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Abstract

The formation and stability of synapses are key questions in neuroscience. Post-synaptic

domains have been classically conceived as resulting from local insertion and turnover of

proteins at the synapse. However, insertion is likely to occur outside the post-synaptic

domains and advances in single-molecule imaging have shown that proteins diffuse in the

plane of the membrane prior to their accumulation at synapses. We quantitatively investi-

gated this scenario using computer simulations and mathematical analysis, taking for defi-

niteness the specific case of inhibitory synapse components, i.e., the glycine receptor

(GlyR) and the associated gephyrin scaffolding protein. The observed domain sizes of scaf-

fold clusters can be explained by a dynamic balance between the aggregation of gephyrin

proteins diffusing while bound to GlyR and their turnover at the neuron membrane. We also

predict the existence of extrasynaptic clusters with a characteristic size distribution that sig-

nificantly contribute to the size fluctuations of synaptic domains. New super-resolution data

for gephyrin proteins established the existence of extrasynaptic clusters the sizes of which

are consistent with the model predictions in a range of model parameters. At a general level,

our results highlight aggregation with removal as a non-equilibrium phase separation which

produces structures of tunable size.

Author summary

Synapses mediate information transmission between neurons and are the physical sup-

port of memory. It has been realized that synapses are dynamic biological structures.

Neurotransmitter receptors diffuse in the neuron membrane and synaptic scaffolding

proteins are constantly renewed. We propose a biophysical model that links these differ-

ent measured quantities for inhibitory synapse components and show how they deter-

mine the size of postsynaptic domains. The model predicts that synaptic scaffolds also

exist extrasynaptically and that they contribute to fluctuations of synaptic sizes. We
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confirm by super-resolution microscopy the existence of extrasynaptic scaffolds. Their

measured size distribution agrees with the model predictions for specific parameters.

The model should be helpful to better understand the dynamics of synapses and their

possible levels of regulation.

Introduction

Synapses mediate transmission of information between neurons and are generally thought to

be, at least in part, the support of memory. However, when investigated at the molecular scale,

synapses appear as dynamic assemblies, the constituents of which are exchanged on timescales

ranging from tens of minutes down to seconds [1]. This raises fundamental questions about

the way memory is maintained [2]. On the postsynaptic side, neurotransmitter receptors are

mostly inserted in the neuron plasma membrane at non-synaptic loci [3–5]. Single-particle

imaging and tracking techniques have shown that they subsequently diffuse in the plasma

membrane in and out of synaptic domains (see [1] for a review and references therein). The

postsynaptic density (PSD) contains scaffolding proteins, which provide binding sites for the

receptors and transiently stabilize them at the PSD. The strength of a synapse is determined by

the number of receptors at the PSD at a given moment. This number depends on the number

of receptor binding sites provided by the scaffolding proteins [6] as well as on the affinity

between receptors and scaffolding proteins [7]. Therefore, the size of the PSD, i.e., the number

of scaffold protein binding sites, is a key determinant of synaptic strength.

We have focused our study on inhibitory synapses for which most components have been

identified and functionally characterized. The gephyrin scaffolding protein is the central struc-

tural component of inhibitory synapses [8]. In most cases, scaffolding proteins, including

gephyrin [9, 10], are renewed on timescales of minutes to hours in the synaptic domain (for

a review see [11]). The basic oligomeric form of a full-length gephyrin is that of a trimer,

mediated via strong interactions of the N-terminal G-domains [12–14]. In eukaryotic cells,

gephyrin trimers eventually undergo further oligomerization [15], supposed to underlie post-

synaptic clustering in neurons. Gephyrin is present in the cellular cytoplasm but it can also dif-

fuse just below the plasma membrane when bound to receptors [16].

In the PSD, gephyrin proteins form homo-multimeric scaffolds just below the plasma

membrane. Precise data have been gathered in the past years about several biophysical param-

eters governing the dynamics of receptors and scaffolding proteins, as reviewed in [1]. GlyR

diffusion constants and concentrations inside and outside inhibitory synapses have been deter-

mined (see [17] and references therein). The size distributions of PSD and gephyrin scaffolds

have been measured as well [6].

A model for the synapse based on these data and linking them is needed to address the

questions of synapse formation, maintenance and dynamics from a precise biophysical view-

point. Co-expression in fibroblasts of GlyR and gephyrin is sufficient to generate at the plasma

membrane clusters of sizes similar to that of the PSD at inhibitory synapses [9]. This finding

has provided a motivation to investigate theoretically how receptor diffusion, association of

receptors to scaffolds, and the self-aggregation of scaffolding proteins could give rise to the for-

mation of domains of given sizes. Some previous works have started to tackle this question.

Reaction-diffusion equations for the above-described processes were proposed, and the

authors suggested that a Turing-like instability could underlie the formation of synaptic

domains [18, 19]. In another study, only receptors were described and it was alternatively

proposed that synaptic receptor clusters could result from a dynamic balance between an
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incoming flux of diffusing receptors and an efflux from the cluster to the cell cytoplasm medi-

ated by receptor removal [20]. That diffusion, aggregation and removal of molecular compo-

nents can serve to produce macromolecular domains in a membrane has been previously

proposed for the formation and maintenance of lipid rafts and precisely examined in that con-

text [21, 22]. Similar mechanisms have also been shown to control the organization or E-cad-

herin clusters at cell membranes [23]. It is clear that the lifetime of a cluster of proteins can be

many orders of magnitude larger than the lifetime of its constituents, an attractive feature for a

memory storing structure [2] which has been previously theoretically examined [24].

