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Abstract

Whole-genome sequencing of pathogens from host samples becomes more and more rou-

tine during infectious disease outbreaks. These data provide information on possible trans-

mission events which can be used for further epidemiologic analyses, such as identification

of risk factors for infectivity and transmission. However, the relationship between transmis-

sion events and sequence data is obscured by uncertainty arising from four largely unob-

served processes: transmission, case observation, within-host pathogen dynamics and

mutation. To properly resolve transmission events, these processes need to be taken into

account. Recent years have seen much progress in theory and method development, but

existing applications make simplifying assumptions that often break up the dependency

between the four processes, or are tailored to specific datasets with matching model as-

sumptions and code. To obtain a method with wider applicability, we have developed a

novel approach to reconstruct transmission trees with sequence data. Our approach com-

bines elementary models for transmission, case observation, within-host pathogen dynam-

ics, and mutation, under the assumption that the outbreak is over and all cases have been

observed. We use Bayesian inference with MCMC for which we have designed novel pro-

posal steps to efficiently traverse the posterior distribution, taking account of all unobserved

processes at once. This allows for efficient sampling of transmission trees from the posterior

distribution, and robust estimation of consensus transmission trees. We implemented the

proposed method in a new R package phybreak. The method performs well in tests of both

new and published simulated data. We apply the model to five datasets on densely sampled

infectious disease outbreaks, covering a wide range of epidemiological settings. Using

only sampling times and sequences as data, our analyses confirmed the original results or

improved on them: the more realistic infection times place more confidence in the inferred

transmission trees.
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Author summary

It is becoming easier and cheaper to obtain (whole genome) sequences of pathogen sam-

ples during outbreaks of infectious diseases. If all hosts during an outbreak are sampled,

and these samples are sequenced, the small differences between the sequences (single

nucleotide polymorphisms, SNPs) give information on the transmission tree, i.e. who

infected whom, and when. However, correctly inferring this tree is not straightforward,

because SNPs arise from unobserved processes including infection events, as well as path-

ogen growth and mutation within the hosts. Several methods have been developed in

recent years, but often for specific applications or with limiting assumptions, so that they

are not easily applied to new settings and datasets. We have developed a new model and

method to infer transmission trees without putting prior limiting constraints on the order

of unobserved events. The method is easily accessible in an R package implementation.

We show that the method performs well on new and previously published simulated data.

We illustrate applicability to a wide range of infectious diseases and settings by analysing

five published datasets on densely sampled infectious disease outbreaks, confirming or

improving the original results.

This is a PLOS Computational Biology Methods paper.”

Introduction

As sequencing technology becomes easier and cheaper, detailed outbreak investigation

increasingly involves the use of pathogen sequences from host samples [1]. These sequences

can be used for studies ranging from virulence or resistance related to particular genes [1, 2],

to the interaction of epidemiological, immunological and evolutionary processes on the scale

of populations [3, 4]. If most or all hosts in an outbreak are sampled, it is also possible to

use differences in nucleotides, i.e. single-nucleotide polymorphisms (SNPs), to resolve trans-

mission clusters, individual transmission events, or complete transmission trees. With that

information it becomes possible to identify high risk contacts and superspreaders, as well as

characteristics of hosts or contacts that are associated with infectiousness and transmission [5,

6]. Much progress has been made in recent years in theory and model development, but exist-

ing methods either include assumptions that do not take the full uncertainty in the evolution-

ary process into account [7, 8], are designed for specific datasets, with fit-for-purpose code for

data analysis [9–11], or make limiting assumptions about the relation between sampling times

and infectivity [12]. An easily accessible method without these restrictions and with the flexi-

bility to cover a wide range of infections is currently lacking, and would bring analysis of out-

break sequence data within reach of a much broader community.

The interest in easily applicable methods for sequence data analysis in outbreak settings is

demonstrated by the community’s widespread use of the Outbreaker package in R [8, 13–15].

