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Abstract

To achieve the 90-90-90 goals set by UNAIDS, the number of new HIV infections needs to

decrease to approximately 500,000 by 2020. One of the ‘five pillars’ to achieve this goal is

pre-exposure prophylaxis (PrEP). Truvada (emtricitabine-tenofovir) is currently the only

medication approved for PrEP. Despite its advantages, Truvada is costly and requires indi-

viduals to adhere to the once-daily regimen. To improve PrEP, many next-generation regi-

men, including long-acting formulations, are currently investigated. However, pre-clinical

testing may not guide candidate selection, since it often fails to translate into clinical effi-

cacy. On the other hand, quantifying prophylactic efficacy in the clinic is ethically problem-

atic and requires to conduct long (years) and large (N>1000 individuals) trials, precluding

systematic evaluation of candidates and deployment strategies. To prioritize- and help

design PrEP regimen, tools are urgently needed that integrate pharmacological-, viral-

and host factors determining prophylactic efficacy. Integrating the aforementioned factors,

we developed an efficient and exact stochastic simulation approach to predict prophylactic

efficacy, as an example for dolutegravir (DTG). Combining the population pharmacokinetics

of DTG with the stochastic framework, we predicted that plasma concentrations of 145.18

and 722.23nM prevent 50- and 90% sexual transmissions respectively. We then predicted

the reduction in HIV infection when DTG was used in PrEP, PrEP ‘on demand’ and post-

exposure prophylaxis (PEP) before/after virus exposure. Once daily PrEP with 50mg oral

DTG prevented 99–100% infections, and 85% of infections when 50% of dosing events

were missed. PrEP ‘on demand’ prevented 79–84% infections and PEP >80% when initi-

ated within 6 hours after virus exposure and continued for as long as possible. While the

simulation framework can easily be adapted to other PrEP candidates, our simulations

indicated that oral 50mg DTG is non-inferior to Truvada. Moreover, the predicted 90% pre-

ventive concentrations can guide release kinetics of currently developed DTG nano-

formulations.
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Author summary

In 2012, pre-exposure prophylaxis (PrEP) with Truvada was approved. It is considered

one of the ‘five pillars’ by UNAIDS to drastically reduce HIV transmission. However, Tru-

vada provides imperfect protection, is costly and individuals often fail to adhere to the

once-daily regimen. Next-generation PrEP compounds, including long-acting formula-

tions, are currently developed to improve PrEP. However, clinical trials using next-PrEP

often fail. Since they involve many (>1000) individuals and long durations this incurs

unacceptable costs, apart from individual tragedies. While animal- and ex vivo/in vitro
experiments poorly translate into human efficacy, predictive tools are urgently needed

that allow for PrEP candidate prioritisation. We developed an efficient simulation tool to

predict the prophylactic utility of arbitrary dosing regimen. After developing population

pharmacokinetic models for dolutegravir (DTG), we set out to predict its prophylactic

utility in PrEP, PrEP ‘on demand’ and post-exposure prophylaxis. We found that 50mg

DTG is non-inferior to Truvada in all aforementioned prophylaxis schemes. Moreover,

we determined concentrations-prophylaxis profiles, which can guide release kinetics of

currently developed DTG nano-formulations.

Introduction

HIV-1 continues to be one of the greatest public health challenges. While it is possible to sup-

press virus replication with antiretroviral combination treatment, the virus can persist in cellu-

lar and anatomical reservoirs for decades, precluding a cure [1–3]. Because of the inability to

cure HIV, preventing its transmission is of utmost importance. The 90-90-90 target formu-

lated by UNAIDS aim to end AIDS by 2030. An intermittent goal will be a drastic reduction of

new HIV infections: While approximately 2.1 million individuals became infected with HIV in

2015 [4], the intention is to reduce this number to 500,000 cases by 2020 and to fewer than

200,000 by 2030.

Currently, pre-exposure prophylaxis (PrEP) for high-risk individuals is one of the five ‘pil-

lars’ set by UNAIDS to achieve a drastic reduction in HIV infections. Of the available agents,

tenofovir and emtricitabine (Truvada) have been extensively studied and were approved by

the FDA and EMEA in 2012 and 2016 respectively. Most studies agree that Truvada can

potently prevent HIV infection, if individuals adhere to the once-daily regimen [5, 6]. How-

ever, major shortcomings of Truvada-based PrEP are its costs [7], the fact that it imperfectly

protects from infection, and the necessity for daily drug intake, which often leads to inade-

quate adherence. These deficits of Truvada-based PrEP may be overcome by next-generation

PrEP regimen, including more cost-efficient drugs, and drug formulations that require antivi-

ral injections only every few month (see [8] for an overview of the PrEP pipeline).

Quantifying prophylactic efficacy in the clinic is ethically problematic and extremely expen-

sive, since it requires to conduct large (N > 1000 individuals) trials over very long time spans

(years) to obtain statistically evaluable results. On the other hand, pre-clinical PrEP experi-

ments only allow to study certain aspects in isolation. While PrEP efficacy is the result of a

multivariate interplay of viral- and host factors there is a lack of translational tools to integrate

available knowledge and to rationalize which agents and dosing regimen to test clinically. Hav-

ing predictive models at hand that allow to rule out-, or prioritize certain regimen can avoid

putting individuals at harm and greatly reduce clinical failure rates and associated costs.
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Our intention was to develop a method that integrates pharmacokinetic and pharmacody-

namic (PK/PD), as well as viral characteristics to a priori assess the per contact prophylactic

efficacy of arbitrary PrEP strategies against HIV.

Recently, modelling approaches have been developed to predict the per-contact PrEP effi-

cacy [9, 10] by integrating various host and viral factors. Despite their advantages, these

approaches conventionally neglect the pharmacokinetic–pharmacodynamic characteristics

of HIV drugs and are therefore unable to simulate drug dosing, and dose frequency in order

to ascertain how PrEP can most effectively be deployed. We recently developed a novel

approach which fully integrates the pharmacology of nucleotide reverse transcriptase inhibi-

tors (NRTIs) [11]. This approach, however, approximates virus extinction by its elimination

probability during the first replication cycle. While this assumption is reasonable for moder-

ately potent prophylactic compounds (like all investigated NRTIs), it underestimates the

prophylactic efficacy of highly potent drugs and fails to predict efficacy in post-exposure pro-

phylaxis (PEP). We overcome the aforementioned limitations by building on recent develop-

ments for the simulation of stochastic processes [12], implementing a numerically exact

simulation approach to assess PrEP/PEP efficacy for time-varying drug concentrations (phar-

macokinetics). The benefit of such integrative framework is to elucidate the relative impor-

tance of the distinct pharmacological and viral factors, such as the on- and offset of

prophylactic protection, sensitivity to missed dosing events, -virus inoculum size and -timing

of virus exposure. In the current work, we combine population pharmacokinetics with the

novel stochastic simulation method to analyze different PrEP/PEP schedules with the sec-

ond-generation integrase inhibitor dolutegravir.

