind to T4L L99A is consistent with a low activation

barrier. The activation free energy ΔG� is not readily available from experimental data, as the

temperature dependencies of measured rate constants provide only an estimate of the activa-

tion enthalpy ΔH� [28]. By assuming a diffusion controlled ligand-protein binding rate of ~109

s-1M-1, and comparing this value with the experimentally measured kon ~ 106 s-1M-1 rate,

Feher et. al. estimated the free energy barrier for binding to be relatively small, 4–5 kcal/mol

(6.5 to 8.5 RT) [8]. Consequently, the barrier for the unbinding process, DG�unbinding , can be cal-

culated to be ~8–9 kcal/mol (13–15 RT), based on ΔG0
binding = -4.2 kcal/mol (Table 1). The

MD simulations are also consistent with a small barrier as the observed binding rates are faster

than the experimentally measured ones, even after accounting for the faster diffusion constant

of the TIP3P-modeled water used here. The unbinding activation barrier can be estimated

from the MD simulations using the relation koff ¼ ð1=tTPTÞe
� DG�unbinding=RT [29], where the

transition path time τTPT is the time required for benzene to transition from the cavity to

the unbound form. Note that τTPT is obtained from simulation while koff can be measured

experimentally or estimated by simulation. Values of τTPT have been quantified directly

from the six binding trajectories. In this approach, a benzene molecule was considered to

be bound to T4L L99A if any of its carbon atoms was less than 0.38 nm from the Ala 99 Cβ
position and, conversely, unbound when every carbon atom was greater than 0.6 nm from the

Ala 99 Cβ. Based on this criterion, τTPT values for the six trajectories vary from 0.2 to 24 ns

with an average of 7 ns. Using this average value along with an experimental value for koff of

0.95x103 s-1 [8], DG�unbinding = 11.9 RT was estimated, in agreement with the barrier obtained

from the analysis of Feher et al. The small value of DG�binding ~5 RT, that is estimated from

DGbinding ¼ DG�binding � DG�unbinding , further emphasizes the small activation barrier to binding. In

the above analysis barriers were estimated assuming a single binding pathway but the conclu-

sion regarding small barriers will hold for the multiple paths as each of them occurred sponta-

neously during the simulations.

The MD trajectories described above provide insights into the origin of the small activation

barrier for ligand binding. In all three binding routes identified in this study (Fig 3) the ligand

reaches the cavity through the transient formation of pathways that are linked to the displace-

ment of specific helices by 2–3 Å, without large scale changes in secondary structure or unfold-

ing. We hypothesized that the L99A mutation not only creates the binding cavity but might

also increase the flexibility of the cavity-containing C terminal domain in general, leading to

an increased probability for the adoption of conformations that allow ligand binding. To test

this hypothesis we calculated backbone order parameters squared, S2, from chemical shifts

for both T4L L99A and T4L WT (referred to as T4L WT� in what follows, see Material and

methods) [30]. S2 values report on the amplitudes of ps-ns motions of amide bond vectors
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[31], range between 0 (isotropic motion)– 1 (rigid), and are routinely used to identify flexible

regions of proteins [32,33]. The similar S2 vs residue profiles for both T4L L99A and WT� (Fig

5A) indicate that fast timescale backbone dynamics are not affected by the L99A mutation,

while the high S2 values (0.8 to 0.9) show that both forms of T4L are rigid and that rapid back-

bone motions are not linked directly to ligand binding. In order to ascertain whether the L99A

mutation increases the population of transiently formed high energy conformers that would

allow benzene to move past helices and enter the cavity we have computed free energy profiles

for both T4L L99A and WT� as a function of the distances between helices 4 and 6 (Fig 5B)

and between helices 7 and 9 (Fig 5C). Interestingly, we observe that the free energy penalty for

larger inter-helical distances in T4L WT� is greater than for T4L L99A, and thus the conforma-

tions that facilitate binding are less probable for T4L WT�. For example, the probability of a

Helix 4/6 separation of 1.30 nm, that is required for benzene entry (Fig 2B and 2C) increases

by *40 fold in the L99A mutant, as it is 2.21 kcal/mol more unfavorable to separate this helix

pair by 1.30 nm for the WT� sequence (eΔG/RT = 39 for ΔG = 2.21 kcal/mol). It is thus unlikely

that a molecule of benzene could ‘squeeze’ between the helices in T4L WT� before reaching

the occluded binding site due to the steric effect of residue L99. As the helices forming the C

terminal domain of T4L are packed against one another, creating openings between helices

that are required for binding (Fig 3) results in subtle positional changes to the other helices as

well. A closer inspection of the trajectories showed that movement of helices 4 and 6 or 7 and