However, the model in Outbreaker assumes that mutations occur at the time of transmission,

which does not take the pathogen’s in-host population dynamics into account, nor the fact

that mutations occur within hosts. The publications by Didelot et al [7] and Ypma et al [11]

revealed that within-host evolution is crucial to relate sequence data to transmission trees, as is

illustrated in Fig 1A: there are four unobserved processes, i.e. the time between subsequent

infections, the time between infection and sampling, the pathogen dynamics within hosts, and
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mutation. The difference in sequences between host 2 and infector 1 result from all of these

processes. As a result, a host’s sample can have different SNPs from his infector’s (Fig 1B: hosts

1 and 2); a host can even be sampled earlier than his infector with fewer SNPs (Fig 1B: hosts 1

and 3).

Several recently published methods do allow mutations to occur within the host, but make

other assumptions not fully reflecting the above-described process, such as using a phenome-

nological model for pairwise genetic distances [16], presence of a single dominant strain in

Fig 1. Sketch of stochastic processes involved in data generation process. (A) The four processes

indicated by host 1 infecting host 2, together leading to a difference between the sampled sequences of hosts

1 and 2: (a) transmission, (b) sampling, (c) coalescence, and (d) mutation. As described in Methods, the node

ID numbers are indicated in circles as if this was a complete outbreak. (B) Examples of differences in

sequences for host a infecting both hosts 2 and 3. Host 1 is infected by the original sequence xyz, and the

lightning indicates when mutations take place.

https://doi.org/10.1371/journal.pcbi.1005495.g001
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which mutations can accumulate [9, 17], or absence of a clearly defined infection time [18]. To

take the complete process into account, Didelot et al [7] and Numminen et al [10] took a two-

step approach: first, phylogenetic trees were built, and second, these trees were used to infer

transmission trees. Didelot et al [7] used the software BEAST [19, 20] to make a timed phyloge-

netic tree, and used a Bayesian MCMC method to colour the branches such that changes in

colour represent transmission events. Numminen et al [10] took the most parsimonious tree

topology, and accounted for unobserved hosts by a sampling model (which is an additional

complication). This two-step approach is likely to work better if the phylogenetic tree is prop-

erly resolved (unique sequences with many SNPs), but less so if there is uncertainty in the phy-

logenetic tree. However, also in that case construction of the phylogenetic tree is done without

taking into account that only lineages in the same host can coalesce, and that these go through

transmission bottlenecks during the whole outbreak. That is likely to result in incorrect branch

lengths and consequently incorrect infection times.

Hall et al [12] implemented a method in BEAST for simultaneous inference of transmission

and phylogenetic trees. BEAST allows for much flexibility when it comes to phylogeny and

population dynamics reconstruction (for which it was originally developed [19, 20]), e.g. by

allowing variation in mutation rates between sites in the genome, between lineages, and in

time. However, datasets of fully observed outbreaks often do not contain sufficient informa-

tion for reliable inference: they typically cover only a few months up to at most several years

(as in Didelot et al [7], with tuberculosis) and do not contain many SNPs (usually of the

same order of magnitude as the number of samples). A more important limitation is that the

transmission model implemented in BEAST is rather specific: it allows for transmission only

during an infectious period informed by positive and negative samples, during which infec-

tiousness is assumed to be constant. This may put prior constraints on the topology and order

of events in the transmission and phylogenetic trees, which is undesirable if the primary aim is

to reconstruct the transmission tree with little or no prior information about when hosts were

infectious.

Previously, Ypma et al [11] had also developed a method for simultaneous inference of

transmission and phylogenetic trees, albeit with rather specific assumptions on the within-host

pathogen dynamics and the time and order of transmission events, and with no available

implementation. However, their view on the phylogenetic and transmission trees was quite

different. Instead of a phylogenetic tree with transmission events, they regarded it as a hierar-

chical tree. The top level is the transmission tree, with hosts having infected other hosts

according to an epidemiological transmission model. The lower level consists of phylogenetic

“mini-trees” within each host. A mini-tree describes the within-host micro-evolution. It is

rooted at the infection time and has tips at transmission and sampling events; in its simplest

form it is only a single branch from infection to sampling. The complete phylogenetic tree

then consists of all these mini-trees, connected through the transmission tree. That description

allowed them to develop new MCMC updating steps, some changing the transmission tree,

some the phylogenetic mini-trees.