Methods

The initial replication events after exposure to HIV are highly stochastic. Typically, a low num-

ber of founder viruses is responsible for establishing infection [13–16] and the transmission

probability per sexual exposure [17, 18] is very low. While two types of stochastic noise are typ-

ically considered in biology, roughly categorized as internal- vs. external noise [19, 20], we

herein focused on the former. This assumes that the stochastic outcome of viral exposure

(infection/non-infection) can be explained by the order in which reaction occur. For example,

when a single virus comes into proximity of target cells, it may either be cleared or it may infect

the target cell which can trigger a systemic infection. Prophylactic drugs shift the balance

between these two events in favor of virus clearance. Stochastic dynamics of this type are

defined by a multivariate Poisson process. The evolution of the state probabilities given the ini-

tial state x0 is then described by the chemical master equation (CME). For each possible state xi
we have

d
dt
PðXt ¼ xijX0 ¼ x0Þ ¼

XK

k¼1

akðxi � nkÞ � PðXt ¼ xi � nkjX0 ¼ x0Þ

� akðxiÞ � PðXt ¼ xijX0 ¼ x0Þ;

for time t� 0, with Xt 2 N
s denoting the state of the system (the combination of the number

of viruses, infected cells and drug particles), where s denotes the overall number of variables

(‘species’). In the equation above, the index k runs over all reactions and ak, νk denote the reac-

tion propensity of the kth reaction and its stoichiometric change vector respectively. A practical

problem with the CME is that even for moderately sized systems (s small) the curse of
dimensionality is encountered and consequently the CME is intractable [21].
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Hybrid formulation

It has been shown that intrinsic stochastic fluctuations may be negligible in the so-called large

copy number regimen (when Xt>> 1) and consequently, an ODE approach that models con-

centrations of molecules Xt/O, suffices [22]. In the current work, we re-formulate the above

stated CME into a hybrid stochastic-deterministic (discrete-continuous) system Xt = (Yt; Zt),

where Yt denotes the discrete-stochastic and Zt denotes the continuous-deterministic part. In

our application, we view the antiviral pharmacokinetics (concentration time profile) as the

external dynamical environment Zt, which we will model in terms of a low-dimensional set of

ODEs (exemplified below). This is common practice in the pharmacometrics/systems pharma-

cology field and is supported by the fact that typically large quantities of drug molecules reach

the target site. The target site concentrations Dt� Zt affect reaction propensities of our internal

stochastic system, which models the stochastic events after exposure (viral replication and

clearance reactions). The internal system Yt represents the state of the viral compartments rep-

resented by the number of free viruses V, early stage infected T cells T1 and late infected T cells

T2, i.e Yt = [V, T1, T2,]T, exemplified below.

While this reduces the dimensionality, propensity functions of the stochastic sub-system

are subsequently time-dependent, i.e. the continuous-deterministic drug concentration-time

profile may affect reaction rates of the discrete-stochastic subsystem Yt on an infinitesimally

small time scale. We will tackle this problem algorithmically, enabling the numerically exact

estimation of prophylactic efficacy.

Prophylactic efficacy of a drug regimen

Our goal is to estimate the prophylactic efficacy φ of particular medication regimen SD. The

prophylactic efficacy denotes the reduction in infection probability per contact,

φðY0; SDÞ ¼ 1 �
1 � PEðY0jSDÞ
1 � PEðY0j⌀Þ

ðprophylactic efficacyÞ; ð1Þ

where PE(Y0|SD) and PE(Y0|⌀) denote the virus extinction probabilities for a particular pro-

phylactic regimen SD and in the absence of prophylactic drugs⌀ respectively. The extinction

probability is defined as

PEðY0Þ≔P Yt ¼
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for t!1 and where Y0 denotes the initial state of the stochastic viral dynamics subsystem. In

other words, the extinction probability is the probability that a stochastic trajectory eventually

reaches the absorbing state [0, 0, 0]T of the viral subsystem Y. Naturally, the infection probabil-

ity is the complement of the extinction probability, PI(Y0) = 1 − PE(Y0). The terms PE(Y0|SD),

PE(Y0|⌀) will be computed using a mathematical model of the viral dynamics that mechanisti-

cally considers the direct effects of antivirals on their respective target processes (outlined in a

related article [23]), as well as individual drug pharmacokinetics following particular prophy-

laxis regimen.

Viral dynamics (stochastic part)

We adopted the viral dynamics model described in [24, 25]. Long-lived and latently infected

cells are only implicitly considered (outlined at the end of the section), motivated by the
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observation that transmitted viruses are not macrophage-tropic [26, 27] and in line with

related modelling approaches [9, 10, 28–30]. Although this model is a coarse representation of

the molecular events happening during virus replication, it allows to accurately and mechanis-

tically describe the effect of all existing antiretroviral drug classes on viral replication, as dem-

onstrated in e.g. [31], and can be parameterized by in vitro and clinical data, Table 1. The

modelled viral replication cycle consists of free infectious viruses V, uninfected T-cells, early

infected T-cells (T1) and productively infected T-cells (T2). Early infected T-cells (T1) and pro-

ductively infected T-cells (T2) denote T-cells prior- and after proviral integration respectively,

where the latter produces virus progeny. During the onset of infection the number of viruses is

relatively low and the number of uninfected T-cells Tu is fairly unaffected by virus dynamics

[28, 32, 33]. We thus consider Tu = λT/δT to be constant over the course of simulations. The

dynamics of the stochastic viral replication model after virus exposure are then defined by six

reactions (the model is depicted in S1 Fig):

a1 ¼ ðCLþ CLT � TuÞ � Vt ðclearance of free virus; V ! �Þ ð3Þ

a2 ¼ ðdPIC þ dT1
Þ � T1;t ðclearance of early infected cell; T1 ! �Þ ð4Þ

a3 ¼ dT2
� T2 ;t ðclearance of late infected cell; T2 ! �Þ ð5Þ

a4 ¼ b � Tu � Vt ðinfection of a susceptible cell; V ! T1Þ ð6Þ

a5ðDtÞ ¼ ð1 � ZDðtÞÞ � k � T1 ;t ðproviral integration; T1 ! T2Þ ð7Þ

a6 ¼ NT � T2 ;t ðproduction of virus; T2 ! Vþ T2Þ; ð8Þ

with CLT ¼
1

rrev
� 1

� �
� b in eq (3), as outlined in [24] where ρrev = 0.5 denotes the probability

to successfully complete reverse transcription in the absence of inhibitors [34, 35]. Free viruses

are cleared by the immune system with a rate constant CL. Further, free viruses can be also

cleared during unsuccessful T-cell infection CLT through the destruction of essential viral

components of the reverse transcription-, or pre-integration complex [34, 35]. The term β rep-

resents the lumped rate of infection of T-cells, including the processes of virus attachment to

the cell, fusion and reverse transcription, leading to an early infected cell T1, before proviral

integration. The term k denotes the rate by which early infected T1 cells are transformed into

Table 1. Parameters used for the viral dynamics model. Excerpt from [24], except for CL(naive), which assumed that

virus clearance is smaller in virus-naive individuals compared to infected individuals, in line with [55, 87]. All parame-

ters refer to the absence of drug treatment⌀. All parameters in units [1/day]).

Parameter Value Reference

λT 2�109 [82]

dT; dT1
0.02 [83]

dT2
1 [84]

δPIC 0.35 [35, 85]

k 0.35 [35]

β 8�10−12 [86]

NT 670 [24, 83]

CL(naive) 2.3 [10, 28]

https://doi.org/10.1371/journal.pcbi.1006155.t001
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productively infected T2 cells, involving proviral integration and cellular reprogramming. The

term NT denotes the rate of production of infectious virus progeny by productively infected T2

cells. The terms dT1
< dT2

denote the rates of clearance of T1 and T2 cells respectively and δPIC

denotes the rate of intracellular destruction of the pre-integration complex. Parameters for the

viral model are summarized in Table 1 and a mechanistic derivation of the dynamics from first

principles is given in [24] (Supplementary Text therein). In this article, we study distinct pro-

phylactic schemes with the second-generation integrase inhibitor dolutegravir (DTG). Inte-

grase inhibitors act intracellularly by preventing proviral integration. In our virus dynamics

model (eqs (3)–(8)), this translates into a decrease in propensity function a5 by a factor

(1 − ηD). Notably, DTG is active in its adminstered form (does not require biotransformation)

and has physicochemical attributes that allow the unbound drug to rapidly cross the cellular

membrane. We modelled the direct effect of dolutegravir using the Emax-equation [36]

ZDðtÞ ¼
Dm

t

ICm
50
þ Dm

t

; ð9Þ

where Dt is the target site concentration of the drug at time t and the term IC50 and m denote

the drug concentration at which the targeted process is inhibited by 50% and a hill coefficient

[37] respectively. Note that the equation above couples the stochastic viral dynamics subsys-

tem Yt to the deterministic subsystem Zt, where the latter propagates the drug concentrations

Dt� Zt.