9 that is required to accommodate binding reduces the distance between side-chains of Ile78

and Ala99. A similar change in these inter-helical distances in the WT� protein would lead to a

Fig 5. The L99A mutation stabilizes rare conformers that allow benzene to reach the cavity without substantial

changes to ps-ns timescale backbone dynamics of the C terminal domain. A) NMR chemical shift derived S2 values

[30] are very similar for T4L WT� and T4L L99A showing that the L99A mutation does not change the overall

flexibility of the protein backbone on the ps-ns timescale. B,C) Free energy profiles as a function of distance between

helices 4 and 6 and helices 7 and 9 showing that a larger separation between helices is more likely in the T4L L99A

mutant. D) Steric clashes between Leu99 and Ile78 destabilize conformers of the WT� protein when the inter-helical

distance has increased to allow benzene access to the cavity. The snapshot from trajectory 1 at 7.388 μs (L99A) has a

helix 4—helix 6 distance of 1.32 nm, with no steric clash between Ile78 (dark red) and Ala99 (orange). In contrast, in

the WT� protein the larger Leu residue at the 99 position (yellow) leads to a steric clash between Ile78 and Leu99,

destabilizing the conformation. The A99 to L99 mutation was performed by superimposing the backbone coordinates

of residues 95 to 103 from the WT� crystal structure in grey on the snapshot from the simulation in brown.

https://doi.org/10.1371/journal.pcbi.1006180.g005
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steric clash between Ile78 and the larger Leu99, as illustrated in Fig 5D in the case of Trajectory

1 where the helix 4-helix 6 distance transiently increases for only a few nanoseconds. We

would like to emphasize that the population of the conformer where helices 4 and 6 are sepa-

rated by 1.30 nm is extremely low, even for T4L L99A, (e−ΔG/RT *0.0046% with ΔG = 3.23

kcal/mol, Fig 5B) relative to the equilibrium conformer corresponding to a helix4-helix6 dis-

tance of ~1 nm. Thus, this ligand-accessible state cannot be quantified through experiment,

further emphasizing the importance of large scale MD simulations like those performed here.

A similar scenario is also found for the separation of helices 7 and 9 (Trajectory 2, Fig 3) where

increasing the inter-helical distance from 1.05 nm to 1.25 nm, that is required for ligand entry,

is more unfavorable by 5.9 kcal/mol for WT� than for T4L L99A.

Unbinding trajectories validate and add to the ensemble of pathways

generated from unbiased MD sampling

The computational expense of unbiased binding simulations prohibits the exhaustive survey of

all of the possible kinetic pathways. Hence we explored a complementary approach of validat-

ing the identified pathways and of enriching the ensemble of binding trajectories using a

recent implementation of metadynamics simulation [25] to enable the extraction of the kinet-

ics of benzene unbinding from the cavity. Using the radial distance between the binding

pocket and the ligand as the collective variable, this simulation technique infrequently deposits

repulsive, history-dependent Gaussian bias along the pocket-ligand distance so as to efficiently

accelerate the unbinding process. The corresponding acceleration factor, multiplied by the

simulation time, provides an estimate of the time for unbinding. As depicted in Fig D in

S1 Supporting Information, the p-value analysis [26], as suggested by Tiwary and Parrinello,

provided a good Poisson fit with a high p-value of 0.73, when averaged over numerous inde-

pendent trajectories. The computed off rate, 369 s−1, is in reasonable agreement with the

experimentally measured off-rate, Table 1, showing that the ligand-pocket distance is a rele-

vant collective variable for exploring benzene-T4L L99A unbinding pathways. Significantly, as

depicted in Fig D in S1 Supporting Information, the unbinding trajectories revealed two

unbinding pathways of the ligand from the pocket. These involved benzene exiting through

small openings between helices 7 and 9 and the juncture of helices 5, 6 7 and 8, pathways that

are the reverse of the subset of those previously identified for binding.

Discussion

Although ligand binding to receptors is critically important for many biological processes an

atomistic understanding of how this might occur in the context of occluded binding sites is

lacking. This reflects the fact that while the main biophysical tools that are used to study molec-

ular interactions are powerful for characterizing and providing atomic resolution structures of

the end points of the binding process (free and bound states) they are often much less robust

in generating a description of the binding mechanism. Improvements in both computer tech-

nology and MD simulation methodology have made it possible to obtain μs-ms MD trajecto-

ries of proteins in explicit solvent so that it is possible to study processes such as ligand

binding, conformational exchange, and protein folding using MD simulations [12,18,19,34].