Based on these previous works, we have now examined the characteristics of scaffold

domains produced by scaffolding proteins (here gephyrin) bound to receptors (here GlyR) dif-

fusing in the plasma membrane. Taking into account the available biophysical data [6, 9, 16]

we first deduce that the combined effect of aggregation, diffusion and removal produces typi-

cal scaffold domain sizes which are similar to those observed experimentally. Then, particle-

based computer simulations and theoretical analyses allow us to comprehensively characterize

the cluster sizes and dynamics resulting from these basic processes. In agreement with previ-

ous works on aggregation–removal in other contexts [25, 26], we show that aggregation and

removal of scaffolding proteins provide a non-equilibrium process at the origin of the distribu-

tion of dynamically evolving scaffold domains of different sizes. Furthermore, we predict how

the size distribution of these domains depends on biophysical parameters such as the turnover

time of scaffolding proteins at the plasma membrane and the dependence of cluster diffusion

with size.

The actual size distribution of gephyrin clusters was measured in cultured spinal cord neu-

rons using super-resolution microscopy. By comparing these novel observations with model

predictions, we then infer the biophysical parameters that govern the assembly of gephyrin

domains according to the proposed model of protein aggregation, diffusion, and turnover.

Results

Balance between lateral aggregation and cytoplasmic recycling of

scaffold proteins sets scaffold domain size

We set out to assess the combined role of

1. lateral diffusion of bound scaffold-receptor complexes in the membrane,

2. scaffolding protein aggregation, and

3. scaffolding protein removal at the membrane and in scaffolds

by first analyzing a reduced model of scaffolding protein dynamics at the membrane, see Fig 1.

In this model, a single scaffold domain is surrounded by diffusing scaffolding “particles” (i.e.

gephyrin trimers) bound to receptors. The domain edge acts as an absorbing boundary on the

diffusing complexes, thus imposing a concentration gradient which in turn gives rise to an

incoming diffusive flux of scaffold proteins.

Because this influx grows at most like the perimeter of the domain, while the protein efflux

due to desorption of aggregated scaffolding proteins into the cytoplasm scales with the area of

the domain, the balance of both fluxes occurs for a well-defined domain size. The resulting

equilibrium size can be calculated analytically (see S1 Text: Single scaffold domain) and

depends on biophysical parameters such as the diffusion coefficient of scaffold-receptor com-

plexes in the extrasynaptic membrane D0, the removal rate of scaffold proteins k, the total sur-

face concentration of scaffold proteins at the membrane c0, and the density of scaffold proteins

within the domain ρ. Note that k is an effective rate that captures any local imbalance of
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binding and unbinding of scaffold particles from and into the cytoplasm, respectively. Mea-

sured in the number N of scaffold particles, its “building blocks”, the expression for the

domain size reads

N ¼
rD0

k
F

c0

r

� �

: ð1Þ

(The explicit form of the function F(x) is given by Eq. (S5,S7) in S1 Text: Single scaffold

domain.) In Fig 1C and 1D, the domain size N is shown as a function of c0 and k, respectively.

To check the plausibility of scaffold formation and maintenance by diffusion and removal,

we calculate the expected domain size using the above equation and parameter estimates

for gephyrin and GlyR from the literature, see Fig 1. Assuming that the smallest occurring

gephyrin unit or “building block” are gephyrin trimers [12–14], we obtain an approximate

domain size of N’ 70 trimers, or 210 gephyrin monomers, which is surprisingly close to pre-

viously published measurements of gephyrin domain sizes [6]. We therefore conclude that dif-

fusion, aggregation, and turnover may indeed be key mechanisms involved in setting the size

of synaptic scaffold domains.

Fig 1. Lateral diffusion and aggregation of scaffold-receptor complexes at the post-synaptic membrane. A: Sketch of

the model basic processes: receptors (GlyR, blue) and scaffold “particles” (gephyrin trimers, green) can form complexes;

scaffold particles are brought to the cell membrane with a flux J and leave it with a rate k; sub-membraneous scaffold particles

aggregate by homotypic scaffolding protein interactions; scaffold-receptor complexes diffuse laterally along the cell

membrane, with a diffusion constant D. B: Concentration profile of diffusing scaffold particles around a disc-shaped scaffold

domain of radius R. Far from the cluster, the concentration of diffusing scaffold particles is uniform and equal to J/k. The

diffusing scaffold particles are depleted in a layer of size l ¼
ffiffiffiffiffiffiffiffiffi
D=k

p
close to the cluster boundary. C: Dependence of the

stationary domain size N on the particle concentration c0. D: Dependence of N on the turnover rate k. Reference parameters

are taken to be D = 0.02 μm2/s [16], k = 1/(30 min) [9], c0 = 4/3 μm−2 [16, 27]. The concentration of scaffold particles/trimers in

a post-synaptic domain is taken to be ρ = 5000/3 μm−2 [6]. When parameters are varied in B and C, the reference values are

marked (red losange).

https://doi.org/10.1371/journal.pcbi.1005516.g001
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The above analysis explicitly relates the size of post-synaptic gephyrin domains to the mea-

sured diffusion constant of GlyRs and the turnover rate of gephyrin in scaffold domains. It is

however based on the simple assumption of a single circular gephyrin domain surrounded by

diffusing GlyR-gephyrin trimer complexes. To further investigate the proposed scenario of

post-synaptic scaffold domain formation we proceed with studying a more detailed, truly par-

ticle-based model of scaffold aggregation by means of computer simulations. This allows us to

test the influence of simplifying assumptions, like the assumed circularity of scaffold domains,

and to address the possibility of multiple diffusing scaffold domains of various sizes. Most

interestingly, this allows us to obtain predictions from the model on the size distribution of

scaffold domains that we then compare to new data.