Pharmacodynamic parameters. The hill coefficient m and 50% inhibitory concentration

IC50 have been measured ex vivo using single-round infection assays in primary human

peripheral blood mononuclear cells, supplemented with 50% human serum [38]. However, the

measured IC50 has to be corrected for protein binding, since dolutegravir is highly protein

bound in human plasma (98.9%) which will be underestimated by the assay (which utilizes

50% human serum). This correction is in line with the widely accepted ‘free drug hypothesis’

[39] that states that the available concentrations at the target site (intracellular space) corre-

spond to the unbound moieties [40, 41]. Dolutegravir obeys physico-chemical characteristics

to enable the unbound drug to rapidly cross cellular membranes, generating an equilibrium

between the unbound drug on either side of the cellular membrane [42]. However, since the

unbound fraction fu,assay in the assay is different to the physiological unbound fraction fu,plasma,

the measured IC50 value needs to be adjusted/scaled. After protein adjustment, we obtain

IC50 = 89(CV = 25.3%) [nM] and m = 1.3(CV = 15.3%), see related article [23].

Dolutegravir pharmacokinetics (deterministic part)

We used non-linear mixed effects modelling techniques [43] to derive a descriptive pharmaco-

kinetic model that accurately captures the observed pharmacokinetic variability within- and

across different patients. In this framework, both a minimal structural model f(θi, �) is fitted

to clinical data, alongside with statistical models describing the distribution of pharmacoki-

netic parameters θ within the population, as well as the measurement- or unexplained noise.

Let Di;t be the measured plasma concentration of a drug in the ith individual at time point t.
The likelihood of that measurement is defined through

Di;t ¼ f ðyi; tÞ � ð1þ �i;tÞ þ ~� i;t ð10Þ

where f denotes the solution of the structural model (a low dimensional set of ordinary differ-

ential equations; see below) that corresponds to the measurement. The vector θi contains the

pharmacokinetic parameters for the ith individual. The variables �i, t and ~� i;t denote propor-

tional and additive error terms (measurement- or unexplained noise), which are typically
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assumed to be normal distributed, i.e. �i;t � N ð0; s2Þ and ~� i;t � N ð0; ~s2Þ. The prior probabil-

ity is typically assumed to be a multivariate log-normal distribution with

log yi ¼ log yþ ri; ð11Þ

where θ denotes the vector of mean population parameters (fixed effects) and ri is normal dis-

tributed, i.e. ri � N ð0;CÞ.
Parameter and model inference. We used dolutegravir concentration-time data from two

clinical studies. One study assessed 50mg once daily dolutegravir administered to 17 healthy

volunteers for 10 days and serial blood sampling performed up to 216 hours after the final dose

[44] (n = 12 female, n = 8 Caucasian). The second study was performed in 39 HIV-infected

patients (n = 2 female, n = 27 Caucasian) stable on efavirenz-based therapy (viral load<40 cop-

ies/mL), switched to dolutegravir (50mg once daily). Random, single blood samples were

drawn over the 24 hour dosing interval 1, 2, 3 and 4 weeks post-switch [45]. Median (range)

age, weight and BMI of all individuals were 47 years (26-68), 76 kg (51-105) and 26 kg/m2. All

data were modelled simultaneously and the first-order estimation (FOCE-I) method of NON-

MEM (v.7.3, ICON plc, Dublin, Ireland), interfaced with Pirana (v.2.9.0; www.pirana-software.

com) was used for parameter inference. One- and two compartment models were explored

with differences between hierarchical models assessed by statistical and graphical methods. The

minimal objective function value (OFV; equal to -2 log likelihood) was used as a goodness-of-

fit diagnostic with a decrease of at least 3.84 units corresponding to a statistically significant dif-

ference between nested models (p = 0.05, χ2 distribution, 1 degree of freedom). Standard errors

of the estimates were determined with the COVARIANCE option of NONMEM and individual

Bayesian parameter and concentration estimates by the POSTHOC option. Random effects

(inter-individual, inter-occasion variability) in model parameters were included if model fit was

improved (i.e. ΔOFV�-3.84 points). To describe residual variability, proportional, additive

and a combined proportional-additive error models were evaluated and the best fitting were

carried forward. The effect of residual efavirenz concentrations on dolutegravir clearance was

determined by estimating 5 separate fixed effects (CL/F values) for dolutegravir alone in healthy

volunteers (study 1) and for weeks, 1, 2, 3, 4, post-switch from efavirenz in HIV-infected

patients (study 2). Other covariates assessed in the model included weight, age, body mass

index (BMI), sex, ethnicity, HIV status, and food consumption within 3 hours of drug intake. A

forwards inclusion-backwards elimination method [46] was used to determine whether there

were any important associations between parameter estimates and covariates. Each covariate

was introduced separately and only retained in the model if inclusion produced a statistically

significant decrease in OFV of at least 3.84 units (p� 0.05, χ2 distribution, 1 degree of freedom)

and was biologically plausible. A backwards elimination step was carried out once all relevant

covariates were incorporated and covariates retained if removal from the model produced a sig-

nificant increase in OFV (> 10.83 points; p� 0.001, χ2 distribution, 1 degree of freedom).

Final PK model. The final model was a two-compartment model with oral absorption:

d
dt

Z1 ¼ � ka � Z1
ð12Þ

d
dt

D ¼
d
dt

Z2 ¼
ka � Z1

Vc=Fbio
�

CL=Fbio

Vc=Fbio
� Z2 �

Q=Fbio

Vc=Fbio
� Z2 þ

Q=Fbio

Vp=Fbio
� Z3 ð13Þ

d
dt

Z3 ¼
Q=Fbio

Vc=Fbio
� Z2 �

Q=Fbio

Vp=Fbio
� Z3; ð14Þ
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whereby Z1 and Z3 denote the amount of drug in the dosing compartment and the concentra-

tion of dolutegravir in the peripheral compartment respectively. The variable of interest is the

concentration in the blood plasma (central compartment), i.e. D = Z2. Dosing events were

modelled as impulse inputs, with

Z1;t ¼ Z1;t þ dosek; ð15Þ

whenever the current simulation time t coincided with a dosing event τk. In the equations

above, ka and CL/Fbio denote the uptake and bioavailability-adjusted drug clearance respec-

tively. The term Vc/Fbio and Vp/Fbio are the bioavailability-adjusted volume of the central and

peripheral compartment. The term Q/Fbio is the intercompartmental clearance rate adjusted

for bioavailability.

Numerical simulation of hybrid model

As mentioned before, direct computation of the extinction probabilities in eq (1) may not be

possible as Yt still contains a prohibitively large number of states. In the following, we will uti-

lize the results from a related article [23] in combination with the novel EXTRANDE algo-

rithm [12] to compute the extinction probabilities for time-varying drug effects, i.e. taking

drug pharmacokinetics into account.

We consider a0(Yt, Dt) = ∑k ak(Yt, Dt) to be the sum of the K reaction propensities changing

the internal stochastic system. Note that in the exact SSA [47], no external input exists and

therefore the propensities stay constant in between two reaction firings. In this case, the time

to the next reaction event is exponentially distributed with parameter a0. In our case a0(t)
changes between two stochastic reaction firings because of pharmacokinetic inputs. Solving

this problem requires to compute a0(t) by numerical integration each time after a stochastic

reaction has fired, which can be computationally expensive. Instead, in EXTRANDE, an upper

bound B for a0(t) is estimated and thinning techniques (rejection steps) are employed. For a

look-ahead time horizon L, the upper bound Bt+L is chosen, such that

BtþL � a0ðYtþu;DtþuÞ ð16Þ

holds for all u� L and assuming no stochastic reaction fires within the time interval t + L.

When L is fixed, it is possible to solve for Dt+L, since it is assumed that stochastic reactions do

not affect D. E.g. if the dynamics of D� Z are determined by a set of ordinary differential

equations, numerical integration from t to t + L enables to predict Dt+L, which in turn allows

to compute a0(Yt+u, Dt+u).

The internal stochastic system is then augmented with an extra reaction (a K+1th reaction),

whose firing does not change the state of the stochastic subsystem Y. The probability of firing

this extra reaction at time t + L is proportional to the ratio
BtþL � a0ðYtþu;DtþuÞ

BtþL
.