Here, using unbiased MD simulations, we have addressed the longstanding question of how

hydrophobic molecules rapidly reach buried cavities in proteins by working with a model sys-

tem in which benzene binds to a 150 Å3 cavity mutant in T4L L99A. Central to every MD-

based approach is that the force field used should be able to model the underlying free energy

surface accurately. We chose to use the CHARMM force field [35] as previous MD studies had

shown that the Phe114 buried to exposed conformational transition in T4L L99A and in the
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related protein, T4L L99A/G113A/R119P, is well modeled with it [12,36]. The structures of the

benzene bound conformers obtained from the unbiased simulations are in excellent agreement

with those determined by crystallography (backbone RMSD< 2 Å, Fig 2C), with the position

of the benzene within 2 Å of the binding site residues established experimentally [4]. Further,

kinetic and thermodynamic parameters obtained from the simulations are in reasonable agree-

ment with the experimental values (Table 1), providing confidence in the results of the MD

study.

Our unbiased μs timescale MD simulations establish that benzene, initially fully hydrated,

reaches the internal cavity created by the L99A mutation via at least three different trajectories.

Notably, the process does not involve a large-scale deformation to the T4L L99A structure, nor

significant changes to secondary structure, but rather small perturbations to the positions of

two or more helices in the C terminal domain of the protein that create pathways for binding

(Fig 3). Similar tunnels from the protein surface to the cavity were also observed in a 30 μs MD

simulation of T4L L99A using the AMBER force field [37]. The existence of multiple pathways

coupled with a small net activation barrier explains how benzene can bind the occluded cavity

rapidly.

Previously we had used combined MD simulations and NMR relaxation experiments to

study how the side-chain of residue Phe114 fills the cavity created by the L99A mutation, that

in some sense serves as a surrogate to hydrophobic ligands such as the benzene molecule con-

sidered here. It might be expected, therefore, that the binding pathways of Phe114 and benzene

would share some similar features. Notably, in one of the trajectories (Trajectory 3) benzene

enters the cavity in a manner similar to Phe114 [12] from its solvent exposed conformation.

The binding of ligands to occluded sites in other proteins, such as oxygen binding to the

buried heme group in myoglobin, has been studied using a variety of experimental and

computational techniques [38,39] In the case of myoglobin, the mechanism of binding also

involves small barriers, multiple pathways and secondary binding sites in the protein [38,39].

Multiple pathways have also been observed by Dickson and Lotz in recent studies of an epox-

ide hydrolase inhibitor [40] and a trypsin-benzamidine system [41] that exploited a weighted

ensemble based algorithm. The plasticity of T4L L99A allows the larger benzene molecule to

reach the cavity in a manner similar to how oxygen connects with the heme group in myoglo-

bin. The origin of the conformational plasticity in T4L L99A that facilitates this process is, in

fact, the L99A mutation itself (Fig 5). Replacing the Leu99 residue with the smaller Ala not

only creates the cavity but also allows helices to move with respect to one another to generate

the pathways that are required for binding. In contrast, the presence of Leu99 destabilizes the

binding competent conformations by clashing with Ile78 (Fig 5). It remains of interest to

investigate if the benzene binding rate can be modulated by mutating Ile78 to smaller hydro-

phobic residues. Similar to the binding of benzene, protein plasticity and cavities have also

been implicated in oxygen binding to T4L L99A [14].

Preliminary observations into the mechanism of ligand unbinding from T4L L99A have

recently been published and are in agreement with the results of this study. Kitahara et. al. [14]

developed a simple and elegant 15N NMR based method to detect O2 binding sites in proteins

using T4L L99A as a model system. In order to quantify the 15N chemical shift changes that

were observed upon oxygen binding MD simulations were performed to understand the rota-

tional and translational diffusion properties of oxygen molecules in the T4L L99A cavities.