Particle-based model of scaffold-protein dynamics at the membrane

In the particle-based simulations, we consider individual scaffold particles attached to the

membrane that diffusive laterally at the membrane. Particles bind to each other upon encoun-

ter during their random diffusive trajectories, mimicking the homotypic interactions of scaf-

fold proteins.

Since the details of scaffold aggregation, diffusion, and domain dynamics are yet to be

described, we choose to make simple assumptions to obtain a computationally efficient model

with few parameters as detailed below (see also Materials and methods for the details of our

implementation).

Particles aggregate upon encounter and form clusters. We assume that particles in a cluster

rearrange into a circular disc-like domain shape. (To test the influence of this assumption, we

also performed a few simulations where, on the contrary, no rearrangement was allowed, as

described further below.)

The disc-like clusters can themselves diffuse and aggregate. We thus need to prescribe a

possible size-dependence of the diffusion constant. The Saffman-Delbrück theory [28] for

thermal diffusion would predict a logarithmic size dependence of the diffusion constant aris-

ing from hydrodynamic effects (see however [29] for proteins of size comparable to the mem-

brane thickness). This classic result may be modified by possible interactions of the scaffolding

proteins with the cell cortex, non-thermal effects as well as by the more complex nature of the

receptor-mediated diffusion of scaffold domains. For simplicity and to avoid introducing a

characteristic size “ad hoc”, we consider a power-law size dependence

DðnÞ ¼ D0n� s; s � 0 ð2Þ

where D(n) is the diffusion constant of clusters containing n scaffold particles and σ is the size-

dependence exponent (σ = 0 when Saffman-Delbrück’s result [28] applies). In our model, σ is a

further parameter of the system in addition to those introduced previously.

Particles are supposed to desorb into the cytoplasm with an effective rate k, modeled by a

stochastic removal of individual particles from the membrane. We assume a constant rate k,

irrespective of the size of the domain that particles belong to. As shown below, this assump-

tion appears sufficient to account for present data. We also neglected lateral desorption of

particles in the membrane after aggregation since binding affinity between gephyrin trimers

is high. This amounts to assuming that the concentration of diffusing gephyrin particles in

the membrane is large as compared to the concentration in equilibrium with the condensed

scaffold phase (i.e., we neglect gephyrin “vapor pressure”). The existence of a significant lat-

eral desorption would effectively amount to a reduced incoming flux of particles on each

cluster and in an underestimate of our present fitted diffusion constant. Lateral desorption
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would also favor more compact aggregates [30] (see also Discussion) in the case of partial

rearrangement dynamics.

The desorption of particles is balanced by an incoming flux J of single particles to the mem-

brane, which ensures that the average total concentration of particles attached to the mem-

brane c0 = J/k remains constant.

Extrasynaptic aggregation of synaptic proteins

A typical snapshot of our simulations is shown in Fig 2A. In going beyond the simplified

assumption of a single scaffold non-diffusing domain, we notably find in our simulations the

continuous generation of small clusters at the membrane. These clusters continue to diffuse,

albeit more slowly because of their increased size, leading to an ensemble of clusters of all sizes

(Fig 2A–2C). Eventually, the growth of a particular cluster is limited by the turnover of its con-

stituent scaffold particles, analogous to the reduced model of a single domain discussed above.

As a rather general result, we find that clusters become progressively rarer with increasing

size (Fig 2B and 2C). The size distribution of clusters for a diffusion constant exponent σ = 0.5

is shown in Fig 2B both when aggregating particles are fully rearranged into circular domains

or, on the contrary, when no rearrangement is performed after aggregation. While rearrange-

ment after clustering has a large effect on domain shape (see insert of Fig 2B), its impact on

cluster size distribution is minor. This is found to be true also for other diffusion constant

exponents. Since we do not focus here on scaffold domain shapes, for computational effi-

ciency, we consider in the following only fully rearranged clusters.

The shape of the cluster size distribution is governed by the size-dependence of the cluster

diffusion constant (Fig 2C). Qualitatively, when σ increases away from zero (i.e. the diffusion

of large clusters is increasingly suppressed), the large size limit of the distribution decreases,

implying a smaller range of cluster sizes. Clusters are also more evenly distributed among the

available size range.

The cluster size distributions produced by particle simulations are quantitatively compared

in Fig 2C to numerical solutions of Smoluchowski rate equations [25, 26, 31, 32] (see S1 Text:

Rate Equations). These equations account quite accurately for the obtained distributions after

fitting a single overall kinetic parameter (see S1 Text: Rate Equations and S1 Fig). For a size-

independent diffusion constant, one can analytically show that the distribution is a power-law

with an exponent of -3/2 and an exponential cut-off (Eq. S14 in S1 Text: Rate Equations). In

the general case σ 6¼ 0, the rate equations still allow us to numerically determine the stationary

solution for the cluster size distribution (see also S1 Fig). When σ> 0, diffusion is progres-

sively slower for larger and larger clusters. This reduced diffusion limits the growth of large

clusters relative to smaller clusters, and the distribution is shifted towards smaller sizes with

increasing σ. The shape progressively deviates from the power-law observed for σ = 0, eventu-

ally leading to the appearance of a shoulder at a smaller cut-off size beyond which clusters

become again exponentially rare.