Obviously, it has to be guaranteed that eq (16) is true for the entire look-ahead time horizon

L. On the other hand when Bt+L is chosen to be too large, many extra reactions will be fired

(rejection/thinning step) and the algorithm becomes inefficient. A key to efficient simulation

with EXTRANDE is therefore a good choice of Bt+L, which in turn depends on the look-ahead

time horizon L.

Upper bound B and look-ahead horizon L. From equation eq (9) it is clear that (1 − ηD) 2

[0, 1] and consequently

a0ðYtþu;DtþuÞ � a0ðYt;⌀Þ; ð17Þ

for any time interval 0� u� τ before a stochastic reaction has fired where parameter⌀ denotes
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the absence of drugs. Consequently, we used B = a0(Yt,⌀) throughout the article as an upper

bound to meet condition a0(Yt+u, Dt+u)� B without the requirement to select a look-ahead

time horizon L.

Classification of trajectories. When using EXTRANDE to assess the PrEP/PEP efficacy,

we are particularly interested in classifying stochastic trajectories as extinction or infection
events. The virus dynamics model has an absorbing state Yt = [0, 0, 0]T corresponding to virus

extinction. Whenever trajectories hit this state we can stop the simulation. To stop the simula-

tion when trajectories move away from the extinction state is not a straightforward choice.

Given a user-defined threshold ε<< 1 we only consider stochastic states within an extinc-
tion simplex, e.g. states Y for which

PEðYt;DmaxðtÞÞ � ε ð18Þ

is true, i.e. extinction can occur with a probability greater ε. Simulations are consequently

stopped whenever PE(Yt, Dmax(t))< ε, where Dmax(t) = maxu2[t,1] Du denotes the maximum

achievable drug concentration in [t,1] to be pre-computed from a pharmacokinetic trajec-

tory. This criterium guarantees that the numerical error in classifying trajectories as infection

events stays below the user defined criteria ε<< 1.

In a related article [23], we derived analytical solutions for computing the extinction proba-

bility for any particular state of the virus dynamics system, under the assumption that the drug

concentrations D were constant (for computing the extinction simplex, we use D = Dmax(t)):

log
10
ðPEðY;DÞÞ ¼ V � log

10
ðPEðV̂ ;DÞÞþT1 � log10

ðPEðT̂1;DÞÞþT2 � log10
ðPEðT̂2;DÞÞ:

where PEðY0 ¼ V̂Þ, PEðY0 ¼ T̂1Þ and PEðY0 ¼ T̂2Þ denote the extinction probabilities when

only one virus, one early- or one productively infected cell was present, and V, T1 and T2

denote the number of viruses, early- and late infected cells. These terms can be further decom-

posed (see related article [23]) into

PEðY0 ¼ V̂ Þ ¼ min 1; 1 �
a4

a1 þ a4

�
a5ðDÞ

a2 þ a5ðDÞ
� 1 �

1

R0ðV;DÞ

� �� �

ð19Þ

PEðY0 ¼ T̂1Þ ¼ min 1; 1 �
a5ðDÞ

a2 þ a5ðDÞ
� 1 �

1

R0ðV;DÞ

� �� �

ð20Þ

PEðY0 ¼ T̂2Þ ¼ min 1;
1

R0ðV;DÞ

� �

; ð21Þ

where R0 V;Dð Þ ¼
a4

a1þa4
�

a5ðDÞ
a2þa5ðDÞ

�
a6

a3
is the reproductive number in the presence of drug D, i.e.

the expected number of viruses emerging from a single parent virus in one replication cycle.

The extinction simplex (eq (18)) then divides the entire state space of Y 2 N3 into two sets:

one where the extinction is possible (the probability of extinction exceeds ε) and one where

irreversible infection occurred. Consequently, we can stop simulating and classify a trajectory

as an ‘infection event’ whenever the trajectory leaves the extinction simplex. Moreover, the

extinction simplex is dynamically adapted through the simulations by adaptation of Dmax(t).
The effects of changing drug concentrations on the extinction simplex are illustrated in Fig 1

for a short course PrEP (‘PrEP on demand’) with dolutegravir in a virtual patient. The green

triangle highlights the extinction simplex without drugs. Obviously, the extinction simplex in

the absence of drugs is enclosed by the extinction simplices in presence of antivirals (i.e. viral
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extinction may still be possible in the presence of drugs when the viral population is substantial

as in post-exposure prophylaxis PEP). Fig 2 shows two exemplary trajectories for the coupled

pharmacokinetic-viral dynamic system, in case of low (5%) adherence to a 2mg oral dolutegra-

vir regimen. Panels A & B show the instantaneous drug efficacy η (panel A) and the corre-

sponding viral trajectory which is classified as an ‘infection event’ (panel B), whereas panels C

& D show an exemplary trajectory where virus elimination occurs.

Infection of long-lived cells. It has been proposed that long lived- and latently infected

cells denote a major barrier to the elimination of HIV and that they may be established early in

infection [48–50]. Thus, if any of these compartments become infected after viral exposure,

infection may be considered irreversible. During simulations we considered two parameters,

Fig 1. Adaptation of extinction simplex for pharmacokinetics. A: Exemplary DTG pharmacokinetics for 3days of 2mg oral DTG once

daily. The blue line represents DTG plasma concentrations. The dashed orange line represents the function Dmax(t), which for a particular t
returns the maximum DTG concentration achieved in any future time i.e Dmax(t) = max(D(u)) where u 2 [t,1). The black horizontal

dashed line marks the IC50 for DTG [38]. B: Instantaneous target-process inhibition (blue line) corresponding to the concentration-time

profile in A. The orange line is the target-process efficacy profile for Dmax(t). The black horizontal dashed line marks η = 50%. C: Extinction

simplex (viral infection state where the probability of viral extinction is greater than ε) corresponding to ZDmax
¼ 84:5%. D: The extinction

simplex corresponding to η = 50%. Panels C&D show the state space with three dimensions corresponding to number of free viruses, early-

infected T cells (T1) and late-stage infected T cells (T2). The color varies from bright yellow denoting certain extinction, to black denoting an

extinction probability less than 0.0001. The region enclosed by green lines is the extinction simplex in absence of antivirals.

https://doi.org/10.1371/journal.pcbi.1006155.g001
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pMja4
¼ 1:25 � 10� 4 and pLja5

¼ 8 � 10� 6 to assess whether a long-lived cell (e.g. macrophage)

had been infected or whether a latently infected cell emerged. These parameter choices accu-

rately reproduce viral decay kinetics during antiretroviral combination therapy, as shown in

[24, 25] and recapture estimated reservoir sizes during chronic infection [2, 48]. I.e., during

simulations, whenever reaction R4, or R5 fires, it is assessed whether a long lived- or latently

infected cell emerged.

The complete pseudo-code of the adapted EXTRANDE algorithm is presented S1 Text.

Fig 2. Examplary trajectories for time-varying drug effects. The left panels show an example of an infection event, whereas the right panels show an

example of viral extinction for chronic PrEP with 2mg DTG and 5% adherence. Panels A and C depict the instantaneous target-process inhibition profiles

and panels B and D depict the corresponding viral trajectories using the adapted EXTRANDE algorithm. Viral exposure occurs randomly during a 3 month

period and is sampled from the distribution parameterized in [11] (Figure 2 therein). A&C: The blue lines depict the instantaneous target-process inhibition

profiles ηD(t). The dashed red line denotes the maximum target-process inhibition ZDmax
ðtÞ. The leftmost grey vertical dashed lines mark the time of viral

exposure, whereas the rightmost lines marks the time point of either establishment of infection (panel A) or virus extinction (panel C). B&D: Stochastic

trajectories of viral compartments (orange: free viruses, green: early-infected cells T1, purple: late-infected T2 cells) for the time after virus exposure and

before virus infection/extinction. Stochastic simulations are stopped in panel B when the trajectories leave the extinction simplex and because of virus

extinction in panel D.

https://doi.org/10.1371/journal.pcbi.1006155.g002
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Simulation of pre- and post-exposure prophylaxis

Codes were written in MatLab R2016b (MathWorks, Natick, MA; v. 9.1, including optimiza-

tion, parallel computing and statistics toolboxes). Individual pharmacokinetic model parame-

ters for healthy individuals were drawn from the distributions defined by the parameter

estimates from the final dolutegravir population pharmacokinetic model (Table 2; NONMEM