We built further on that principle to reconstruct the transmission trees of outbreaks, in a

new model and estimation method. The method requires data on pathogen sequences and

sampling times. The model includes all four underlying stochastic processes (Fig 1A), each

described in a flexible and generic way, such that we avoid putting unnecessary prior con-

straints on the order of unobserved events (Fig 1B). This allows for application of the method

to a wide range of infectious diseases, including new emerging infections where we have little

quantitative information on the infection cycle. The method is implemented in R, in a package

called phybreak. We illustrate the performance of the method by applying it to both new and

previously published simulated datasets. We demonstrate the range of applicability by applying
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the model to five datasets on densely sampled infectious disease outbreaks, covering a wide

range of epidemiological settings.

Results

Outline of the method

The method infers infection times and infectors of all cases in an outbreak. The data consist of

sampling times and sequences of all cases, where some of the sequences may be non-informative

if no sequence is available. Using simple models for transmission, sampling, within-host dynam-

ics and mutation, samples are taken from the posterior distributions of model parameters and

transmission and phylogenetic trees, by a Markov-Chain Monte Carlo (MCMC) method. The

main novelty of our method lies in the proposal steps for the phylogenetic and transmission

trees that are used to generate the MCMC chain. It makes use of the hierarchical tree perspec-

tive, in which the phylogenetic tree is described as a collection of phylogenetic mini-trees (one

for each host), connected through the transmission tree (see Methods for details).

The posterior samples are summarized by medians and credible intervals for parameters

and infection times, and by consensus transmission trees. Consensus transmission trees are

based on the posterior support for infectors of each host, defined as the proportion of posterior

trees in which a particular infector infects a host. The Edmonds’ consensus tree takes for each

host the infector with highest support, and uses Edmonds’ algorithm to resolve cycle and mul-

tiple index cases [21], whereas the Maximum Parent Credibility (MPC) tree is the one tree

among the posterior trees with maximum product of supports [12].

The models and parameters used for inference are as follows:

• transmission: assuming that all cases are sampled and the outbreak is over, the mean number

of secondary infections must be 1. The transmission model therefore consists only of a

Gamma distribution for the generation interval, i.e. the time interval between a primary and

a secondary case. This transmission model is equivalent to a Kermack-McKendrick type

renewal model with a generalized infectiousness function, with basic reproduction ratio R0 =

1 in an infinite population [22]. The model contains two parameters: the shape aG, which we

fixed at 3 during our analyses, and the mean mG, which is estimated and has a prior distribu-

tion with mean μG and standard deviation σG. In an uninformative analysis, μG = 1, and σG =

1.

• sampling: the sampling model consists of a Gamma distribution for the sampling interval,

which is the interval between infection and sampling of a case. The model contains two

parameters: the shape aS, which is fixed during the analysis, and the mean mS, which is esti-

mated and has a prior distribution with mean μS and standard deviation σS. In an uninfor-

mative analysis, μS = 1, and σS =1, but aS is chosen to reflect prior information (the

coefficient of variation is a� 1=2

S ); in a naïve analysis we additionally set aS = 3.

• within-host dynamics: the within-host model determines the genetic relation between the

tips of the within-host phylogenetic mini-tree (at sampling and transmission) through a coa-

lescence model, assuming that samples are clonal lineages. The within-host model describes

a linearly increasing pathogen population size w(τ) = rτ, at time τ since infection of a host.

This within-host model results in a bottleneck at transmission of 1 lineage.The slope r has a

Gamma distributed prior distribution with shape ar and rate br. In an uninformative analy-

sis, we used ar = br = 3.

• The mutation model is a site-homogeneous Jukes-Cantor model, with per-site mutation rate

μ. The prior distribution for log(μ) is uniform.
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Analysis of newly simulated datasets

We generated 25 new simulated datasets of 50 cases with the above model, which we modified

by taking a population of 86 individuals and a basic reproduction number R0 = 1.5 (instead of

an infinite population with R0 = 1). Parameters were aG = aS = 10, mG = mS = r = 1, μ = 10−4

and sequence length 104, resulting in 1 genome-wide mutation per mean generation interval

of one year.