Notably, an oxygen molecule escaped from the cavity via a pathway that is the reverse of Tra-

jectory 1 (Fig 3). In MD simulations performed to understand how water interacts with the

cavity at high pressures, water molecules were found to escape from the cavity due to transient

openings formed at the junction of helices 5, 6 and 7 [42], as observed in the creation of a path-

way to the cavity in Trajectory 3. In adiabatic-biased MD simulations of benzene unbinding

Ligand binding to inaccessible cavity of T4 lysozyme

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006180 May 18, 2018 12 / 20

https://doi.org/10.1371/journal.pcbi.1006180


from T4L L99A a pathway that is the reverse of Trajectory 3 was observed [36]. In a separate

27 μs MD trajectory of T4L L99A performed to understand the Phe114 exposed to buried con-

formational transition, tunnels leading to the cavity from solvent were transiently formed [37],

as observed in the present work. A recent implementation of a biased simulation approach by

Lindorf-Larson and coworkers also led to the extraction of the kinetics of the benzene recogni-

tion process [43]. McCammon and coworkers [44] have employed an accelerated MD-based

biased simulation approach to explore the thermodynamics of benzene binding to T4L L99A

cavity. Very recently, Arantes and coworkers [45] have reported weighted ensemble based

biased simulations of unbinding of benzene from the T4L cavity and revealed multiple ben-

zene exit pathways, in agreement with the current study. However, none of these simulation-

based studies address the mechanism by which ligands spontaneously bind to buried protein

cavities and consequently insights into multiple pathways and low free energy barriers were

not obtained.

Recent studies suggest that diverse processes such as protein folding and protein intercon-

version between different compact conformers proceed via multiple pathways and/or small

barriers [12,46,47]. More studies are required to determine if small activation barriers and

multiple paths are common features of biomolecular recognition processes and to characterize

at atomic resolution what these pathways are.

Materials and methods

Here, as in most biophysical studies involving T4 lysozyme, the cysteine free version of the

protein [48] was used, T4L WT�, where Cys54 and Cys97 are replaced by Thr and Ala, respec-

tively. In T4L L99A the L99A mutation is introduced into the T4L WT� background.

MD simulations and analysis

Unbiased binding simulations. The X-ray crystallographic structures of T4L L99A free

and benzene bound forms (PDB code: 3DMX and 3DMV) were used as the starting points for

all of the simulations [4]. All binding simulations were initiated by placing the apo form of

L99A T4L at the center of a cubic box of dimension 7.2 nm with the empty space then filled

with water and ion molecules. The system was solvated with 11613 triatomic water molecules

and sufficient numbers of sodium and chloride ions were added to keep the sodium chloride

concentration at 150 mM and render the system charge neutral. Two benzene molecules, cor-

responding to a concentration of 9.55 mM, that is less than the benzene solubility limit in

water (20 mM) [49], were placed in random positions in the solvent. The two molecules were

allowed to diffuse freely and no artificial bias was introduced throughout the simulation. The

system included a total of 37541 atoms. The protein, benzene and ions were parameterized

with the charmm36 force field [35] and the TIP3P water model [27] was used.

All MD simulations were performed with the Gromacs 5.0.6 simulation package [50], in

most cases benefiting from usage of Graphics processing units [51]. During the simulation, the

average temperature was maintained at 303K using the Nose-Hoover thermostat [52,53] with

a relaxation time of 1.0 ps and an average isotropic pressure of 1 bar was maintained with the

Parrinello-Rahman barostat [54]. The Verlet cutoff scheme [55] was employed throughout the

simulation with the Lenard Jones interaction extending to 1.2 nm and long-range electrostatic

interactions treated by Particle Mesh Ewald (PME) summation [56]. All bond lengths involv-

ing hydrogen atoms of the protein and the ligand benzene were constrained using the LINCS

algorithm [57] and water hydrogen bonds were fixed using the SETTLE approach [58]. Simu-

lations were performed using the leapfrog integrator with a time step of 2 fs and initiated by

randomly assigning the velocities of all particles.
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Initially six long independent unbiased trajectories were performed, differing in the assign-

ment of initial velocity seeds. These ranged between 2.5 and 8.1 μs with a total simulation

length of 29 μs. The simulations were only terminated after one of the two copies of the ligand

settled into the target binding site. The binding process was ascertained via inspection and by

checking (i) the radial distance between respective centers of mass of benzene and the cavity

and (ii) the root-mean-squared deviation (RMSD) of the simulated conformation of the pro-

tein-ligand system from that of X-ray crystal structure of holo T4L L99A (PDB id: 3DMX) [4]

that included benzene atoms and those of the protein cavity. The ‘cavity’ or the ‘binding

pocket’ was defined by the protein heavy atoms within 5Å of benzene in the X-ray structure of

holo T4L L99A (PDB id: 3DMX). For the calculation of RMSD, the cavity plus ligand of each

frame of the trajectory was first translationally and rotationally aligned with that of the crystal

structure of the benzene-bound form of protein (PDB id: 3DMX) and then the deviation was

computed. The ligand was ascertained to be bound to the cavity when the RMSD remained

below 0.5 nm and the cavity-ligand distance was below 0.2 nm for a simulation duration of at

least 100 ns.