$SIMULATION, n = 1000 individuals; eqs (12)–(14)). We then simulated individual pharma-

cokinetic profiles for the prophylactic schedule SD under consideration using ode15s in

MatLab. To simulate different adherence levels, a sequence of uniformly distributed random

numbers with ri � Uð0; 1Þ was drawn and the ith dose was missed if ri> adherence level. The

number of viruses to be inoculated were drawn from a previously parameterized distribution

that accurately resembles the relation between transmitter virus loads and recipient infection

probabilities [11]. In brief, we used a two-stage process: First, we sampled the viral load VL in

a potential transmitter. Earlier work [11] (Supplementary Note 4 therein) showed that the

virus load distribution in potential transmitter populations [51] follows a log-normal distribu-

tion, i.e. VL � logN ðm; sÞ with μ = 4.51 and σ = 0.98. Secondly, we used the virus load in the

transmitter to determine the number of viruses V0 entering a replication-competent compart-

ment in the virus-exposed individual using a binomial model: V0 � Bðf ðVLÞ; rhomoÞ with

rhomo = 3.71 × 10−3 for homosexual exposure [11], f(VL) = ||VLc||, where ||�|| is the next integer

function, and c = 0.389 [52, 53]. For PrEP simulations with different adherence levels, a time

of virus exposure was randomly drawn within a 3 month interval. The corresponding drug

concentrations at this time and the number of transmitted viruses reaching a target cell com-

partment were used as the initial states for EXTRANDE and simulated until stopping criteria

were satisfied, illustrated in Fig 2 for virus infection (panels A & B) and -elimination (panels

C & D). For ‘PrEP on demand’ simulations, the time of virus exposure was fixed as indicated

in the corresponding graphics. In case of PEP, virus was inoculated as stated above and the sto-

chastic viral dynamics were simulated in the absence of drugs until the time of PEP initiation

to determine the initial condition of the system and henceforth simulated until a stopping cri-

terium was reached.

In total, for each prophylactic strategy, 5000 simulations were run.

Results

Pharmacokinetics of oral dolutegravir

A total of 354 plasma concentration measurements from 56 individuals were used to build the

population pharmacokinetic (PK) model for dolutegravir (DTG). Healthy volunteers (N = 17)

Table 2. Pharmacokinetic parameter estimates. The table displays the estimated pharmacokinetic parameter esti-

mates for healthy individuals. Interindiviual variability (random effects) was included on drug clearance CL/Fbio and

the volume of distribution Vc/Fbio. These parameters were log-normal distributed as outlined in the Methods section,

eq (11), with coefficient of variation [%] CV ¼ 100 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es2
� 1

p
, where σ2 is the variance of the associated normal distri-

bution. A covariance of 11:3% ¼ 100 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es2

x;y � 1
p

between x = CL/Fbio and y = Vc/Fbio was estimated. The absorption

rate constant was fixed [88] to 2.24h−1. Residual variability (eq (10)) was described by a combined proportional-addi-

tive model for healthy volunteers [σ = 0.213 (37.2%) and ~s ¼ 0.0019 mg/L (40.9%), respectively] and a proportional

error model for HIV-infected patients [σ = 0.402 (24.2%)].

parameter value unit CV [%]

Vp/Fbio 0.73 L -

Q/Fbio 0.0082 L/h -

CL/Fbio 0.85 L/h 16.9

Vc/Fbio 17.7 L 16.4

https://doi.org/10.1371/journal.pcbi.1006155.t002
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contributed rich PK profiles with a total of 270 samples taken between 0 hours (pre-dose)

and 216 hours after a final DTG dose. In addition, eighty-four measurements, randomly

drawn between 1-25.75 hours post-dose were available from HIV patients week 1, 2, 3 and 4

weeks post-efavirenz switch. A two-compartment pharmacokinetic model best described the

data (Fig 1A) and was fitted in a Bayesian context to fully capture inter-individual pharmaco-

kinetic variability. Following multivariate analysis, allometric scaling (centered on 70kg) of

weight was considered as a fixed effect in the model. Different values of apparent oral clear-

ance (CL/Fbio) were estimated for DTG alone in healthy volunteers and in patients following

1, 2, 3 and 4 weeks post-treatment switch. Residual variability was described by a combined

proportional-additive model for healthy volunteers and a proportional error model for HIV-

infected patients. All parameter estimates for healthy volunteers are displayed in Table 2.

The model was used to generate PK parameters of virtual patients populations, whose PK-

profiles are summarized in Fig 3B–3D alongside observed DTG concentrations, Fig 3C

and 3D.

As can be seen in Fig 3B, dolutegravir is rapidly absorbed after oral administration and

maximal concentrations are achieved after tmax = 1.58 hours (population 5–95% range 1.53–

1.63). Pharmacokinetics reach a steady state after about 4 doses. During steady state, mini-

mum- (pre-dose) and maximum concentrations were Cmin = 2918nM (1916–4336) and

Cmax = 8471nM (6353–11331) for 50mg oral DTG and the half life of the drug was 14.5h (5–

95% range 13.5–15.9).

Prophylactic utility of oral dolutegravir

Fig 4A shows the relation between the plasma concentration of DTG and its prophylactic effi-

cacy after homosexual virus exposure. For these simulations, the number of viruses reaching a

replication-competent compartment after homosexual contact were sampled from a previ-

ously parameterized virus exposure model [11] (Fig.2 and Supplementary Note 4 therein). The

estimated concentration ranges achieved at steady state for 2-, 10- and 50mg oral DTG once

daily were 117–339, 583–1694 and 2918–8471nM respectively as indicated on the y-axis of Fig

4A. Within this concentration range, the median prophylactic efficacy for once daily 2mg ran-

ged from 43.6 to 75.7%. For 10mg, efficacies ranged from 87.1 to 97.5%, and for 50mg almost

complete (99.5 to 100%) protection was achieved. The estimated concentrations to prevent 50-

and 90% infections, EC50ðV̂Þ and EC90ðV̂Þ, were 145.18 and 722.23nM respectively.

Sensitivity to incomplete medication adherence

During pre-exposure prophylaxis, medication adherence may be incomplete. Fig 4B displays

the prophylactic efficacy of once daily 50mg, 10mg and 2mg oral dolutegravir, considering

varying levels of adherence (25-, 50-, 75-, 95- and 100% of doses taken). Viral challenges

were simulated to randomly take place during a 3 month interval with inoculum sizes drawn

from a previously parameterized distribution [11], see Fig 2 for two examples. The mean

predicted prophylactic efficacies for 50mg with 25-, 50-, 75-, 95- and 100% adherence were

60% (95% confidence bounds: 55.15–64.84), 85.54% (82.58–88.50), 96.63% (95.19–98.07),

98.88% (98.04–99.71) and 99.36% (98.73–99.99), respectively. Notably, the prophylactic effi-

cacy of 50mg oral DTG becomes saturated, and exceeds 95%, if at least 75% of the pills were

taken. Conversely, 2mg and 10mg oral dolutegravir allow for considerable residual infection

events and 2mg oral dolutegravir efficacy increases almost linear with increasing adherence

levels.

Stochastic framework predicts prophylactic efficacy of dolutegravir against HIV

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006155 June 14, 2018 13 / 25

https://doi.org/10.1371/journal.pcbi.1006155


PrEP on demand/event-based dosing

‘PrEP on demand’ denotes a short-term pre-exposure prophylaxis, initiated only a few hours

before a potential viral exposure. This strategy has recently been evaluated in the IPERGAY

study using Truvada [54]. We simulated a dosing scheme similar to the IPERGAY protocol

[54]: An individual at risk initiates PrEP only a few hours before a potential viral exposure and

takes two consecutive doses 24 and 48hours after the first dose. Fig 4C depicts the predicted

prophylactic efficacy of DTG when taken ‘on demand’. Population pharmacokinetic profiles

for ‘PrEP on demand’ using 50mg are depicted in Fig 3A. The mean prophylactic efficacies for

Fig 3. Population pharmacokinetics of dolutegravir (DTG). A: Pharmacokinetic model. Concentrations within the central

compartment with bioavailability-adjusted volume Vc/F correspond to measured plasma concentrations of DTG (indicated by the

blue pin). Parameters ka, Q/Fbio and CL/Fbio denote the uptake and bioavailability-adjusted inter-compartimental and drug

clearance rate respectively and Vp/Fbio denotes the bioavailability adjusted volume of the peripheral compartment (which

summarizes all ‘deep’ compartments, which are not in rapid exchange with the plasma). B: Predicted plasma concentration time

profiles of dolutegravir (DTG) for the first four days after initiation of a once daily 50mg oral regimen (N = 300 virtual patients).