Table 1 shows some summary measures on performance of the method (see S1 Results

for additional measures and results for more simulations). A 5,000 cycle burn-in followed by

sampling a single chain of 25,000 MCMC cycles took about 30 minutes on a 2.6 GHz CPU

(Linux). Four sets of results are shown, all with an uninformative prior for μ: one with all

parameters other than μ fixed at their correct value, and three with uninformative priors for

mG and r, and different levels of prior knowledge on mS: informative with correct mean,

Table 1. Performance of the method: analysis of 25 newly simulated datasets of 50 cases, with shape parameters aS = aG = 10.

Level of prior information on mS

Reference a Informative Correct b Uninformative c Informative Wrong d

MCMC sampling

Continuous parameter samples (95% interval of ESS)

Μ 7402; 9591 1047; 2343 218; 1664 1037; 1924

mG 1330; 3399 873; 2873 1003; 2615

mS 314; 779 38; 124 401; 888

r 251; 390 195; 383 197; 335

tinf 1526; 8484 895; 4978 257; 969 531; 4013

phylogenetic tree topology e 1307; 3108 1313; 3035 1311; 3111 1315; 2787

Infectors (% Fisher’s exact tests accepted)

between chains 98.6% 97.8% 98.3% 98.6%

autocorrelation 95.6% 97.1% 95.1% 95.6%

Parameter inference (95% percentile interval of posterior medians)

log10(μ) -4.11; -3.90 -4.10; -3.90 -4.16; -3.88 -4.27; -4.08

mG 0.74; 1.04 0.72; 1.08 0.68; 1.01

mS 0.95; 1.07 0.64; 1.54 1.90; 1.98

r 0.49; 1.11 0.60; 1.18 0.33; 0.74

Tree inference

Infection times (coverage: % of 95% CIs containing the true value)

95.8% 96.3% 95.4% 46.2%

Infection time bias (median) 0.01 yr 0.01 yr 0.09 yr -0.84 yr

95% interval of medians -0.45; 0.62 -0.46; 0.61 -0.78; 0.82 -1.52; -0.15

Infectors (number correct/number identified)

Edmonds’ 34.9/50 34.4/50 34.0/50 34.9/50

MPC 33.3/50 33.1/50 33.0/50 30.6/50

�50% support 27.8/33.2 28.0/33.8 28.2/34.0 21.6/24.1

�80% support 15.2/15.8 15.4/15.9 15.4/16.1 7.8/7.9

Results are based on two MCMC chains of 25,000 samples each; ESS, effective sample size; CI, credible interval; MPC, maximum parent credibility.
a mG, mS, r = 1
b μS = 1, σS = 0.1
c μS = 1, σS =1
d μS = 2, σS = 0.1
e the path-distance approximate ESS [23]

https://doi.org/10.1371/journal.pcbi.1005495.t001
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uninformative, and informative with incorrect mean. The top of the table shows effective sam-

ple sizes (ESSs) for all parameters and for the infection times to evaluate mixing of continuous

parameter samples. The path-distance approximate topological ESS [23] was calculated to

assess phylogenetic tree mixing. To evaluate mixing across and within chains of infectors per

host, we tested for differences between the chains and for dependency within the chains by

Fisher’s exact tests: the proportion of accepted tests (P> 0.05) is a measure of mixing. The

MCMC mixing is generally good for tree inference and model parameters, as most ESSs are

above 200 and an expected 95% of Fisher’s tests is accepted; the only exceptions being mS with

an uninformative prior.

The bottom part of Table 1 shows the results on tree inference. Infection times (using all

MCMC samples) are well recovered if the mean sampling interval does not have a strong

incorrect prior: coverage of 95% credible intervals is good, and medians may only be slightly

positively biased (later than true infection time) if uninformative priors are used. For this sim-

ulation scenario, consensus transmission trees contained almost 70% (35 out of 50) correct

infectors, as determined by counting infectors and resolving multiple index cases and cycles in

the tree (Edmonds’ method [21]) and slightly fewer when choosing the maximum parent cred-

ibility (MPC) tree [12] among the 50,000 posterior trees. Infectors with high support are more

likely correct: 84% (28 out of 33) are correct if the support is above 50%, and 96% (15.2 out of

15.8) are correct if the support is above 80%. These numbers are similar in smaller outbreaks

(S1 Results). If sampling and generation interval distributions are wider, the sampling times

contain less information on the order of infection, which reduces the accuracy of transmission

tree reconstruction (S1 Results). Using prior information on the mean sampling interval did

not improve on this, but if prior information is incorrect, fewer hosts have a strongly sup-

ported infector, which makes inference more uncertain. In conclusion, the method is fast and

efficient if applied to simulated data fitting the model. In that case, no informative priors are

needed for transmission tree inference, though correct estimation of the infection time is

aided by some information.

