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Abstract

Microbes may maximize the number of daughter cells per time or per amount of nutrients

consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or

substrate-efficient metabolic pathways. In reality, fast growth is often associated with waste-

ful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth

rate and biomass yield has been proposed to explain this. We studied growth rate/yield

trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM)

and by assuming that the growth rate depends directly on the enzyme investment per rate of

biomass production. In a comprehensive mathematical model of core metabolism in E. coli,

we screened all elementary flux modes leading to cell synthesis, characterized them by the

growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto

front. By varying the model parameters, we found that the rate/yield trade-off is not univer-

sal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off

emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3

times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict

optimal metabolic states and growth rates under varying nutrient levels, perturbations of

enzyme parameters, and single or multiple gene knockouts.

Author summary

When cells compete for nutrients, those that grow faster and produce more offspring per

time are favored by natural selection. In contrast, when cells need to maximize the cell

number at a limited nutrient supply, fast growth does not matter and an efficient use of

nutrients (i.e. high biomass yield) is essential. This raises a basic question about
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metabolism: can cells achieve high growth rates and yields simultaneously, or is there a

conflict between the two goals? Using a new modeling method called Enzymatic Flux

Cost Minimization (EFCM), we predict cellular growth rates and find that growth rate/

yield trade-offs and the ensuing preference for enzyme-efficient or substrate-efficient met-

abolic pathways are not universal, but depend on growth conditions such as external glu-

cose and oxygen concentrations.

Introduction

Metabolic networks are shaped by evolution. In well-mixed, nutrient-rich environments, fast-

growing bacteria are favored by natural selection. Such environments are commonly studied

in laboratory settings, but natural environments are more diverse. In isolated ecological niches

with limited resources, it is the total number of offspring cells, rather than fast growth, that

determines evolutionary success. This puts a selection pressure on biomass yield (biomass pro-

duced per amount of the limiting nutrient, e.g. glucose) rather than on growth rate (biomass

produced per time and per cell biomass).

Mechanistically, growth rate and yield might be expected to go hand in hand. It seems logi-

cal that a cell with a higher yield—i.e. one that can produce offspring from a smaller amount of

nutrients—would also produce a larger number of offspring per time. However, in experi-

ments we observe exactly the opposite; many fast-growing cells employ low-yield metabolic

pathways (e.g. yeast cells (Crabtree effect) and cancer cells (Warburg effect) [1]), and also

many bacteria display a wasteful respiro-fermentative overflow metabolism and still attain

high growth rates. Pure respiratory growth would give rise to a higher biomass yield per mole

of glucose, but to lower growth rates.

Since yield-inefficient metabolic strategies are widely observed, under various circum-

stances and in evolutionarily unrelated organisms, it has been suggested that growth rate and

yield may be in conflict for physicochemical reasons. During evolution, such a conflict may

lead to “tragedy-of-the-commons” situations in which yield-inefficient microbes gain an evo-

lutionary advantage by over-exploiting shared resources [2–4]. The hypothesis of a general

trade-off is supported by simple cell models in which high-yield pathways display lower ther-

modynamic forces or higher enzyme costs [5–7].

The rate/yield trade-off has been tested by lab-evolution experiments with fast-growing

microorganisms, with varying levels of success. Growth rate and yield have been compared

between different wild-type and evolved microbial strains [8–11], but most studies found poor

correlations between growth rate and yield. Novak et al. [9] found a negative correlation within

evolved E. coli populations, indicating a rate/yield trade-off. A rare example of bacteria evolv-

ing for high yield in the laboratory was in the work of Bachmann et al. [12]. In their protocol,

cells grow in separate droplets in a medium-in-oil suspension, simulating a fragmented envi-

ronment, and offspring cells are mixed when the nutrients in the droplets have been depleted,

and then resuspended. This creates a strong selection pressure for maximizing biomass yield.

Indeed, the strains evolved towards higher yields at the expense of their growth rate, again

indicating a trade-off between the two objectives. However, evidence from all these experi-

ments may not be conclusive, because microorganisms may behave sub-optimally in the labo-

ratory experiments.

Thus, is the rate/yield trade-off universal? We claim that the answer to this question lies in

metabolism, especially in enzyme demand. At balanced growth, the relative amounts of all cell

components remain constant in time, including the protein fraction associated with metabolic
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enzymes. If a metabolic strategy achieves a given biomass synthesis rate at a lower enzyme

demand, the freed protein resources can be reallocated to other cellular processes that contrib-

ute to growth, and the cell’s growth rate can increase. Thus, a metabolic strategy will be

growth-optimal if it minimizes enzyme cost at a given biomass synthesis rate [13].

In theory, the use of a high-yield flux mode affects the growth rate in two opposite ways. On

the one hand, a high-yield mode achieves the same rate of biomass production at a lower gly-

colytic rate, and the lower enzyme demand in glycolysis allows for a higher growth rate. On

the other hand, high-yield modes dissipate less Gibbs free energy [5], which may slow down

the reactions and must be compensated by higher enzyme levels, leading to lower growth rates

[7, 14, 15]. The second effect may be obscured if another substrate, such as oxygen, provides

additional driving force.

When the first effect dominates, high-yield modes allow for a higher biomass production

per enzyme invested, so yield and growth rate are maximized by a single flux mode. When the

second effect dominates, it is low-yield modes that provide a growth advantage [6, 13, 16–18],

and there will be a trade-off: growth rate and yield are maximized by different flux modes, and

there may be other modes in between that provide optimal compromises. In summary, a rate/

yield trade-off in cells reflects a trade-off between enzyme efficiency and substrate efficiency in

metabolism; and since the enzyme cost of a given pathway flux depends on external condi-

tions, the occurrence of rate/yield trade-off will be condition-dependent as well.

How can we describe this by models? The specific growth rate μ for exponentially growing

cells is given by the rate of biomass synthesis per cell dry weight and is typically measured in

grams of biomass per gram cell dry weight per hour. The biomass yield YX/S is measured in

grams of biomass per carbon mole of nutrient (i.e. per 1/6 mole of glucose). If the carbon

uptake rate vS were known, we could directly convert between yield and growth rate using this

formula: YX=S ¼
m

vS
. However, since carbon uptake, yield, and growth rate are tightly coupled,

the changes in vS are hard to predict. Classic Flux Balance Analysis (FBA) places an upper

bound on vS. If this is the only active flux bound, then maximizing biomass rate coincides with

maximizing biomass yield, leaving no possibility for rate/yield trade-offs. Other constraint-

based methods, such as FBA with Molecular Crowding [19] or Resource Balance Analysis [20],

account for enzyme costs. They can be used to explore the trade-off, but they are not fully

quantitative because they ignore the kinetic and thermodynamic effects of varying metabolite

concentrations (see Discussion section for details).