The red line depicts the median predicted concentrations, whereas the dark- and light grey areas present the quartile range and

5–95% range respectively. Predicted (red line, grey areas) and measured plasma concentrations during 24h after drug intake in

steady state (panel C) and after cessation of drug intake (panel D). Black circles and thin dashed lines represent DTG plasma

concentration profiles in healthy volunteers (n = 17 concentration time profiles, 270 data points in total), whereas yellow circles,

purple squares, grey diamonds and cyan triangles are DTG plasma concentration measurements in HIV patients (n = 39)

observed 1, 2, 3 and 4 weeks after switching from efavirenz-based therapy to dolutegravir. Altogether, 354 plasma concentration

measurements from 56 individuals are depicted.

https://doi.org/10.1371/journal.pcbi.1006155.g003
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50mg varied, depending on the timing of the first dose with respect to viral exposure, between

78.63–83.93% (95% confidence bounds: 75.05–87.05), for 10mg between 64.49–73.01%

(59.92–77.02) and for 2mg it was 36.86–46.34% (30.87–51.90). The prophylactic efficacy

decreased with decreasing dose and also with increasing time difference between the initiation

of ‘PrEP on demand’ and viral exposure, clearly visible for 50 and 10mg. This trend is opposite

to the trend for ‘PrEP on demand’ with Truvada [11]. A reason for this is the fast uptake of

Fig 4. Efficacy of different DTG prophylactic regimen. A: Prophylactic utility of chronically administered oral DTG regimen (homosexual contact [11]).

The red-, green and blue dashed boxes mark the considered concentration ranges of DTG [Cmin (pre-dose), Cmax] achieved with 50, 10 and 2mg once

daily (OD) oral dosing. The left pointing arrows at the y-axis mark the respective prophylactic efficacy ranges. B: Prophylactic efficacy of chronically

adminstered oral DTG regimen with varying adherence levels. The red-, green- and blue lines denote mean prophylactic efficacy for a 50mg, 10mg and

2mg oral DTG regimen. Errorbars depict the 95% confidence bounds for the ensemble estimate, computed using Greenwoods formula. C: Prophylactic

efficacy of DTG for ‘PrEP on demand’. Only three doses of oral DTG were ingested at 0, 24 and 48 hours. Homosexual viral exposure occurred within the

first dosing interval at either 1, 3, 6, 12, 18 or 23 hours after initiating ‘PrEP on demand’. The red, green and blue lines represent the mean prophylactic

efficacy for ‘PrEP on demand’ using 50-, 10 or 2mg respectively, where error bars denote the 95% confidence bounds for the ensemble estimate, computed

using Greenwoods formula. D: Prophylactic efficacy for ‘post exposure prophylaxis’ (PEP) with 50mg DTG for various durations of PEP (y-axis; 3, 5, 7 and

9 days) and delayed initiation of PEP after homosexual viral exposure (x-axis; 2, 4, 6, 12 and 24 hours). Error bars mark the 95% confidence bounds

computed using Greenwoods formula.

https://doi.org/10.1371/journal.pcbi.1006155.g004
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systemic DTG (compare Fig 4B), whereas the Truvada’s active components tenofovir diphos-

phate (TFV-DP) and emtricitabine triphosphate (FTC-TP) require intracellular phosphoryla-

tion after cellular uptake of the parent compound, which delays the time until maximal

concentrations are achieved at the target site [31, 55]. Since DTG does not need to undergo

any chemical modification, and according to ‘free drug hypothesis’ the unbound intracellular

concentration largely reflects the unbound plasma concentration, implying that the drug rap-

idly reaches the target site.

Post-exposure prophylaxis (PEP)

Lastly, we wanted to assess the efficacy of 50mg oral DTG in preventing infection when taken

as post-exposure prophylaxis (PEP). We assessed the prophylactic efficacy with regard to dif-

ferent durations of PEP and with regard to the timing of initiation after virus exposure in Fig

4D. Fig 4D indicates that 50mg oral DTG can effectively prevent infection (> 80%) when initi-

ated shortly (within 6 hours) after exposure and when continued for as long as possible. The

graphics indicate that the efficacy starts to drop when PEP is initiated later than 6 hours and

when it is taken shorter than 7 days. Also, our simulations suggest that initiating the prophy-

laxis earlier has a more pronounced effect than prolonging PEP, arguing for the immediate

start of PEP in case of known- or suspected HIV exposure.

Comparison with Truvada

We previously estimated that once daily PrEP with Truvada provides� 96% protection in

fully adherent individuals [11]. While it is difficult to quantify PrEP adherence clinically [56], a

surrogate measure is often calculated based on the percentage of individuals with detectable

drug. Corresponding clinical efficacy estimates in apparently highly adherent individuals were

86-100% in the IPERGAY study [57], 58-96% in the PROUD study [6] and 96% in the Partners

PrEP OLE study. In comparison, we predicted almost complete (99-100%) protection when

50mg DTG was taken once daily for prophylaxis. The VOICE [58] and FEM-PrEP [59] studies

indicated that Truvada may not prevent infection in poorly adherent individuals, i.e. if� 30%

of individuals had detectable drug. In comparison, with 25% adherence to once daily 50mg

DTG, we estimated about 60% protection and over 85% protection if at least half the drugs

were taken. For ‘PrEP on demand’ with Truvada, we recently estimated [11] that about 74–

92% infections can be averted, depending on the time of viral exposure relative to the initiation

of Truvada dosing. The corresponding efficacy estimate in the IPERGAY trial was 86% [54], in

line with our previous work. Herein, we predicted that ‘on demand’ PrEP with 50mg DTG is

non-inferior to Truvada, providing 78.63–83.93% protection. Lastly, while PEP with Truvada

is not recommended due to the slow intracellular accumulation of pharmacologically active

NRTI-triphosphates, PEP with 50mg DTG can prevent about 80% infections when initiated

no later than 6hours post exposure. In summary, our simulations indicate that prophylaxis

with 50mg DTG is non-inferior to Truvada and that it may outperform Truvada when individ-

uals’ medication adherence substantially deviates from a once daily PrEP protocol, as in the

case of poor adherence and post-exposure prophylaxis.

Discussion

While pre-exposure prophylaxis with Truvada can prevent sexual HIV-1 transmission, it has

severe limitations that are to be overcome by next-generation PrEP regimen [8]. However,

drug candidate selection for next-generation PrEP and selection of administration schemes in

clinical trials are prone to high failure rates. One reason is the poor translatability of animal-

and ex vivo/in vitro experiments, whereas the statistical requirement of large sample sizes

Stochastic framework predicts prophylactic efficacy of dolutegravir against HIV

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006155 June 14, 2018 16 / 25

https://doi.org/10.1371/journal.pcbi.1006155


(N> 1000 individuals) and long trial durations to detect prophylactic efficacy clinically leads

to exorbitant costs. Thus, there is an unmet need for tools to a priori assess the utility-, select

and prioritise next generation PrEP candidates for human trials.