Larger clusters are rarer than smaller ones, but since they contain more scaffold particles,

the majority of scaffold particles may still be found in clusters of large size. A useful quantity

for characterizing such distributions is the “typical” cluster size, which corresponds to the

average cluster size when clusters are weighted by the number of particles they contain. It

is defined as hhnii � ∑n n2cn/∑n ncn, where cn is the concentration of of clusters of size n.

The typical cluster size as a function of the biophysical parameters of diffusion and turnover

is shown in Fig 2D. We find that for a given diffusion constant size-dependence exponent σ,

the typical size essentially scales with the dimensionless parameter combination c0D0/k

Formation and size determination of post-synaptic scaffold domains
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according to

hhnii /
c0D0

k

� �a

; a ’
1

1þ s
: ð3Þ

For constant surface concentration of scaffold particles c0 and a given σ, the typical cluster size

increases with the general diffusion constant D0 and decreases with higher effective turnover

rate k. (Note that for constant cytoplasmic particle flux J onto the membrane, varying k also

changes the total surface concentration via c0 = J/k.) In the opposite case, for varying c0 while

keeping the product c0D0/k constant, the typical cluster size remains roughly constant; consis-

tently, the scaling of hhnii with c0D0/k does not depend on the specific value of c0 for which the

simulations were done.

Fig 2. Simulations of scaffold domain formation. When not explicitly varied, simulation parameter values are k = 2.0 � 10−5D0ρ,

c0 = 0.9 � 10−3ρ, where ρ = 0.77a−2 and a is the diameter of basic particles, and the diffusion exponent (Eq (2)) is σ = 0.5. A: Snapshot

of scaffold domain dynamics. Scale bar 100 a; individual clusters are enlarged 3-fold for better visualization. B: The characteristic

distribution of observed cluster sizes does not depend on the details of internal cluster structure. The cluster size distribution is

shown for the simulation in panel A (black circles) with perfect particle rearrangement, i.e. disc-like clusters, and for a simulation

without any particle rearrangement but otherwise identical parameters (red dots; simulation snapshot and typical cluster shown in

inset). Note that the density of fractal clusters is not constant and depends on cluster size; for comparison the density ρ = 0.77a−2 of

disc-like clusters is used here. Scale bar inset 50 a. C: Characteristic cluster size distributions of simulations with different diffusion

exponents σ but otherwise identical parameters (filled circles). The data for σ = 0.5 corresponds to the simulation shown in A.

Superposed on the simulation results are the theoretical curves obtained from the rate equations (solid lines), see text for details.

D: Scaling of the typical cluster size hhnii with c0D0/k for different σ and c0. Solid black line: hhnii / c0D0/k; dashed black line:

hhnii / (c0D0/k)1/2.

https://doi.org/10.1371/journal.pcbi.1005516.g002
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In principle, the scaling exponent α depends on the precise shape of the cluster size distri-

bution, but a simple scaling argument rationalizes the observed relation (Eq 3). Assuming

that the majority of scaffold particles are aggregated in clusters of size N, the concentration of

these clusters is given by cN’ c0/N. The average distance between the clusters thus scales as

L ’
ffiffiffiffiffiffiffiffiffiffi
N=c0

p
. The diffusion constant of the clusters being given by DN = D0N−σ, the timescale

of their diffusive encounter scales as T/ L2/DN’ N1+σ/(c0D0). For N to be a stable cluster size,

this timescale has to match the the typical turnover time 1/k, otherwise clusters would either

melt or grow bigger. One then immediately obtains N/ (c0D0/k)1/(1+σ).

Size distribution of gephyrin clusters

Our simulations predict that the sizes of scaffold domains depend on the continuous aggrega-

tion of scaffolding proteins into clusters at the membrane, which in turn supply the formation

of larger domains. Because the expected distribution of cluster sizes is determined by the bio-

physical parameters of diffusion and turnover, these parameters can in principle be inferred

from observed distributions of scaffold cluster sizes. Therefore, we experimentally determined

the size distribution of gephyrin scaffolds in the neuronal membrane of cultured spinal cord

neurons, both to confirm previous findings that extrasynaptic clusters exist and to provide a

measurement of the relevant parameters D0/k, c0, and σ. To this aim, super-resolution micros-

copy on fixed neurons was used to count the number of individual gephyrin proteins in clus-

ters (see Materials and methods, as previously published [6]). In brief, fluorescently labelled

gephyrin proteins are stochastically activated at low light intensity such that the probability of

concurrently activating close-by proteins is vanishingly small. The spatially separated light

bursts of activated proteins can thus be localized with sub-wavelength precision. Because every

labelled protein is activated one single time before being trapped in a “dark” state, the whole

protein population can be imaged over the course of the experiment, and the clusters recon-

structed from the recorded particle positions, see Fig 3A–3C.

The number of detections was directly associated to gephyrin cluster size [6]. We find

gephyrin clusters of all sizes up to clusters of 71 trimers (see Fig 3E, S2 Fig). The largest

domains are likely to be postsynaptic, 89% being found apposed to synaptic terminals in pre-

vious work [33]. Smaller gephyrin clusters should correspond to extrasynaptic clusters, con-

sistent with the so-called nanoclusters previously visualized outside synapses with super-

resolution microscopy [6].