In [21], a kinetic pathway model was used to directly compute the enzyme costs. Two vari-

ants of glycolysis, both common among bacteria, were compared by their ATP yields on glu-

cose and by their ATP production per enzyme investment. At a given glucose influx, the

Embden-Meyerhof-Parnas (EMP) pathway yields twice as much ATP, but was found to use

more than 4 times as much enzyme than the Entner-Doudoroff (ED) pathway. This suggested

that cells under yield selection should use the EMP pathway, while cells under rate selection

should use the ED pathway instead. Aside from simple approximations [22, 23], the enzyme

economics of other metabolic choices, e.g. respiration versus fermentation, and the resulting

trade-offs, remain to be quantified.

Here we combine a calculation of enzyme cost, based on kinetic models, with elementary

flux mode analysis. Elementary flux modes (EFMs) describe the fundamental ways in which a

metabolic network can operate [24–27]. Among the steady-state flux modes, EFMs are mini-

mal in the sense that they do not contain any smaller subnetworks that can support a steady-

state flux mode [24, 25, 27]. EFMs might be expected to have simple shapes in the network, but

since biomass production requires many different precursors, biomass-producing EFMs can

be highly branched. All biomass-producing EFMs are free of thermodynamically infeasible
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loops, and if the flux directions are predefined, the set of steady-state flux distribution is a con-

vex polytope spanned by the EFMs. The EFMs of a metabolic network can be enumerated, and

thermodynamically infeasible modes can be efficiently discarded [28, 29], but in practice an

enumeration of EFMs may be impossible because of their large number. EFMs have a remark-

able property, which makes them well-suited for studying rate/yield trade-offs: in kinetic meta-

bolic models, the biomass production per enzyme investment is maximized by a vertex point

of the flux polytope, and in models without flux bounds, all these vertices are EFMs [30–32].

The yield of an EFM, defined as the output flux divided by the input flux, is easy to compute

and it is again an EFM that achieves the maximal yield among flux modes. Therefore, to find

flux modes that maximize cell growth, we can enumerate the EFMs and assess them one by

one; and to determine rate/yield trade-offs, we simply plot yields versus growth rates of all

EFMs (Fig 1(a)).

Results

Computing the cell growth rate

To predict optimal metabolic fluxes and cell growth rates, we developed Enzyme-Flux Cost

Minimization (EFCM), a method for computing flux modes that realize a linear flux objective

at a minimal enzyme cost. Constraint-based methods such as Flux Balance Analysis are

entirely based on reaction stoichiometries. Some of them also use approximate enzyme costs,

for instance the sum of absolute fluxes [33] or other linear/quadratic functions of the flux vec-

tor [19]. EFCM, in contrast, computes enzyme cost based on a given kinetic model. In our

model, the flux objective represents biomass production, i.e. the production of small molecules

and macromolecules that constitute the cell and do not explicitly appear in the network model.

Below we argue that enzyme-optimal flux modes, with such a flux objective, are the ones that

allow for maximal growth rates.

Fig 1. Rate/yield trade-offs and calculation of growth-optimal fluxes. (a) Rate/yield spectrum of Elementary Flux Modes (EFMs) (schematic drawing). In the scatter

plot, EFMs are represented by points indicating biomass yield and maximal achievable growth rate in a given simulation scenario. Pareto-optimal EFMs are marked by

red squares. The set of Pareto-optimal flux modes (black lines) contains also non-elementary flux modes. An EFM may be Pareto-optimal when compared to other

EFMs, but not when compared to all possible flux modes (e.g. the EFM below the Pareto front marked by a the pink square). Growth rate and yield are positively

correlated in the entire point cloud, but the points along the Pareto front show a negative correlation, indicating a trade-off. (b) Enzyme cost of metabolic fluxes. The

space of stationary flux distributions is spanned by three EFMs (hypothetical example). The flux modes, scaled to unit biomass production, form a triangle. To

compute the enzyme cost of a flux mode, we determine the optimal enzyme and metabolite levels. To do so, we minimize the enzymatic cost on the metabolite

polytope (inset graphics) by solving a convex optimality problem called Enzyme Cost Minimization (ECM). (c) Calculation of optimal flux modes. The enzymatic cost

is a concave function on the flux polytope, and its optimal points must be polytope vertices. In models without flux bounds, these vertices are EFMs and optimal flux

modes can be found by screening all EFMs and choosing the one with the minimal cost.

https://doi.org/10.1371/journal.pcbi.1006010.g001
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To compute the maximal growth rate achievable, we use a kinetic model of metabolism,

consider all possible flux modes, and compute for of them the optimal enzyme allocation pat-

tern, i.e. the pattern that realizes the required fluxes at a minimal total enzyme investment.

Enzyme Cost Minimization (ECM) is a method that finds optimal enzyme and metabolite pro-

files supporting a given flux distribution [34]. The ECM problem can be quickly solved using

convex optimization, and the minimal enzyme cost of all EFMs can be computed in reasonable

time (a few minutes on a shared server, for models with * 103 EFMs such as E. coli core

metabolism). Knowing the enzyme investment per biomass production, we next compute the

cellular growth rate. For each EFM, the enzyme demand per biomass production is translated

into a mass doubling time (i.e. the amount of time that metabolism would have to run in order

to duplicate all metabolic enzymes assumed in our model). The mass doubling time can be

translated into a cell growth rate by a semi-empirical formula (see Methods and Figure 1 in S1

Text).