Our intent was to develop a method that integrates pharmacokinetic and pharmacody-

namic (PK/PD), as well as viral characteristics (inoculum size, timing of exposure) to a priori
assess prophylactic strategies against HIV. Such integrative framework allows for the intelli-

gent design of once-daily, episodic PrEP, as well as simulating the on- and offset of event-

driven PrEP [54] or long-acting injectable PrEP formulations [60–62]. Moreover, it allows to

assess how stable a prophylaxis is when individuals poorly adhere to the planned prophylaxis

scheme, i.e. when individuals miss dosing events or start to take the drugs shortly before- or

only after exposure to HIV. The use of population pharmacokinetic models allows for an accu-

rate description of the observed pharmacokinetic variability within- and across patients, which

can be used to assess the effectiveness of PrEP coverage in metabolically diverse population

(Figs 3 and 4). While the attributes which make any compound favourable in the clinic extend

beyond PK/PD, our approach is particularly useful to rule out- or prioritize PrEP candidates

and/or strategies for further clinical investigation.

To enable this ambitious goal we had to develop the theoretical basis that would enable us

to accurately predict infection/extinction events for any arbitrary prophylaxis dosing regimen.

The theoretical context is to compute solutions of the chemical master equation (CME), which

is intractable due to the curse of dimension. Most naturally, instead of directly solving the

CME, it is possible to sample trajectories using Monte Carlo techniques such as the stochastic

simulation algorithm (SSA) [47] and to empirically reconstruct PðXt ¼ xiÞ from the trajecto-

ries. However, it is not clear when to classify a trajectory as an infection event. Moreover, sto-

chastic simulations become inefficient when reaction propensities are high, which is typically

encountered in a large copy number regimen, e.g. when Xt>> 1. To solve the latter issue

(large copy number regimen), a number of hybrid methods have been proposed that partition

a system X = (Y, Z) into species Y that are represented by a discrete-stochastic (CME) model

and species Z that are approximated by their concentrations [63, 64]. Since Z then evolves on

an infinitesimally small time scale, a natural consequence of this partitioning is that stochastic

propensity functions a(Yt, Zt) evolve between two stochastic reaction firings (t, t + τ). Thus,

numerically exact computation requires to solve an integration problem to compute a(Yt,

Zt+u). In sampling-based methods, i.e. the integral-based methods employed in [25, 55], fre-

quent initialization of numerical integrators can become a major computational burden (i.e. τ
small). Direct hybrid methods [65–67] overcome this problem, however these methods still

require to directly solve the CME part, which can be prohibitively large (involving thousands

of states), limiting their applicability. In S2 Fig we show a comparison of simulations results

obtained by integral-based (e.g. as used in [25, 55]) sampling methods vs. the EXTRANDE

method, as well as their respective run times. As expected, the results are identical, while the

simulation time is lower for EXTRANDE.

The method we are using is the recently developed EXTRANDE (extra reaction algorithm

for networks in dynamic environment) method [12]. The EXTRANDE approach is based on a

rejection, or thinning and allows for the numerically exact simulation of intrinsically stochastic

kinetics embedded in a dynamical environment, i.e. the stochastic sub-system Y may consti-

tute time-dependent propensities that are affected by the dynamic environment Z. We adapted

EXTRANDE to allow the numerically exact prediction of infection/virus clearance in the con-

text of time-varying drug inhibition. The key adaptation was to define proper stopping criteria

that classify trajectories as infection events. To this end, utilizing results from a related article

[23], we were able to compute and dynamically update an extinction simplex (eq (18)), i.e. a
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part of the state space in which extinction can occur, see Fig 1. Whenever a trajectory leaves

the extinction simplex, it is safe to classify it as an infection event and to stop the simulation.

Classifying trajectories as infection events is not a straightforward choice: Using arbitrary

thresholds Ytr = [Vt = c0, T1,t = c1, T2,t = c2]T can significantly distort predictions (e.g. ‘PrEP

efficacy’) or increase computational run-time: While too small thresholds overestimate the

number of infection events, large thresholds increase the computational run-time unnecessar-

ily, since stochastic simulations become very inefficient when Y>> 1. Furthermore, there is

no control- or knowledge of the numerical error made (the probability to falsely classify a tra-

jectory as an infection event). Using the extinction simplex method proposed herein, it is

guaranteed that the probability to falsely classify a trajectory stays below a user-defined thresh-

old ε<< 1. Moreover, the algorithmic run-time is optimal for providing this user-defined

precision.

Particularly during ‘PrEP on demand’ or ‘PEP’ simulations, dynamic adaptation of the

extinction simplex can be algorithmically harnessed: Note that there is a positive relation

between the size of the extinction simplex and the drug concentration D (compare Fig 1). After

the last dosing events in ‘PrEP on demand’ or ‘PEP’ simulations the size of the extinction sim-

plex shrinks as the drug concentration tapers, making it more likely that stopping criteria are

met, which minimizes runtime.

We used our framework to assess the utility of dolutegravir (DTG), which may be suitable

for prophylaxis, since it has a good safety profile [68], a high resistance barrier [69] and a

long half life in the blood plasma. Foremost, utilizing in vitro and in vivo parameters in

our mathematical framework, we estimated that concentrations of EC50ðV̂Þ ¼ 145:18 and

EC90ðV̂Þ ¼ 722:23nM prevent 50- and 90% infections respectively. These concentrations

can guide dosing and release kinetics of nanoformulated long-acting dolutegravir, which is

currently in preclinical development [62]. Moreover, as soon as human pharmacokinetic

data is available, our framework can easily be adapted to predict the PrEP utility of the long-

acting formulation (by updating the pharmacokinetic model). As an example, we focussed

on oral DTG herein, for which we had sufficient pharmacokinetic data to build a population

PK model. Combining this model with the EXTRANDE framework, allowed to assess differ-

ent prophylactic strategies: Overall, our simulations suggested that oral 50mg OD DTG may

have a potential for PrEP with an estimated efficacy of 99 to 100% (perfect adherence). For

comparison, we previously estimated that Truvada may prevent 96% of infections when

taken once daily (perfect adherence) [11]. Our model suggests that DTG’s protective efficacy

remains high (> 80%) even at adherence levels as low as 50%. This apparent forgiveness to

poor adherence is due to DTG’s prophylactic potency rather than its halflife: I.e. if most

DTG doses are taken, concentrations ranges are achieved where the concentration-prophy-

laxis profile is saturating (compare Fig 4A). Consequently, concentration changes do not

proportionally translate into changes in prophylactic efficacy. In event-driven PrEP, we pre-

dicted that prophylactic efficacy reflects the drug profile in the blood plasma (compare Fig

3), which is characterized by a rapid absorption (tmax � 1.58 [h]) and slow elimination. This

is in contrast to tenofovir-emtricitabine (Truvada) whose activity is not reflected by their

plasma levels, since these drugs require conversion to intracellular diphosphates [31, 55] to

exert their antiviral activity, delaying the overall onset of activity. The main advantage of

DTG over Truvada is in the context of post-exposure prophylaxis (PEP), where we predicted

that it can potently prevent infection if initiated no later than 6hours post-exposure and

taken for at least 5 days. We do not suggest to use single drug PEP with DTG; the sole pur-

pose was to determine whether DTG would be effective, if individuals fail to take it before
virus exposure. This kind of assessment allows to quantify the risks of prophylaxis in
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situations where the regimen is not taken as intended and moreover provides a scientific

basis to include it in PEP multi-drug combinations.

Our model has several limitations, but also a number of important advantages. Our simula-

tions do not take into account drug concentrations at the site of mucosal exposure (e.g. cervix,

rectum) [60, 70]. These concentrations have, however, not been validated as targets for suc-

cessful prevention or treatment, whereas data exist (albeit limited) for plasma drug concentra-

tions. Instead, we modelled based on unbound concentrations, in line with the widely accepted

‘free drug hypothesis’, stating that unbound concentrations at the target site are responsible

for pharmacological action. For drugs highly bound to plasma protein (> 90%), naturally

since plasma protein concentrations are lower in tissues other than plasma, their total concen-

trations at sites other than the plasma are magnitudes lower [70]. Strikingly, however, the

unbound plasma concentrations coincide with the unbound tissue concentrations [71],

strongly arguing for the validity of the ‘free drug hypothesis’ [40, 41]. Therefore, throughout

the work, we assumed, according to the ‘free drug hypothesis’ [39] that the unbound concen-

trations in plasma and at the target site coincide. Note that dolutegravir is highly lipophilic

(logP� 2), enabling the unbound drug to rapidly cross cellular membranes, generating an

equilibrium between the unbound drug on either side of the cellular membrane [42].