The existence of clusters of different sizes was consistent with our predictions. Therefore,

we compared the experimentally measured distributions to distributions generated by our

model for different parameter combinations. Calculating the likelihood of the data for given

theoretical distributions, we determined the parameters that explain best our data and which

we refer to as maximum-likelihood fit of our model. Combining this analysis for all cultures

(n = 3) by letting the total scaffold concentration, c0, vary between cultures, we obtain a global

estimate for the diffusion exponent, σ = 0.5, and the ratio of the diffusion constant over the

particle turnover rate, D0/k = 30 μm2, see Fig 3D. The total scaffold concentration varies

among cultures from c0 = 0.5 − 5 μm−2, see Fig 3E.

Cluster dynamics and size fluctuations of scaffold domains

Our simulations allow us to address the temporal size fluctuations of scaffold clusters and their

stability over time. The size trajectory of an individual cluster is shown in Fig 4A. It fluctuates

around a well-defined mean size, alternating between stochastic increases due to fusion with

other clusters, and relatively smooth decreases on a characteristic timescale τfluc due to the

continuous particle loss into the cytoplasm. This behavior is typical of all followed clusters. In
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Fig 3. Gephyrin clusters and comparison with model distributions. A: Conventional fluorescence

microscopy of spinal cord neurons expressing the mEos2-gephyrin protein. Scale bar 5 μm. B: Rendered

super-resolution PALM image of the same segment shown in A acquired over 20k frames at a frame rate of

Formation and size determination of post-synaptic scaffold domains
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particular, clusters of small initial sizes grow by fusion with other clusters and fluctuate around

the mean size after a few τfluc (Fig 4A, light blue lines). This leads the distribution of sizes

explored by a cluster over time, shown in Fig 4B, to differ from the instantaneous distribution

of all clusters at the membrane at a given time (Fig 3E), with a suppression of small cluster

sizes. The cluster size autocorrelation C2(τ) = hn(t + τ)n(t)i − hni2 allows a quantification of

the fluctuation dynamics around the mean cluster size. It is shown in Fig 4C both for the parti-

cle-based simulations and for simulated trajectories based on a master equation approach

20ms. C: Pointillist representation of B, where each point represents a single detection. D: Maximum-

likelihood fit of the experimentally determined distributions for given parameters k and σ, with optimal c0

varying individually for each culture (Materials and methods). The highlighted parameter region (orange)

corresponds to 95% probability over N = 10000 repeated fits of random bootstrap samples from the

experimental distributions. The grey shaded region corresponds to the experimentally plausible range of

k/D0 = 1.4 � 10−2 − 4.2 � 10−1 μm−2. E: Experimentally determined gephyrin cluster size distributions and

fitted distributions for all three cultures. Experimental concentrations were non-dimensionalized using

ρtrimer = 5000/3 μm−2.

https://doi.org/10.1371/journal.pcbi.1005516.g003

Fig 4. Predicted size evolution of individual clusters. A: Average cluster size (mean ± SD) evolution for clusters of an initial

size of 2 (light blue) and 100 (light red) particles, respectively, averaged over independent simulated cluster size trajectories

(n2 = 50 � 106, n100 = 4000) sampled from simulations. A typical cluster size trajectory is also shown (dark solid line). Simulation

parameters are identical to Fig 2A. B: The distribution of cluster sizes at long times. Large clusters persist for a long time and

explore the size distribution shown here due to particle addition by fusion with other clusters and particle removal by desorption.

The distribution obtained from simulated trajectories (n = 1000) using the master equation (MEQ) approach (grey solid line, see

text for details) is slightly different as spatial correlations are ignored. C: Autocorrelation, C2(τ) = hn(t + τ)n(t)i − hni2, of the

cluster size n(t) obtained from full particle simulations (black solid line) and from the MEQ approach (solid grey line). The

analytical prediction of an exponential decay with characteristic rate k is also shown (dashed grey line). D: The function

Y(τ) = hn(t + τ)n(t)2i − hn(t + τ)2n(t)i is shown (solid black line). The fact that Y(τ) is non-zero implies that the dynamics is not

invariant under time reversal and therefore out-of-thermodynamic-equilibrium. The approximation Y(τ)/ exp(−kτ)[1 − exp(−kτ)]

is also shown (dashed grey line) as well as the function Y(τ) generated by the MEQ approach (solid grey line) (see text and S1

Text: Rate Equations for details).

https://doi.org/10.1371/journal.pcbi.1005516.g004
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(see S1 Text: Rate Equations). A simplified description of the latter approach provides an

explicit expression for C2(τ) and predicts that τfluc is set by the scaffolding protein turnover

rate, τfluc’ 1/k (see S1 Text: Rate Equations) in good quantitative agreement with the

simulations.

The cluster size variation over time depicted in Fig 4A is clearly not invariant under time

reversal. It is interesting to note that it is a direct signature of the out-of-thermodynamic-

equilibrium nature of the process considered since fluctuations at thermodynamic equilib-

rium should not allow to determine the arrow of time. One quantitative measure of the

out-of-equilibrium nature of the underlying dynamics is provided by the third moment

Y(τ) = hn(t + τ)n(t)2i − hn(t + τ)2n(t)i [34, 35] which by construction vanishes for systems

that are invariant under time reversal. The non-trivial function Y(τ) obtained from cluster

size time trajectories is shown in Fig 4D, together with approximations based on the master

equation approach (see S1 Text: Rate Equations).