Since EFCM does not impose any constraints on fluxes, the enzyme-specific biomass pro-

duction—and thus growth rate—is maximized by elementary flux modes, regardless of the val-

ues chosen for kinetic parameters [30, 31]. To see this, we consider all feasible steady-state flux

modes, constrained to predefined flux directions and normalized to a unit biomass production

rate. These flux modes form a convex polytope in flux space (see Fig 1(b)). The flux cost func-

tion is concave on this polytope [30], or even strictly concave for some rate laws [32], and so

the minimal enzyme cost is achieved by a polytope vertex. In models without any active flux

bounds, all these vertices are EFMs. Thus, to predict optimal flux modes, we need not scan all

feasible flux modes, but can simply choose among EFMs. From our ECM calculations, we

obtain the full spectrum of growth rates and yields of all EFMs. The rate/yield spectrum, a scat-

ter plot between the two quantities, displays the possible trade-offs.

We now focus our attention on flux modes that maximize growth at a given yield, or maxi-

mize yield at a given growth rate. Such modes, which are not dominated by any other flux

mode in terms of growth rate and yield, are called Pareto-optimal. They represent optimal

compromises between growth rate and yield. If we could evaluate the growth rates and yields

for allmetabolic states in the model (including non-elementary flux modes), the resulting rate/

yield points would form a dense, non-convex set. The border of this set, as drawn in Fig 1(a), is

called the Pareto front. The EFMs on this front mark a selection of best compromises between

growth rate and yield achievable in the model. By inspecting the rate/yield spectrum, we can

tell whether there is an extended Pareto front or rather one metabolic state that optimizes both

rate and yield. Even if growth and yield are positively correlated among all EFMs, the modes

along the Pareto front will show a negative correlation whenever an extended front exists.

Therefore, it is the size of the Pareto front that shows the extent of a rate/yield trade-off. While

the yields are fixed properties of the EFMs, the growth rates depend on external conditions,

and so does the rate/yield trade-off. We demonstrate this for a case study on E. coli bacteria,

which have often been used for experiments on the rate/yield trade-off [9, 35–37] and whose

enzyme kinetics are relatively well studied.

Application of EFCM to E. coli core metabolism

To study growth rates and yields in E. coli, we applied EFCM to a model of core carbon metab-

olism. Our model, a modified version of the model presented in [38], comprises glycolysis, the

Entner-Doudoroff pathway, the TCA cycle, the pentose phosphate pathway and by-product

formation (see Fig 2(a), and Section 2 in S1 Text). The biosynthesis of macromolecules (“bio-

mass”) from small metabolites and cofactors is not explicitly described, but summarized in an

overall reaction for biomass production. Reaction kinetics are described by modular rate laws

Metabolic enzyme cost explains variable rate/yield trade-offs
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[39], and kinetic constants were obtained by parameter balancing [40] based on a large set of

values reported in the literature (see Section 1.1 in S1 Text).

The yield of an EFM is defined as grams of biomass produced per mole of carbon atoms

taken up in the form of glucose. EFMs that simultaneously use oxygen-sensitive enzymes (pfl)
and oxygen-dependent reactions within the electron transport chain (oxphos or sdh) cannot be

used by the cell. After discarding such EFMs, we obtained 568 EFMs that produce biomass

under aerobic conditions and 336 under anaerobic conditions. 97 of these EFMs can operate

under both conditions (Fig 2(b)). Statistical properties of the EFMs (size distribution, usage of

individual reactions, and similarities between EFMs and measured fluxes) are shown in Fig-

ure 7 in S1 Text.

If all EFMs required the same total enzyme amount at unit glucose uptake, growth rates and

yields would be proportional. Alternatively, if all EFMs required the same total enzyme

amount at a unit biomass production, all EFMs would have exactly the same predicted growth

rate, regardless of yield. Instead of these naïve approximations, we can now use our kinetic

model and the EFCM method to obtain the actual spectrum of possible growth rates and yields

(Fig 2(c)). While the yields are constant properties of the EFMs, the growth rates depend on

Fig 2. Metabolic strategies in E. coli metabolism. (a) Network model of core carbon metabolism in E. coli. Each Elementary Flux Mode (EFM) represents a steady

metabolic flux mode in the network, scaled to a unit biomass flux. Reaction fluxes defined by the EFMmax-gr are shown by colors. In our reference conditions—i.e.

high extracellular glucose and oxygen concentrations—this EFM allows for the highest growth rate among all EFMs. Some of the cofactors in the model are not shown.

(b) Statistics of biomass-producing EFMs. (c) Spectrum of growth rates and yields achieved by the EFMs. The labeled focal EFMs are described in Table 1, and their

flux maps are given in Figures 25-30 in S1 Text. Pareto-optimal EFMs are marked by squares; the Pareto front is shown by a black line. The plot reveals a positive

correlation between growth rate and yield, despite the inevitably negative correlation among Pareto-optimal EFMs. See Figure 24 in S1 Text for a detailed view of the

Pareto front and how it was sampled.

https://doi.org/10.1371/journal.pcbi.1006010.g002
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enzyme demands and therefore on kinetics and extracellular nutrient levels. As reference con-

ditions, we chose [glucose] = 100 mM, [O2] = 0.21 mM.

To visualize groups of similar EFMs, we used t-distributed Stochastic Neighbor Embedding

(t-SNE), a machine learning algorithm for nonlinear dimensionality reduction [41]. The algo-

rithm found five major clusters of EFMs, which loosely correspond to metabolic strategies

(e.g. aerobic acetate-secreting EFMs). Since no kinetic information was used in t-SNE, we

were surprised to find all EFMs with high growth rates in a single cluster (see Figure 6 in S1

Text).

To compare typical metabolic strategies, we focused on five EFMs with different character-

istics and followed them across different external conditions and sets of kinetic parameters.

We also show an experimentally determined flux distribution, called exp [42] (for calculations

see Section 4.1 in S1 Text). These focal EFMs are marked by colors in Fig 2(b) and listed in

Table 1. Flux maps (produced using software from [43]) can be found in Section 5.3 in S1

Text. The first three focal EFMs are located on the Pareto front. max-yield, the EFM with the

highest yield, does not produce any by-products nor does it use the pentose-phosphate path-

way.max-gr (whose flux map is shown in Fig 2(a)) has a slightly lower yield, but reaches the

highest growth rate (0.739 h−1) in our reference conditions. It uses the pentose-phosphate

pathway with a relatively high flux. In addition, we chose another EFM from the Pareto front

(denoted pareto) with a growth rate and yield between the two extreme EFMs. Curiously, the

EFMs along the Pareto front span only a narrow range of biomass yields (18.6—22.1), so there

is almost no rate-yield trade-off. This is not a trivial finding, and other choices of parameters

or extracellular conditions can lead to broader Pareto fronts: in low-oxygen conditions, the

trade-off between growth rate and yield becomes much more pronounced.