Apart from the six μs-long trajectories discussed above, we have also performed 300 short

independent trajectories, each 100 ns in duration. These short trajectories were initiated from

different intermediates observed from the long binding simulations and improved the statistics

of the MSM that was derived from analysis of the MD trajectories (see below). Overall, an

aggregate of about 59 μs of unbiased trajectory was recorded.

MSM analysis of the MD data. The generation of a MSM is a powerful way to automati-

cally identify the kinetically relevant states and their interconversion rates from the simulated

trajectories [59–62]. We employed PyEMMA [63] (http://pyemma.org) to construct and ana-

lyze the MSM obtained from the combination of all the recorded MD trajectories. The near-

est-neighbor (cut-off 0.5 nm) heavy-atom contacts between benzene and protein residues were

used as input coordinates. The time-lagged or time-structure-based independent component

analysis (tICA) [64–66] with a correlation lag time of 20 ns was used for dimensionality reduc-

tion, which linearly transforms the high dimensional input data into a slow linear subspace

(i.e. collective coordinates sorted by ‘slowness’). The high dimensional input coordinates were

subsequently projected onto 12 tICA components, covering more than 95% of the kinetic vari-

ance. We employed the k-mean clustering algorithm [67] to discretize the tICA data into 100

clusters. Then 100 microstates MSMs were constructed at variable lag times to identify the

appropriate lag time. A lag time of 10 ns was used to construct the final MSM as the implied

time scale leveled off at about 10 ns which ensures the Markovianity of the model (see Fig E in

S1 Supporting Information). To better understand the dynamics of ligand binding a coarse-

grained kinetic model with four metastable states was constructed using a hidden Markov

model (HMM) [68].

The kinetic parameters reported in Table 1 were calculated using the mean first passage

time (MFPT) obtained from the MSM analysis based on four derived macrostates. The MFPT

was computed as the average time taken for the transition from the initial to the final macro-

state [69]. The calculation included both the direct transition from the initial state to the final

state and transitions through other intermediate states. The on-rate and off-rate constants are

respectively calculated as kon = 1/(MFPTonC) and koff = 1/MFPToff where C is the benzene con-

centration, 9.55 mM. The binding free energies (ΔG) were calculated based on the stationary

populations (shown in Table 2) of bound and unbound macrostates as obtained from the

MSM [20],

DG ¼ � kBT log
pbound

punbound

� �
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where πbound and πunbound are stationary populations of bound and unbound macrostates, kB
is Boltzmann’s constant, and T is the absolute temperature. We subsequently converted the

result to a standard free energy ΔG0 (one molar concentration) for comparison with experi-

ment. Finally, the transition path theory as proposed by Vanden-Eijnden and coworkers [70]

was employed to calculate the transition path fluxes.

Free energies of helix opening. The umbrella sampling simulation technique [71] was

used to map the free energy surface underlying the opening of a pair of helices to facilitate

ligand binding to the cavity in T4L L99A. To this end, we performed two independent

umbrella sampling simulations where the distance between centers of mass of Cα-atoms of

helices 4 and 6 or of helices 7 and 9 was used as the collective variable (CV). The value of the

CV ranged from 0.9 nm—1.6 nm for the distance between helices 4 and 6 and from 1 to 1.3

nm for helices 7 and 9. The starting configuration for each window was picked from the prior

unbiased simulation trajectories, with spacing between consecutive windows of 0.05 nm. Each

window was restrained to the desired value of the CV using a harmonic potential of force con-

stant 8000 kJ/mol/nm2 to ensure that the distribution of the CV for each window remains

Gaussian with sufficient overlap in the distribution of two consecutive windows so that the

entire space of the CV is sampled. Each of the windows was sampled by the umbrella sampling

technique for 20 ns. Finally, the weighted histogram analysis method (WHAM) [72,73] was

employed to reweight the umbrella-sampled windows and to obtain the unbiased potential of

mean force as a function of the CV. In order to investigate the effect of the L99A mutation on

the free energetics of helix opening, the entire series of umbrella samplings was repeated by in-

silico mutation of Ala99 in each of the starting configurations to Leu99.