Discussion

We propose a model of scaffold domain formation and maintenance. It is based on

1. the delivery of scaffolding proteins at the plasma membrane,

2. receptor-mediated scaffold diffusion at the plasma membrane, and

3. scaffold growth upon encounter and multimerization with other scaffolds.

The counterbalance of this cluster growth process by the continuous removal of scaffolding

proteins leads to a stabilization of a maximal domain size as well as a to a stationary distribu-

tion of scaffold clusters of different sizes. In a previous work [6], a population of small extrasy-

naptic clusters had been shown to coexist with large synaptic clusters, but the sizes of the

former had not been precisely quantified. We have here provided new super-resolution

microscopy data which shows that post-synaptic clusters assume a continuous range of sizes

from gephyrin trimers up to sizes characteristic of synaptic domains. This agrees with a char-

acteristic signature of the aggregation-removal dynamics proposed to underlie their formation.

Comparison of experimental data with model size distributions allowed us to refine the bio-

physical parameters of this dynamics. Moreover, we found that the existence of diffusing extra-

synaptic clusters has important consequences for the size fluctuations of synaptic domains, as

the former may fuse with the latter. Our simulations have been focused on the dynamics of

these extrasynaptic clusters. When one of them is followed over time, it reaches on the time-

scale of an hour the large size end of the domain size distribution and fluctuates around it, as

shown in Fig 4A. In the simplest picture, the synaptic domains are simply the product of this

formation process and their size distribution is as given by Fig 4B. However, this is most prob-

ably an oversimplification since the properties of synaptic scaffold domains certainly differ

from extrasynaptic ones. For instance, we expect them to diffuse even less than large extrasy-

naptic scaffold domains. This would reduce their probability of encounters with other domains

and consequently their size (simulations with one fixed domain show a mean size reduction of

33% as compared to Fig 4B).

In recent years, thermodynamic phase transitions and phase separation have been found to

underlie the formation of various cellular membrane-less structures [36], most recently the

PSDs of excitatory synapses [37]. One feature of thermodynamic phase separation is that the

growth of the condensed phase is only limited by the depletion of the condensing component.

The size of the formed structure is thus determined by the size of its “container” as well as the

total number of molecular components enclosed in the latter [38]. In cells, the container can
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be the whole cell or one of its sub-compartments, such as a spine for an excitatory PSD. Non-

equilibrium phase separation may allow cells to avoid this constraint and to form localized

structures of definite size, such as PSDs, irrespective of the size of the compartment in which

they form, namely the whole neuron membrane for the majority of inhibitory synapses. Aggre-

gation with removal or turnover has been proposed in various cellular contexts [21, 23] besides

the one considered here. It is tempting to suggest that it is a specific, easily implementable,

out-of-thermodynamic-equilibrium phase separation mechanism generally used by cells to

form localized structures.

Our results expand previous works considering the non-equilibrium dynamics of receptors

and scaffolds at the plasma membrane. While Haselwandter et al. [18, 19] considered general

continuous equations for the interaction of receptors and scaffold proteins, they analyzed a dif-

ferent dynamical regime. Their mathematical analysis showed that domains of a characteristic

size can be obtained via a Turing-like instability. In this case, the cooperative binding of scaf-

fold proteins at synaptic domains is limited by receptors diffusing away from a domain and

steric repulsion between receptors. However, it is unclear whether these assumptions are all

verified in neurons, as for example, the receptor density appears to be far below saturation on

synaptic domains [39, 40]. Moreover, in this Turing regime, a continuous range of domain

sizes would not be expected. Burlakov et al. [20] proposed a model based on receptor aggrega-

tion and removal similar in spirit to the one described in Fig 1, but they did not consider scaf-

folding proteins nor cluster size distributions.

In the present study, we have studied a simple model of PSD formation, with a minimal

number of parameters, most of which are determined by available data. Nonetheless, several of

our assumptions may need to be refined when further data become available. In our model,

receptors act mainly as carriers that enable the lateral diffusion of scaffold particles and

domains along the cell membrane. Our single rate k for scaffold removal from the membrane

accounts both for scaffold dissociation from receptors and for the endocytosis of receptor-scaf-

fold complexes. This appears sufficient at present but receptors may need to be accounted for

independently of scaffolds if one wishes to describe these two processes more precisely. A

description with multiple molecular species would also be needed to describe the concentra-

tion of receptors on scaffold domains, its dependence on scaffold-receptor affinity as well as an

influence of receptors of scaffold domain stability. A dependance of scaffold removal on scaf-

fold domain size may also need to be included.

We have mainly considered the limit where scaffold domains rearranged themselves very

efficiently and adopt a spherical compact shape. We have shown that this does not have

significant consequences for cluster dynamics and size distributions by considering the other

extreme limit of negligible cluster reshaping after scaffold aggregation, see Fig 2B. However,

the shape of the individual scaffold clusters does depend on the rearrangement of scaffold par-

ticles within a domain or absence thereof (see e.g. inset Fig 2B). It is well-known that in the

absence of recycling, clusters which grow by diffusion are prone to shape instabilities and that

shapes are sensitive to changes in the dynamics. A prototypical example is provided by the

classical diffusion-limited aggregation (DLA) model [41], where clusters grow by irreversible

aggregation of very diluted single monomers without rearrangement. Such clusters assume

isotropic ramified shapes with a fractal dimension df’ 1.7 for monomer diffusion in two

dimensions (d = 2) as considered here. Preferred directions of attachment or crystalline anisot-

ropy make the clusters anisotropic as commonly observed with snowflakes [42]. When not

only monomers but also clusters diffuse and aggregate—a case known as cluster-cluster aggre-

gation—the produced cluster shapes are different with a fractal dimension of df’ 1.45 [30].