To study by-product formation, we consider two other EFMs below the Pareto front: an

anaerobic lactate-fermenting mode (ana-lac) with a very low yield (2.1 g/C-mol) and an aero-

bic, acetate-fermenting mode (aero-ace) with a medium yield (15.2 g/C-mol). Interestingly,

ana-lac has a *10 times lower yield, but it still reaches about one third of the maximal growth

rate, thanks to the lower enzyme cost of pentose phosphate pathway and lower glycolysis, as

compared to TCA cycle and oxidative phosphorylation (per mol of ATP generated). This reca-

pitulates a classic rate-versus-yield problem associated with overflow metabolism. Among all

by-product forming EFMs, some acetate-producing EFMs have the highest growth rates,

which might explain why E. coli, in reality, excretes acetate in aerobic conditions rather than

lactate or succinate. Nevertheless, all by-product forming EFMs have lower growth rates than

max-gr and are therefore not Pareto-optimal. Below we will see that this fact is subject to

change when conditions are different, specifically at lower oxygen levels.

Table 1. Focal EFMs representing different growth strategies. Metabolic fluxes are given in carbon moles (or O2 moles) per carbon moles of glucose uptake. Growth

rates are given for reference conditions [glucose] = 100 mM, and [O2] = 0.21 mM. For more details, see Table 10 in S1 Text. Abbreviations: � max-gr: maximum growth

rate;max-yield: maximum yield; pareto: a Pareto optimal EFM with higher growth rate than max-yield, and higher yield than max-gr; ana-lac: anaerobic lactate fermenta-

tion; aero-ace: aerobic acetate fermentation; exp: experimentally measured flux distribution.

Acronym� Biomass yield

(g/C-mol)

Growth rate

(h−1)

Oxygen

uptake

Acetate

secretion

Lactate

secretion

max-gr 18.6 0.739 0.49 0 0

pareto 20.8 0.699 0.42 0 0

max-yield 22.1 0.422 0.39 0 0

ana-lac 2.1 0.258 0 0 0.92

aero-ace 15.8 0.520 0.21 0.35 0

exp 17.7 0.409 0.29 0.22 0

https://doi.org/10.1371/journal.pcbi.1006010.t001
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To study how by-product secretion affects yield and growth rate in general, we focused on

some major uptake or secretion fluxes and visualized these fluxes for all EFMs in the rate/yield

spectrum (Fig 3). EFMs close to the Pareto front consume intermediate amounts of oxygen

and do not secrete any acetate, lactate or succinate. Another group of EFMs (shown in red in

Fig 3(b)) consume slightly less oxygen, but secrete large amounts of acetate. Compared to pure

respiration, these aerobic fermentation modes provide lower biomass yields. Other important

fluxes are shown in Figure 8 in S1 Text.

The effects of varying environmental conditions and varying enzyme

parameters

The growth rate achieved by a flux mode depends on environmental conditions and enzyme

parameters. To study this quantitatively, we varied some model parameters and traced their

effects on the rate/yield spectrum. Fig 4(a) shows how lower oxygen levels affect the growth

rate of oxygen-consuming EFMs. Lower oxygen levels need to be compensated by higher

enzyme levels in oxidative phosphorylation, which lowers the growth rate (Fig 4(b) and Fig-

ure 16 in S1 Text). EFMs that function anaerobically, such as ana-lac, are not affected (see

Figure 18 in S1 Text for enzyme allocation). Therefore, a low oxygen level leads to a promi-

nent rate/yield tradeoff, with a Pareto front spanning a wide range of growth rates and yields

(Fig 4(a)).

Fig 3. Uptake and secretion fluxes across EFMs. (a) Oxygen uptake (scaled by glucose uptake). Flux values are shown

by colors in the rate/yield spectrum (same points as in Fig 2b). The EFMs with the highest growth rates consume

intermediate levels of oxygen. The other diagrams show (b) acetate secretion, (c) lactate secretion and (d) succinate

secretion, each scaled by glucose uptake. Acetate secretion andO2 uptake versus biomass yield are shown in Figure 9 in

S1 Text.

https://doi.org/10.1371/journal.pcbi.1006010.g003
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The effect of external glucose levels can be studied similarly (Figures 12 and 16 in S1 Text):

at lower external glucose concentrations, the PTS transporter becomes less efficient and cells

must increase its expression in order to maintain the flux. This increases the total enzyme cost

and slows down growth. Below a glucose concentration of 10−3 mM, the demand for trans-

porter dominates the enzyme demand completely (see Fig 5(b) and Figures 17-18 in S1 Text

for a breakdown of enzyme allocation). Since the PTS transporter is the only glucose trans-

porter in our model, it is used by all EFMs, leading to a universal monotonic relationship

between glucose concentration and growth rate. However, the detailed shape of the glucose/

growth rate plot, known as the Monod curve [44, 45], depends on the PTS flux and on many

other parameters that differ between EFMs (see Section 3.3 in S1 Text)). The performance of

EFMs under high-glucose and low-glucose conditions is shown in Figure 19 in S1 Text.

Fig 4. Growth rates and rate/yield trade-offs depending on glucose and oxygen levels. (a) Predicted growth rates and biomass yields of aerobic EFMs, at reference

oxygen level (0.21 mM) and at a lower level (2.1 μM). Pareto-optimal EFMs are marked by dark triangles. Since changing oxygen levels affect the growth rate, but not

the yield, points move vertically between the two conditions. Statistical distributions of growth rates across EFMs are shown in Figure 10 in S1 Text. (b) Oxygen-

dependent growth rates for the five focal EFMs and the measured flux distribution. The oxygen level directly affects the catalytic rate of oxidative phosphorylation