Unbinding simulations using an enhanced sampling technique. The recent implemen-

tation of metadynamics by Tiwary and Parrinello [25] was used to compute unbinding rates

of benzene from the hydrophobic cavity of L99A T4L and to extract unbinding pathways.

In this novel method, by making the bias deposition slower than the time in bottlenecks, and

by using a suitable CV capable of distinguishing between bound and unbound states, it is pos-

sible to keep the transition state relatively bias-free through the course of the metadynamics

simulation.

This so-called ‘infrequent metadynamics’ approach allows one to accelerate the transition

from ligand-bound to unbound states, without affecting the transition state. More importantly,

this technique provides an estimate of the acceleration factor, which when multiplied with

metadynamics simulation times, provides the true unbinding time. As elaborated in the

original work of Tiwary and Parrinello [25], the acceleration factor is given by the time

α = heβV(s,t)it where s is the CV being biased, ß is the inverse temperature, V(s,t) is the bias

experienced at time t and the subscript t indicates that averaging is performed under the time-

dependent potential. The above expression is valid even if there are multiple intermediate

states and numerous alternative reaction pathways. In our current work, we employed the dis-

tance between the centers of mass of the cavity and benzene as the CV using a Gaussian width

of 0.025 Å. One of the reasons for choosing the distance between the binding pocket and the

ligand as the CV was that it can distinguish between bound and unbound states very well,

while providing an estimate of binding free energies that agree with those obtained from

experiment. During the ‘infrequent metadynamics’ simulation approach, the Gaussians were

deposited every 10 ps with a starting height of 1.2 kJ/mol and gradually decreased on the basis

of a well-tempered metadynamics biasing factor, Γ = 6. A total of 15 such ‘infrequent metady-

namics’ simulations having different initial velocity distributions were spawned with the ligand

fully bound to the cavity and simulations were stopped only when the ligand became fully

unbound, reaching bulk-solvent i.e. the distance between the binding pocket and the ligand

exceeded 3 nm. Acceleration factors, as described earlier and elaborated on in reference [25],
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were computed during the simulations and multiplied with the Metadynamics run time to get

the true unbinding time.

The transition time statistics so obtained were then subject to a Poisson analysis [26] to

ascertain their reliability (based on the Kolmogorov-Smirnov statistical analysis) and to obtain

the average unbinding time, from which the unbinding rate is easily calculated. Our approach

of performing metadynamics simulations using the cavity-ligand separation as a single CV was

sufficient to pass the so-called p-value test which suggested that the frequency of bias was slow

enough and the CV was appropriate to accelerate unbinding. All simulations were carried out

using Gromacs 5.0.6 patched with the PLUMED plugin [74].

NMR experiments and analysis

NMR samples. 15N,13C labeled T4L WT� and T4L L99A were overexpressed and purified

as described previously [75]. The protein concentration in the NMR samples (50 mM sodium

phosphate, 25 mM NaCl, 2mM EDTA, 2mM NaN3, pH 5.5, 10% D2O buffer) was *1.5 mM.

NMR experiments. Assignments for T4L WT� were obtained using standard triple reso-

nance experiments [76,77], with assignments for T4L L99A published earlier [11]. All experi-

ments were performed at 22˚C on a 700 MHz Bruker Avance III HD spectrometer equipped

with a triple resonance cold probe.

NMR data processing and analysis. NMR data were processed using the NMRPipe soft-

ware package [78] and the resulting spectra were visualized and analyzed using SPARKY [79].

To overcome complications due to chemical exchange, order parameters were estimated from

chemical shifts according to the method of Berjanskii and Wishart [30], as implemented in

TALOS+ [80].

Supporting information

S1 Supporting Information. PDF file containing five supporting figures including Fig A,

B, C, D and E.

(PDF)

S1 Movie. Movie highlighting trajectory 1. Benzene binds to the cavity via the gateway

between helices 4 and 6, created by transient distance fluctuations between these elements of

structure. The protein is shown in cartoon representation, the cavity by a solid surface repre-

sentation and the benzene molecule via a licorice representation.

(MP4)

S2 Movie. Movie of trajectory 2 showing benzene binding via a pathway between helices 7

and 9 created by transient helix 7–9 distance fluctuations. The protein is shown in cartoon

representation, the designated cavity by a solid surface representation and the benzene mole-

cule via a licorice representation.

(MP4)

S3 Movie. Movie of trajectory 3 whereby benzene enters T4L L99A through the junction

region of helices 5–8. The protein is shown in a cartoon representation, the designated cavity

by a solid surface representation and the benzene molecule via a licorice representation.

(MP4)
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