Growth in a monomer solution of finite concentration c0 renders DLA clusters compact above

a characteristic length that depends on c0 [30]. Removal of monomers furthermore introduces
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a “diffusion length” l ¼
ffiffiffiffiffiffiffiffiffiffi
D0=k

p
above which clusters also cease to be fractal. With the parame-

ters of Fig 3D, λ’ 5 μm is much larger than the linear size of synaptic domains. It will there-

fore be an interesting task for future studies, both experimental and theoretical, to investigate

scaffolding protein removal from scaffold domain and the modes of scaffold domain rear-

rangements and link them to the observed shapes which appear neither circular nor fully

fractal.

The strength of a synapse is one of its key properties since it controls the efficacy of infor-

mation transmission between neurons. However, when synapses are monitored over the

course of days, they undergo large fluctuations in size and molecular content. This holds for

neurons cultured in vitro, in absence of learning protocols, and even in absence of activity

[43]. A phenomenological model, based on a mixed additive-multiplicative stochastic process

[44], has been found to account well for the recorded size fluctuations of excitatory [45] as well

as inhibitory [46] synapses. Interestingly, we found here that the existence of diffusing extrasy-

naptic clusters may provide a mechanistic explanation for similar fluctuations of scaffold

domain sizes over shorter periods. The predicted distribution of fluctuating domain sizes is

skewed (see Fig 4B) and qualitatively similar to those reported (see e.g. Fig 4 in ref. [46]).

Besides spontaneous fluctuations, the elucidation of the mechanisms by which synaptic

strength is specifically modified remains a key challenge. The role of lateral diffusion of recep-

tors in the plasma membrane in mediating receptor number changes at the synapse has started

to be considered in the context of synaptic plasticity [1, 8] and synaptic strength homeostasis

[47]. Both the lateral mobility of GlyR in the cell membrane and its binding affinity for

gephyrin [48] can be regulated. In the framework of the model that we propose, this would

induce changes not only in the receptor concentration on scaffold domains, but also in the size

of the scaffold domain themselves, by modifying the lateral flux of scaffolding proteins onto a

domain. The removal time of scaffold proteins is in our model another important parameter

that could be acted upon to regulate scaffold domain size. In this context, it can be noted that

smaller gephyrin domain sizes were reported in one-week old organotypic cultures as com-

pared to four-weeks old cultures [10] while, correlatively, the mean residence time of gephyrin

in scaffold domain was measured to be shorter in one-week old cultures than in four-weeks

old cultures [10]. We are confident that a biophysically-rooted model such as the one we pro-

pose here offers new perspectives on synaptic dynamics, homeostasis and plasticity that it will

be useful to explore in future works.

Materials and methods

Simulations

As described in the Results, we implemented two versions of the basic model, which corre-

spond to two limits of particle rearrangement within clusters. In model A, particles within a

given cluster immediately rearrange into a disc with a radius given by the number of particles

n and a typical particle number density in clusters ρ, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðprÞ

p
. In model B, individual

particles do not rearrange, and clusters form fractal-like structures. Both models essentially

produce the same distribution of cluster sizes, see Fig 2B. Except explicitly stated otherwise, all

simulation results presented were obtained with model A for reasons of reduced computa-

tional complexity.

In the simulations, all relevant quantities and parameters are expressed in the units of

length l0 = a and of time t0 = a2/D0, respectively, where a is the diameter and D0 the diffusion

constant of an individual particle. Initially, N = c0L2 particles are randomly distributed in

space in a square of side length L, and we use periodic boundary conditions throughout.
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Particle diffusion and turnover are approximated in discrete time steps Δt = 0.02 small com-

pared to the characteristic time t0 of particle diffusion. During each step, we first update parti-

cle and cluster positions, indexed by i = 1, . . ., M, by random increments according to the

respective diffusion constant Di, i.e., x and y increments drawn from a normal distribution

with variance 2ΔtDi and vanishing mean. Particles or clusters that overlap afterwards fuse to

give a cluster of size ni + nj, where ni and nj are the sizes of the fusing clusters/particles, and an

accordingly updated radius. Eventually, we draw the number of desorbed particles per cluster

within one time step from a binomial distribution with ni independent draws each having

probability Δt k and reduce the cluster sizes and radii accordingly. For simplicity, we keep the

total number of particles in the simulation constant and insert as many new, randomly distrib-

uted particles as were removed.

Simulations were generally carried out with N’ 104 particles, with the box size L varying

correspondingly for different concentrations c0. In our simulations, we chose a cluster density

of ρ = 0.77a−2 that corresponds to the packing fraction of a hexagonal arrangement; however,

the comparison with simulations of fractal clusters shows that the results do not depend much

on this choice.

Reagents

Unless otherwise noted, all reagents were purchased from Sigma-Aldrich (St. Louis, MO) or

Life Technologies/Molecular Probes (Carlsbad, CA).

Lentivirus

A lentivirus encoding mEos2-Gephyrin was produced by cotransfecting the lentiviral back-

bone plasmid (FUGW) encoding the mEos2-Gephyrin construct (5 μg) along with the pMD2.