(reactions oxphos and sdh): lower oxygen levels require higher enzyme levels for compensation, to keep the fluxes unchanged. The non-respiring EFM ana-lac shows

an oxygen-independent growth rate. In all other focal EFMs, the growth rate increases with the oxygen level and saturates around 10 mM.max-gr, which uses a higher

amount of oxygen, has a steeper slope and loses its lead when oxygen levels drop below 1 mM. The corresponding changes in enzyme allocation are shown in Figure 18

in S1 Text. (c) Growth rate as a function of glucose and oxygen levels (“Monod surface”). For a closed approximation formula, see Section 4.6 in S1 Text. (d)-(f) The

same plot, with oxygen uptake, acetate secretion, and lactate secretion shown by colors. Distinct areas represent different optimal EFMs (compare Figure 13 in S1

Text). The optimal EFMs for strictly anaerobic conditions are depicted in Figure 15 in S1 Text (b).

https://doi.org/10.1371/journal.pcbi.1006010.g004
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By varying the glucose and oxygen levels, we can screen a range of environmental condi-

tions and obtain a two-dimensional Monod surface plot. The winning strategies, i.e. the EFMs

with the highest growth rates can be depicted on this surface (Fig 4(d) and 4(e)) or in a glu-

cose/oxygen phase diagram (see Figures 13-15 in S1 Text, also for anaerobic conditions). More

than 20 different EFMs achieve a maximal growth rate in at least one of the conditions

scanned. To simplify the picture, we can focus on EFM features such as uptake rates and plot

them on the Monod surface (Fig 4(c)–4(f)). As expected, oxygen uptake (Fig 4(d)) decreases

when oxygen levels are low. This pattern occurs across the entire range of glucose levels, but

the transition—from full respiration to acetate overflow (Fig 4(e)) and further to anaerobic lac-

tate fermentation EFMs (Fig 4(f))—is shifted at lower glucose levels. Interestingly, this transi-

tion disappears at extremely low glucose concentrations (0.1 μM), as the fully respiring pareto
EFM exhibits the highest growth rate even at the lowest oxygen levels tested (Figure 13(a) in

S1 Text).

While glucose levels are relatively easy to adjust in experiments, it is difficult to measure

oxygen levels in the local environment of exponentially growing cells. This has resulted in a

long-standing debate about the exact conditions that E. coli cells experience in batch cultures

[46–48], and it makes it hard to validate our predicted transition from acetate fermentation to

full respiration. Our model predicts that at a constant level of [O2], E. coli will fully respire at

low glucose levels and secrete acetate at high glucose levels (see Fig 4). A similar shift from

pure respiration to a mixture of respiration and acetate secretion has been observed in chemo-

stat cultures [49], where higher glucose levels result from higher dilution rates.

The choice of metabolic strategies does not only depend on external conditions, but also on

enzyme parameters. As an example, we varied the kcat value of triose-phosphate isomerase

(tpi) and traced changes in the rate/yield spectrum. Not surprisingly, slowing down the

enzyme decreases the growth rate (see Figure 20 in S1 Text). But to what extent? Two of our

focal EFMs (max-gr and pareto) are not affected at all, since they do not use the tpi reaction.

All other focal EFMs show strongly reduced growth rates. To study this systematically, we pre-

dicted the growth effects of all enzyme parameters in the model (equilibrium constants, cata-

lytic constants, Michaelis-Menten constants) by computing the growth sensitivities, i.e. the

first derivatives of the growth rate with respect to the enzyme parameter in question (see

Fig 5. Predicted protein investments. (a) Predicted protein demands for the EFMmax-gr at reference conditions. (b)

Predicted protein demand for the EFMmax-gr at varying glucose levels and reference oxygen level. The y-axis shows

relative protein demands (normalized to a sum of 1). The dashed line indicates the reference glucose level (100 mM)

corresponding to the pie chart in panel (a).

https://doi.org/10.1371/journal.pcbi.1006010.g005
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Section 4.2 in S1 Text, and supplementary data files). A sensitivity analysis between all model

parameters and the growth rates of all EFMs (or alternatively, their biomass-specific enzyme

cost) can be performed without running any additional optimizations (Sections 4.3—4.4 in S1

Text). Growth sensitivities are informative for several reasons. On the one hand, parameters

with a large impact on growth will be under strong selection (where positive or negative sensi-

tivities indicate a selection for larger or smaller parameter values, respectively). On the other

hand, these are also the parameters that need to be known precisely for reliable growth predic-

tions. The parameters of a reaction can have very different effects on the growth rate. For

example, the sensitivities of the kcat and KM values of pgi are low, but the growth rate is very

sensitive to the Keq value.

To study the effects of a gene deletion, we can simply discard all EFMs that use the affected

reaction: based on a precalculated EFCM analysis of the full network, we can easily analyze the

restricted network without any new optimization runs. By switching off pathways, we can eas-

ily quantify the growth advantage they convey. Instead of studying pathways in isolation as in

Flamholz et al. [21], we can study their usage as part of a whole-network metabolic strategy.

Fig 6 shows an analysis for two common variants of glycolysis, the (high ATP yield, high

enzyme demand) EMP and the (low ATP yield, low enzyme demand) ED pathway, across

Fig 6. Growth rates achieved with two variants of glycolysis. (a) Glucose- and oxygen-dependent growth rates

predicted for wild-type E. coli. Same data as in Fig 4(c), but shown as a heatmap. E. coli can employ two variants of

glycolysis: the Embden-Meyerhof-Parnas (EMP) pathway, which is common also to eukaryotes, and the Entner-

Doudoroff (ED) pathway, which provides a lower ATP yield at a much lower enzyme demand [21]. (b) A simulated

ED knockout strain that must use the EMP pathway. The heatmap shows the relative growth advantage of the wild-

type strain (i.e. of reintroducing the ED pathway to the cell). The ED pathway provides its highest advantage at low

oxygen and medium to low glucose levels. (c) Growth advantage provided by the EMP pathway. The advantage is

highest at glucose concentrations below 10 μM. (d) Comparison between the two knockout strains. Blue areas indicate

conditions where ED is more favorable, and red areas indicate conditions where EMP would be favored. The dark blue

region at low oxygen and medium glucose levels may correspond to the environment of bacteria such as Z. mobilis,
which uses the ED pathway exclusively [50]. The same data are shown as Monod surface plots in Figure 21 in S1 Text.

https://doi.org/10.1371/journal.pcbi.1006010.g006
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different external glucose and oxygen levels (see Section 3.4 in S1 Text). At low oxygen levels

and medium-high glucose levels (10 μM—100 mM), cells profit strongly from using the ED

pathway, and knocking it out decreases the growth rate by up to 25%. The EMP pathway pro-

vides a much smaller advantage (up to 10%), and only in a narrow range of low-oxygen

conditions.