For comparison, we analysed the same datasets with the Outbreaker package in R [8], which

uses the assumption of mutation at transmission, and with the TransPhylo package [7, 24],

which requires input of a phylogenetic tree that we created in BEAST v2 [19] with a constant

population coalescent model and Jukes-Cantor substitution model. Both Outbreaker and

TransPhylo require input of a generation and sampling interval distribution, for which we sup-

plied the distributions used to simulate the data. Thus, the results are best compared to the

results of the reference scenario of our model (Table 1, left-most column). The numbers of

correctly identified infectors (Edmonds’ consensus tree [21]) were smaller with both alterna-

tive methods: in the 25 outbreaks of Table 1 (50 cases, aG = aS = 10), Outbreaker identifies on

average 27.5 out of 50 infectors correctly, TransPhylo 32.2, and phybreak 34.9. Also in smaller

outbreaks or with different generation and sampling interval distributions, phybreak identified

8–22% more infectors correctly (S1 Results).

We also analysed the simulated results with 20% of the cases removed from the dataset, to

assess performance if outbreaks are not completely observed. Table 2 shows the results with

reference (parameters fixed and correct) and uninformative analyses, in comparison with the

reference scenario and all data observed. With some of the cases removed, some of the re-

maining cases did not have their infector in the dataset anymore; these cases are referred to as

orphans in Table 2. Infection time estimation was less accurate, with only 85% of credible

interval containing the correct value, and more infection times estimated too early in the out-

break. Surprisingly, this was not only the case with orphans, for which this may have been

expected with their infector not present in the data. It turns out that infectors are correctly

identified about 20% less accurately, for all threshold levels of support. However, when
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correcting for presence of the infector in the data, infectors are identified with the same accu-

racy as in the complete dataset. We also checked how frequently the identified infector of

orphans was in fact an earlier ancestor in the transmission tree, i.e. the infector’s infector in

most cases. It turned out that ancestors were often identified as infector, but not as accurately

as the true infector identification in complete datasets (Table 2).

Analysis of previously published simulated data

We applied the method to previously published outbreak simulations [12]. Briefly, a spatial

susceptible-exposed-infectious-recovered (SEIR) model was simulated in a population of 50

farms, with a latent period (exposed) of two days and a random infectious period with mean

10 days and standard deviation 1 day, at the end of which the farm was sampled. Two mutation

rates were used with an HKY substitution model, either Slow Clock or Fast Clock, equivalent to

1 or 50 genome-wide mutations per generation interval of one week, respectively.

Table 3 shows performance of the method with naïve and informative prior information on

the sampling interval distribution (see S1 Results for uninformative). Effective sample sizes of

parameters and phylogenetic trees are a bit smaller than with analysis of the new simulations,

but in most cases still good for infection times, whereas sampling of infectors was excellent.

The low variance of the sampling interval distribution caused some problems in efficient

Table 2. Tree inference with incomplete data, with 25 newly simulated datasets of 50 cases, of which 40 observed, simulated with shape parame-

ters aS = aG = 10.

Complete data Incomplete data

Reference a Reference a Uninformative b

Tree inference

Infection times (coverage: % of 95% CIs containing the true value)

95.8% 84.9% 85.4%

Infection time bias (median)

➢ all cases 0.01 yr (-0.45; 0.62) -0.04 yr (-1.47; 0.56) -0.04 yr (-1.62; 0.70)

➢ infectors in data c -0.03 yr (-1.46; 0.56) -0.02 yr (-1.61; 0.68)

➢ orphans d -0.10 yr (-1.50; 0.56) -0.09 yr (-1.62; 0.68)

Infectors (number correct/number identified)

Edmonds’

➢ all cases 34.9/50 (70%) 23.5/40 (59%) 23.0/40 (58%)

➢ infectors in data c 23.5/32.3 (73%) 23.0/32.3 (71%)

➢ orphans (ancestors) d 3.4/7.7 (45%) 3.6/7.7 (46%)