G envelope (5 μg) and pCMVR8.74 packaging (7.5 μg) plasmids (Addgene, Cambridge, MA)

into HEK293T cells using lipofectamine 2000 (60 μl). Transfection was performed in 10 cm

plates once the cells reached 80% confluence. Supernatant containing lentivirus was collected

48 h after transfection, filtered through a 0.45 μm-pore-size filter, aliquoted, and stored at

−80˚C.

Cell culture and infection

All experiments were performed on dissociated spinal cord neuron cultures prepared from

Sprague-Dawley rats (at E14). Experiments were carried out in accordance with the European

Communities Council Directive 2010/63EU of 22 September 2010 on the protection of ani-

mals used for scientific purpose and our protocols were approved by the Charles Darwin com-

mittee in Animal experiment (Ce5/2012/018). Neurons were plated at a density of 6.3 × 104

cells/cm2 on 18 mm coverslips pre-coated with 70 μg/ml poly-D,L-ornithine and 5% fetal calf

serum. Cultures were maintained in neurobasal medium containing B-27, 2 mM glutamine, 5

U/ml penicillin, and 5 μg/ml streptomycin at 37˚C and 5% CO2. Neurons were infected at 7

days in vitro (DIV) with a recombinant lentiviral vector expressing the mEos2-Gephyrin

construct.

PALM imaging

Photoactivated localization microscopy (PALM) was performed at DIV 14 − 17 on neurons

fixed with 4% paraformaldehyde and 1% sucrose (10 min). All imaging experiments were per-

formed on an inverted Nikon Eclipse Ti microscope with a 100× oil-immersion objective (N.

A. 1.49), an additional 1.5× lens, and an Andor iXon EMCCD camera. Super-resolution
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movies were acquired at 20 ms frame rate under continuous illumination with activation (405

nm) and excitation (561 nm) lasers for a total of 20000 frames (6.7 minutes). Activation den-

sity was kept steady by manually increasing the activation laser intensity over time. Conven-

tional fluorescence imaging was performed with a mercury lamp and filter sets for the

detection of preconverted mEos2 (excitation 485/20, emission 525/30). The z-position was

maintained during acquisition by a Nikon perfect focus system.

Single molecule detection and PALM reconstruction

The x and y coordinates of single molecule detections from each image frame were determined

using an adapted version of the multiple-target tracking algorithm [49] as described previously

[50]. The point spread function (PSF) signals emitted by single fluorophores were fit with a 2D

Gaussian distribution. Drift in the x/y plane was corrected by calculating the relative move-

ment of the center of mass of multiple synaptic gephyrin clusters (more than 4 per field of

view), throughout the acquisition, using a sliding window of 3000 − 6000 frames. Activations

were clustered with using a single-link clustering, with a minimal distance of 50nm. Single

temporal bursts in low density regions were measured for location accuracy and double count-

ing, allowing for the counting of molecules within clusters. Regions of interests were selected

by hand from fluorescent images such that only clusters within dendrites were selected for size

concentration analysis. Analysis was performed on (n = 3) cultures.

Fits of simulated cluster size distribution to experimental data

To compare the experimentally determined cluster size distributions to the predicted distribu-

tions for a given set of parameters S, we determined the likelihood of the data according to

Lðf#ig; SÞ ¼
Yimax

i¼2

ni
#i e� ni

#i!
; ð4Þ

where ni = Aexpci(S) is the predicted count of clusters of size i in the observed surface area Aexp

for given parameters S, and #i is the actually determined count. The likelihood is computed

including sizes up to the largest observed cluster size imax. For each culture (n = 3), we deter-

mined the likelihood over a grid of parameter values, varying turnover rate, diffusion size-

dependence exponent, and total concentration. Assuming that the latter may vary between cul-

tures, we determined the joint likelihood Ltot ¼
Q

j Lj over all three cultures j = 1, 2, 3 for

parameters (k, σ), choosing the most likely c0 for each (k, σ) independently for each culture.

Maximum-likelihood fits of the individual clusters are shown in S3 Fig. In order to compare

the experimental and simulation results, we adimensionnalized the concentrations by the den-

sity of scaffold particles in the clusters, (ρ = 5000/3 μm−2) for experiments and (ρ = 0.77a−2) for

simulations, respectively. We assumed that gephyrin exists predominantly in trimer form and

thus considered gephyrin trimers as the single-particle element in the cluster size count. We

furthermore restricted the comparison of predicted and actual distributions to cluster sizes of

i� 2, as counts of smaller clusters are more affected by impurities and measurement noise.

The predicted particle concentrations were determined from the stationary solutions to the

rate equations, see S1 Text: Rate Equations. Confidence regions corresponding to 95% proba-

bility of the optimal fit parameters were obtained by a bootstrapping technique using repeated

resampling (N = 10000) of the observed clusters for each of the three cultures, and applying

the above fit procedure to the resampled cluster size distributions.
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S1 Fig. Rate-equation description of scaffold-cluster aggregation. Comparison and match

of the cluster size distributions obtained from the rate-equation description to the full simula-

tions.
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S2 Fig. Fluorophore detections per cluster. Raw data of the fluorophore detections from

which the gephyrin cluster sizes were obtained.
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S3 Fig. Maximum-likelihood fits for individual cultures. Fits of data and confidence regions

using bootstrap resampling (N = 10000) performed independently for each culture.
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