Discussion

Our case study on E. coli metabolism reinforces the notion that growth rate and biomass yield

are not strictly coupled. Instead, their correlations across EFMs, and the extent of rate/yield

trade-offs along the Pareto front, depend on details such as growth conditions and enzyme

parameters. At high oxygen levels, growth-maximizing flux modes have an almost maximal

yield and the Pareto front is very narrow. In contrast, under low-oxygen conditions the highest

growth rates are obtained by low-yield strategies and a long Pareto front emerges (Fig 4(a)). It

is not surprising that experimental results indicating rate/yield trade-offs were inconclusive and

difficult to interpret. As shown in [9], wild-type cell populations might be far from the Pareto

front, and a selection for fast growth may push the populations and individuals closer to it. It

would be interesting to study whether these results are in fact dependent on oxygen availability.

EFCM predicts which flux modes are likely to be used by well-adapted cells. We expected

that the EFM with the highest growth rate (max-gr, in the standard conditions chosen in this

study) would coincide with the experimentally determined flux mode (exp) in the same condi-

tions. However, this is not the case, and the two flux modes are not even very similar (correla-

tion r = 0.41, see Figure 7(c) in S1 Text). Our model predicts a much higher maximal biomass

yield than the yield measured in batch cultures (18.6 vs 11.8 gr dry weight per carbon mole

[51]), while the predicted growth rate is slightly lower (0.74 vs 0.89 h−1). However, for the

experimentally determined flux mode (exp), we overestimate the yield (17.7 vs 11.8 [42]) and

underestimate the growth rate (0.41 vs 0.89) as well, so some of the discrepancies may be due

to weaknesses of our model (e.g. wrong kinetic parameter values) rather than due to EFCM

itself. The overestimation of yield (which depends on network structure, not on kinetics) may

be caused by the fact that our model misses some waste products or additional processes that

dissipate energy, or that our high-yield EFMs are kinetically unfavorable in reality. The under-

estimated growth rates may result from our simplistic conversion of enzyme costs into growth

rates. However, we hope that these over- and underestimations occur consistently across

EFMs and do not affect the qualitative results of this study.

In contrast to the much simpler model by Basan et al. [49], our model does not predict

growth-rate dependent acetate overflow as observed in E. coli. In our standard aerobic condi-

tions (see Fig 2 and Figure 14(h)) in S1 Text, the winning mode, max-gr, is completely respira-

tory and produces no fermentation products. Only at low oxygen levels, EFMs with acetate

overflow, such as aero-ace, become favorable (see Fig 4 and Figure 15(e) in S1 Text). This mis-

prediction may depend on several factors:

First, we may have underestimated the effective cost of oxidative phosphorylation (oxphos),
which becomes costly at lower oxygen levels, or we may have overestimated the oxygen avail-

ability. The oxygen concentration of [O2] = 0.21 mM, which we chose to represent typical lab-

oratory conditions, may be inaccurate; oxygen availability may be as complex as in yeast,

where it seems to diffuse too slowly to supply the mitochondria fully with oxygen [48]. More-

over, the affinity of the reactions to oxygen is not precisley known, so even a precise value of

the oxygen concentration would not suffice.

Second, the experimentally observed acetate production may result from additional,

growth-rate dependent flux constraints like those employed by Basan et al. in their model. In
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our model, we did not impose any bounds on fluxes (aside from normalizing the flux modes to

unit per biomass production), and thus metabolic efficiency is maximized by an EFM. The

growth rate does not even appear in the optimization. We account for it only later, when meta-

bolic efficiency is translated into an achievable growth rate. Thus, it is possible that we miss

some physiological constraints such as membrane real-estate [52], changing biomass composi-

tion, or extracellular oxygen diffusion rates. Even without flux constraints, some EFMs mix

respiration and acetate production, e.g. aero-ace. However, none of them corresponds exactly

to the fluxes observed experimentally. Moreover, the measured relative rate of acetate produc-

tion increases continuously with the growth rate, which cannot be captured by a single con-

stant EFM. A usage of flux constraints in EFCM would be possible and would allow us, for

example, to limit certain fluxes or to enforce some minimal flux, e.g. in ATP-consuming main-

tenance reactions. To screen all vertices of the flux polytope, one may build on the concept of

elementary flux vectors [53, 54]. However, the number of these vertices may become very

large, and whenever flux bounds are changing (e.g. as a function of growth rate), this would

change the set of polytope vertices, and the entire calculation would have to be done for each

growth rate.

Third, it is also possible that the experimentally observed acetate secretion is simply not

optimal. In adaptive laboratory evolution experiments [36, 37], the evolved strains grew about

1.5 times faster without a significant change in yield, but most of this increase could be

explained by an increasing glucose uptake because the relative rates of acetate overflow did not

change. Apparently, if acetate secretion is due to a glucose uptake constraint, this constraint

can be bypassed by mutations and cells may be able to decrease acetate secretion while growing

faster. In a recent comparison of seven E. coli wild-type strains [35], three strains were found

to secrete no acetate at all in aerobic conditions (on glucose), but to use a fully respiratory

strategy without any by-product secretion. Two of these fully respiring strains grew just as fast

as the evolved strains from the adaptive evolution studies (about 1.0/h), and significantly faster

than the lab strain that we used for our reference flux data and for the stoichiometric model

(K-12). Again, this finding raises questions about universal rate/yield trade-offs and supports

our conclusion that the trade-off may almost disappear in high-oxygen conditions.