We estimated the probability of virus clearance (and the prophylactic efficacy φ) as a func-

tion of the number of viruses ultimately reaching a target cell environment after sexual expo-

sure, and not as a function of mucosal exposure. The utilized virus exposure model [11] is

calibrated to reflect the per-contact infection risks for typical transmitter virus loads and differ-

ent routes of sexual exposure exposure. However, it should be noted that in an accompanying

article [23], we also observed that increasing the inoculum size decreases the prophylactic effi-

cacy, i.e. estimates of prophylactic efficacy depend on the route of transmission: For example,

if exposure to HIV occurs via blood transfusion (large inoculum size), most prophylactic

drugs may fail to offer protection.

Our framework can be adapted or developed in a number of ways. The separate impact of

treatment as prevention [72] (reduction of donor virus load to decrease contagiousness) versus

prophylactic efficacy in the recipient individual can be simulated by calibrating the virus inoc-

ulum distribution [11]. The effect of PrEP on resistance transmission from a donor to a recipi-

ent can be incorporated in the framework by increasing IC50 in eq (9) (fold resistance) and

possibly reducing certain reaction constants (fitness deficits). Likewise, the effects of PrEP on

resistance emergence can be considered. However, during the early events after virus exposure

(when infection can still be averted), the population size may be too small for resistance to

appear de novo in the exposed individual. For example, a particular point mutation appears

with probability 1 − (1 − μ)n, where μ� 2.2 � 10−5 [73] is the per base mutation rate of HIV per

cell infection (= reverse transcription event) and n the number of cell infection events. Accord-

ing to these numbers, it requires� 30000 cells to be infected for resistance to arise with 50%

probability. Considering these numbers, a likely scenario for de novo resistance to appear is

when PrEP had not been taken at the time of exposure, such that the infection expanded expo-

nentially and a resistant mutant may have been generated at random. When PrEP is (re-)initi-

ated at some later time it could provide the necessary pressure to select out the resistant type

from the quasispecies population. Modelling these events is out of the scope of the recent

work, as it requires distinct (and more coarse) simulation approaches, e.g. [25, 74].

It is well known that the establishment of a latent reservoir is the major barrier to viral

extinction during treatment [49] and this reservoir may be established as early as 3 days post

infection [48, 50]. We considered infection of long lived cells during our simulations, as out-

lined in the Methods section. I.e., whenever long-lived cells became infected during simula-

tions, viral extinction was considered infeasible. Notably, there are two sources: one with a half
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life of� 14 days is responsible for the second phase of viral decay that can be observed in

infected patients on combination treatment [75, 76]. This reservoir has been attributed to

infected macrophages [75, 77]. Based on the mentioned half life of this reservoir, it would

require T xð Þ ¼ � lnð1� xÞ
lnð2Þ=t1=2

days to eliminate a single cell with probability x under complete virus

inhibition, e.g.� 45 days to eliminate a single infected macrophage with 90% probability

(x = 0.9) and over 90 days to eliminate this reservoir with 99% probability. Latent infected T

cells decline even slower, with a half life of� 6-44 month [78–80]. This reservoir is partly

responsible for the third phase of ‘decay’ and is assumed to prevent HIV cure during effective

combination treatment.

In summary, we have developed an innovative modelling approach to a priori assess pro-

phylactic roll-out strategies by fully integrating individual PK/PD profiles and viral dynamics

into a hybrid stochastic-deterministic framework. We used this framework to assess the pro-

phylactic efficacy of the second-generation integrase inhibitor dolutegravir with respect to

poor adherence, in event-driven prophylaxis and post-exposure prophylaxis. Overall our simu-

lations showed that oral prophylaxis with 50mg DTG is non-inferior to Truvada and has pro-

found advantages with respect to post-exposure prophylaxis. Moreover, we predicted that

concentrations above EC90 = 722.23nM can prevent> 90% infections after sexual exposure.

These target concentrations can guide loading doses for novel long-acting nanoformulations

of DTG [62]. By adapting the pharmacokinetics model, the framework can easily be used to

predict the prophylactic utility of other candidate drugs currently under development, such as

oral maraviroc (MVC) [81], and raltegravir (RAL) long-acting injectable rilpivirine [60] or

cabotegravir [61], or it may be adapted to predict vaccine efficacy.

Supporting information

S1 Fig. Schematic of the HIV replication cycle and mechanism of interference by dolute-

gravir. The viral dynamics model (adapted from [24, 25]) consists of free infectious viruses V,

early infected T-cells (T1), productively infected T-cells (T2) and uninfected T-cells Tu = const..
Early infected T-cells (T1) and productively infected T-cells (T2) denote T-cells prior- and after

proviral integration respectively, where the latter produces virus progeny. Free viruses are

cleared by the immune system with a rate constant CL. Further, free viruses can be also cleared

during unsuccessful T-cell infection CLT through the destruction of essential viral components

of the reverse transcription-, or pre-integration complex [34, 35]. The term β represents the

lumped rate of infection of T-cells, including the processes of virus attachment to the cell,

fusion and reverse transcription, leading to an early infected cell T1, before proviral integra-

tion. The term k denotes the rate by which early infected T1 cells are transformed into produc-

tively infected T2 cells, involving proviral integration and cellular reprogramming. The term

NT denotes the rate of production of infectious virus progeny by productively infected T2 cells.

The terms dT1
< dT2

denote the rates of clearance of T1 and T2 cells respectively and δPIC

denotes the rate of intracellular destruction of the pre-integration complex. Parameters are

summarized in Table 1. The second-generation integrase inhibitor dolutegravir (DTG) pre-

vents proviral integration and consequently decreases k by a factor (1 − ηD). Long-lived and

latently infected cells are implicitly considered in the model, i.e. the parameters pMja4
and pLja5

denote the conditional probabilities that a long lived- or a latent cell, which are a barrier to

viral eradication, become infected. These rare events define algorithmic stopping criteria (irre-

versible infection) when modelling complex prophylactic regimen, e.g. long-term pre-expo-

sure prophylaxis with inadequate adherence. DTG: dolutegravir.

(EPS)
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S2 Fig. Comparison of EXTRANDE (green) and integral-based hybrid stochastic-deter-

ministic simulation (red). A: Prophylactic efficacy for ‘post exposure prophylaxis’ (PEP) with

50mg DTG for various durations of PEP (x-axis; 3, 5, 7 and 9 days) and when initiated 24

hours after homosexual viral exposure. Error bars mark the 5-95% range computed using

Greenwoods formula. B: Corresponding simulation run times on an intel i7 core with 2.5Ghz

and 16 GB RAM. C: Simulation run times for the subset of simulations where infection

occurred. Median (25-75 quartile ranges) runtime (sec) for 3 days PEP: 8.524 (2.4–20.5) vs.

10.548 (2.4–26.1); 5 days PEP: 10.0 (2.8–25.9) vs. 23.0 (6.8–48.1); 7 days PEP: 17.4 (5.3–35.4)

vs. 25.5 (10.1–57.4) and 9 days PEP: 26.1 (7.6–57.3) vs. 34.1 (12.0–82.3).

(EPS)

S1 Text. The supplementary text contains a complete pseudo-code for the adapted

EXTRANDE algorithm used for simulating initial viral dynamics during prophylaxis.

(PDF)

Acknowledgments

S.D, M.v.K and L.D. acknowledge fruitful communications with Akil Jackson.

Author Contributions

Conceptualization: Sulav Duwal, Max von Kleist.

Formal analysis: Sulav Duwal, Laura Dickinson, Saye Khoo, Max von Kleist.

Funding acquisition: Max von Kleist.

Investigation: Sulav Duwal, Laura Dickinson, Max von Kleist.

Methodology: Sulav Duwal, Laura Dickinson, Max von Kleist.

Project administration: Max von Kleist.

Supervision: Saye Khoo, Max von Kleist.

Visualization: Sulav Duwal.

Writing – original draft: Sulav Duwal, Laura Dickinson, Saye Khoo, Max von Kleist.

References
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