Some variants of FBA manage to predict flux distributions with a suboptimal biomass yield

by putting bounds on enzyme investments. An example is FBAwMC (Flux Balance Analysis

with Molecular Crowding), which relates fluxes to enzyme demands and limits the cytoplas-

matic protein density [55]. However, these methods are insensitive to environmental condi-

tions: the crowding coefficients assigned to reactions are constants, and metabolite

concentrations are not considered at all. In [20], Müller et al. ran a kinetic optimization

(which attempts to solve the nonlinear enzyme minimization problem directly) and compared

it to a linear approximation called satFBA. In this approximation, the constraints are exactly

like in FBAwMC, except that the crowding coefficients of exchange reactions are divided by

saturation values. The saturation values, numbers between 0 and 1, account for the concentra-

tions of external metabolites such as glucose and oxygen. For a small metabolic network (com-

prising 5 reactions), satFBA yields the same qualitative predictions as a kinetic optimization

(and EFCM, for that matter), in particular with regard to the rate/yield trade-off. However,

satFBA assumes that transport reactions are the only reactions affected by metabolite levels,

whereas EFCM models the interplay between metabolite levels, enzyme efficiencies, and

enzyme investments in all enzymatic reactions. It remains to be seen whether satFBA, with its

single kinetic bottleneck, can reproduce complex predictions of EFCM like the ones shown in

Fig 4.

Constraint-based whole-cell models such as Resource Balance Analysis (RBA) [56, 57] or

ME-models [58] treat protein production as a part of the cellular network and couple
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metabolic rates to production rates of the catalyzing enzymes. These methods differ from

EFCM in three main ways: in the modeling of protein production, of catalytic rates, and of bio-

mass composition and enzyme cost weights. (i) While RBA and ME model protein production

in detail, EFCM is limited to metabolism: the partitioning between metabolic enzymes and

ribosomes is captured by a formula that effectively converts enzyme cost into growth rate (see

Methods). (ii) In reality, enzymes often operate below their maximal speed (i.e. the kcat value),

at a catalytic rate called apparent kcat value [59]. This capacity utilization lower than 1 depends

on metabolite levels and is quantified by the efficiency factors of ECM [34]. For each enzyme,

the capacity utilization computed by EFCM varies across EFMs, but remains close to some typ-

ical value. These values, for different enzymes, span almost the entire range between 0 and 1

(see Figure 11 in S1 Text). In a linearized variant of EFCM that assumes full capacity utiliza-

tion, the growth rate would be overestimated and the growth differences between EFMs would

be distorted. In fact, our predicted enzyme cost is between 1.4 and 4.7 times higher (depending

on the EFM considered) than the ideal costs of enzymes operating at their maximal capacity

(see Figure 3 in S1 Text). RBA avoids this problem by replacing the kcat values by empirically

determined, growth-rate dependent apparent catalytic rates. Constraint-based methods that

ignore this effect [23, 60] underestimate the actual enzyme demand, thus suggesting an

“unused enzyme fraction” in cells [61]. We think that “unexplained enzyme fraction” would

be a better term, because the enzyme amount predicted for fully efficient enzymes is an ideal

value that would simply not suffice to catalyze the required fluxes in reality, given all thermo-

dynamic and kinetic constraints [34, 62]. (iii) In contrast to RBA and ME models, EFCM

assumes a fixed biomass composition and fixed cost weights for the enzyme molecules. This

means that cells, in EFCM, lack some strategic options that exist in RBA and ME models: to

fine-tune the biomass composition towards a usage of “cheap” precursors, or to decrease the

cost weights of proteins by cost-optimizing the production of limiting protein components

such as iron. Again, these options would be hard to implement in EFCM because biomass

composition is a defining part of the stoichiometric model, and any growth-rate dependent

changes in biomass composition would also change the set of EFMs.

Although efficient protein allocation may be important for fast growth [63], there is empiri-

cal evidence that cells do not always minimize enzyme cost. Lactococcus lactis, for example, can

undergo a metabolic switch that leads to big changes in growth rate, but involves no changes

in protein levels [64]. These cells could, in theory, save enzyme resources while maintaining

the same metabolic fluxes, but do not do so—possibly because their enzyme levels provide

other benefits, e.g. anticipating metabolic changes to come. EFCM ignores such complex

objectives: it describes fully optimal, but “short-sighted” cell strategies which define a lower

bound on the enzyme demand. By considering secondary objectives, e.g., a need for preemp-

tive protein expression or safety margins to counter expression fluctuations, one would predict

higher demands and lower growth rates.

Our study has demonstrated that enzyme kinetics is a useful addition to constraint-based

flux prediction (see Section 1.4 in S1 Text)). In contrast to the minimal model in [49], our

model was not fitted to recapitulate a specific known phenomenon, but was made to derive

predictions ab initio in the spirit of “testing biochemistry” [65]. As long as in vivo kinetic con-

stants are not precisely known, this harbours the risk of mispredictions. Curiously, for exam-

ple, the EFMs with the highest predicted growth rates bypass upper glycolysis and use the

pentose phosphate pathway instead. On the contrary, an ab initio approach allows modelers to

recover empirical laws directly from cell biological knowledge, for example, the shape of

Monod curves and Monod surfaces (see Figure 15 and Section 4.6 in S1 Text for general sim-

plified Monod functions). It allows us to compute quantitative effects of allosteric regulation

or mutated enzymes (see Figure 2 in S1 Text), the residual glucose concentration in chemostats
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(see Figure 15 in S1 Text), and the trade-offs between metabolic strategies at different glucose

levels (see Figure 19 in S1 Text). The decomposition into EFMs also greatly facilitates calculat-

ing the epistatic interactions between reaction knockouts (see Figure 2 (f) in S1 Text).

Although yield-related epistatic interactions were previously computed using FBA (see Section

3.5 in S1 Text), environment-dependent epistatic effects on growth rate have not been com-

puted so far. EFCM could be applied to larger models and models with flux constraints, and

other cost functions could be implemented (see Section 1.6 in S1 Text). As a fully mechanistic

method, it puts existing biochemical models and ideas about resource allocation to test and

enables us to address fundamental issues of unicellular growth and cell metabolism, such as

the trade-off between growth rate and biomass yield.

Methods

Optimal enzyme and metabolite profiles

A metabolic state is characterized by cellular enzyme levels, metabolite levels, and fluxes. All

these variables are coupled by rate laws, which depend on external conditions and enzyme

kinetics. The EFCM algorithm finds optimal metabolic states in the following way. First, we

enumerate the elementary flux modes of a network, which constitute the set of potentially

growth-optimal flux modes. Then we consider a specific simulation scenario, defined by

kinetic constants and external metabolite levels, and compute the growth rates for all EFMs.

To determine the optimal metabolic state—a state expected to evolve in a selection for fast

growth—we choose the EFM with the highest growth rate.

The optimal state (v, c, E) can be found efficiently by a nested screening procedure (Fig 1

(b) and 1(c)). First, we consider all EFMs, normalized to a given biomass production rate vBM.

To determine the relative enzyme demand of an EFM, we predefine vBM, scale our EFM to

realize this production rate, and compute the enzyme demand by applying Enzyme Cost Mini-

mization (ECM), i.e. an optimization of metabolite levels c and enzyme levels E. ECM has

recently been applied to a similar model of E. coli’s core carbon metabolism [34]. It assumes a

given flux distribution (in our case, an EFM) and treats the enzyme concentrations as explicit

functions of substrate and product levels and fluxes. Given a flux mode v, we consider all feasi-

ble possible metabolite profiles ln c, consistent with the flux directions and respecting prede-

fined bounds on metabolite levels. For each such profile, we compute the enzyme demands Ei
and the total enzyme mass concentration Emet = ∑i wi Ei (in mg l−1), where wi denotes the

molecular mass of enzyme i in Daltons (mg mmol−1) and enzyme concentrations are mea-

sured in mM (i.e., mmol l−1). As a function of the logarithmic metabolite levels, Emet is convex;

this allows us to find the global minimum efficiently. In the model, we use common modular

rate laws [39], for which the enzymatic cost in log-metabolite space is strictly convex (Joost

Hulshof, personal communication). The optimized enzyme cost is a concave function in flux

space [30–32]. This combination of convexity and concavity allows for a fast optimization of

enzyme levels and fluxes for each condition and set of kinetic parameters.

Online tool for Enzyme Cost Minimization

We implemented ECM in the Network-Enabled Optimization System (NEOS), an internet-

based client-server application that provides access to a library of optimization solvers. The

NEOS Server is available free of charge and offers a variety of interfaces for accessing the solv-

ers, which run on distributed high-performance machines enabled by the HTCondor software.

The NEOS Guide website (https://neos-guide.org) showcases optimization case studies, pres-

ents optimization information and resources, and provides background information on the

NEOS Server. Using our online service, users can run EFCM for their own models, using
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different rate laws. With our E. coli model, the optimization for one flux distribution takes a

few seconds, and for the complete set of all EFMs several minutes on a shared Dell PowerEdge

R430 server with 32 intel xeon cores. Details can be found in Section 1.2 in S1 Text, and on the

web page (www.neos-guide.org/content/enzyme-cost-minimization).

Converting enzyme-specific biomass rates into growth rates

Following the approach of Scott et al. [66], cell growth rates can be predicted from the demand

for metabolic enzyme, divided by the rate of biomass production (see Section 1.3 in S1 Text)).

A cell’s growth rate is given by μ = vBM/cBM, where cBM is the biomass amount per cell volume

and vBM is the biomass production rate (biomass amount produced per cell volume and time).

If cell biomass consisted only of metabolic enzymes (more precisely, of enzymes considered in

the cost Emet), the enzyme-specific biomass production rate rBM = vBM/Emet, where cBM would

be equal to the cellular growth rate. Since this is not the case, we convert between Emet and cBM

using the approximation Emet/cBM = fprot(a − b μ), where fprot = 0.5 is the fraction of protein

mass within the cell dry mass and the parameters a = 0.27 and b = 0.2 h were fitted to describe

the metabolic enzyme fraction in proteomics data, assuming a linear dependence on growth

rate [66]. As shown in the S1 Text (Equations 8–9 and Figure 1), we obtain the conversion for-

mula

m ¼
a fprot vBM

Emet þ b fprot vBM
: ð1Þ

Note that the biomass flux vR70 in our model is set to 1 mM s−1 by convention, and the kcat of

this reaction was set to a sufficiently high value so that it would never become a bottleneck (see

Figure 5 in S1 Text). By simple unit conversion we obtain vBM = 7.45 × 107 mg l−1 h−1. As

shown above, the total enzyme mass concentration is given by Emet = ∑i wi Ei in units of mg l−1,

so it requires no further conversion. The final formula for growth rates, with proper units,

reads

m ¼
1:01� 107 mg l� 1 h� 1

P
i wi Ei þ 7:45� 106 mg l� 1

: ð2Þ

It shows that maximizing the growth rate μ is equivalent to minimizing the enzyme cost Emet.

The link between biomass production, total enzyme mass concentration, and growth rate can

also be understood through the cell doubling time. We first define the enzyme doubling time

tmet �
lnð2Þ
rBM
¼

lnð2Þ�Emet
vBM

, the doubling time of a hypothetical cell consisting only of core metabo-

lism enzymes. Since E. coli cells contain also other biomass components, the real doubling

time is longer and depends on the fraction of these other components within the total biomass.

Furthermore, this fraction decreases with the doubling time, as seen in experiments [67] and

as expected from trade-offs between metabolic enzymes and ribosome investment [66]. This

leads to a constant offset in the final cell doubling time formula:

T ¼ 7:4 � tmet þ 0:51 ½h� ¼

¼ 6:9� 10� 8h l mg� 1 �
X

i

wi Ei þ 0:51 ½h�: ð3Þ
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Growth rate sensitivities

The calculation of sensitivities between enzyme parameters and growth rate is based on the

following reasoning. If a parameter change slows down a reaction rate, this change can be

compensated by increasing the enzyme level in the same reaction while keeping all metabolite

levels and fluxes unchanged. For example, when a catalytic constant changes by a factor of

0.5, the enzyme level needs to be increased by a factor of 2. The cost increase is given by

Dcost ¼ ð kcat;old
kcat;new

� 1Þ �[old enzymecost]. Also for other parameters, the local enzyme increase

can be simply computed from the reaction’s rate law. Instead of adapting only one enzyme, the

cell may save some costs by adjusting all enzyme and metabolite levels in a coordinated fash-

ion. However, the extra cost advantage is only a second-order effect and can be neglected for

small parameter variations. Hence, the first-order local and global cost sensitivities are

completely identical (proof in Section 4.2 in S1 Text). Sensitivities to external parameters (e.g.

extracellular glucose concentration) can be computed similarly. The growth sensitivities for a

given EFM are computed by multiplying the enzyme cost sensitivities by the derivative

between growth rate and enzyme cost.

Supporting information

S1 Text. Supplementary text containing Figures 1–30, Tables 1–10, and a list of supple-

mentary data files available on GitHub.
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