>50% support

➢ all cases 27.8/33.2 (84%) 19.2/28.1 (68%) 18.6/27.7 (67%)

➢ infectors in data c 19.2/22.6 (85%) 18.6/22.3 (84%)

➢ orphans (ancestors) d 3.2/5.5 (58%) 3.2/5.4 (59%)

>80% support

➢ all cases 15.2/15.8 (97%) 11.2/14.2 (79%) 10.6/13.1 (80%)

➢ infectors in data c 11.2/11.8 (95%) 10.6/11.0 (96%)

➢ orphans (ancestors) d 1.9/2.4 (81%) 1.8/2.1 (88%)

Results are based on two MCMC chains of 25,000 samples each; CI, credible interval.
a mG, mS, r = 1
b μS = 1, σS =1
c only cases whose infector was in the dataset
d only orphans (infector not in the dataset), counting identified ancestors of the true infector.

https://doi.org/10.1371/journal.pcbi.1005495.t002
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sampling of mS because of its high correlation with the associated infection times, but it also

caused problems in the burn-in phase if inference starts with parameter values far from their

actual values (not shown). This was especially the case in the uninformative Slow Clock analy-

ses, resulting in unreliable estimates of the mean sampling interval and infection times (S1

Results). With the Fast Clock analyses there were no such problems, as long as the full set of

proposal paths in the MCMC chain was used (see Methods for details). Posterior median

mutation rates are slightly higher than used for simulation, which could be due to different

rates for transition and transversion in the simulation model [12].

Consensus trees with uninformative and informative settings were almost as good as in the

original publication [12], in which spatial data were used and in which it was known that there

was a latent period and that hosts could not transmit after sampling. In the Slow Clock simula-

tions about 62% of infectors were correct, and in the Fast Clock simulations about 92%. Infec-

tion times were also well recovered in most cases, but not in the uninformative Slow Clock

Table 3. Performance on 25 published simulated datasets in populations of size 50 [12].

Slow Clock simulations Fast Clock simulations

Prior information Naïve a Informative b Naïve a Informative b

MCMC sampling

Continuous parameter samples (95% interval of ESS)

μ 168; 578 401; 951 62; 570 90; 916

mG 259; 936 1948; 4531 798; 1652 2999; 12748

mS 42; 145 43; 87 199; 1737 170; 461

r 189; 357 220; 369 43; 143 184; 613

tinf 166; 1532 222; 559 216; 2264 295; 2796

phylogenetic tree topology c 580; 1764 1501; 4331 104; 972 83; 796

Infectors (% Fisher’s exact tests accepted)

between chains 95.8% 97.4% 92.5% 97.6%

autocorrelation 94.6% 96.4% 87.7% 96.0%

Parameter inference (95% interval of posterior medians)

log10(μ) -4.85; -4.67 -4.95; -4.78 -3.26; -3.15 -3.20; -3.16

mG 2.1; 5.0 3.7; 5.7 4.2; 6.1 4.7; 6.1

mS 6.5; 10.2 11.2; 12.6 9.7; 13.9 11.4; 12.6

r 0.75; 1.3 0.36; 0.77 0.82; 2.1 0.30; 1.2

Tree inference

Infection times (coverage: % of 95% CIs containing the true value)

76.1% 97.8% 94.6% 94.2%

Infection time bias (median) 3.97 days 0.10 days 0.25 days 0.01 days

95% interval of medians (-3.20; 8.80) (-1.98; 2.28) (-6.49; 5.86) (-2.00; 1.97)

Infectors (number correct/number identified)

Edmonds’ 29.0/49.3 30.8/49.3 32.8/49.3 45.5/49.3

MPC 25.4/49.3 29.9/49.3 30.8/49.3 45.5/49.3

�50% support 12.9/14.4 25.2/30.9 23.4/28.9 45.4/48.7

�80% support 3.0/3.1 18.5/19.7 4.4/5.0 40.9/42.1

Results are based on two MCMC chains of 25,000 samples each. The mean outbreak size was 49.3 cases; ESS, effective sample size; CI, credible interval;

MPC, maximum parent credibility.
a aS = 3, μS = 1, σS =1
b aS = 144, μS = 12, σS = 1
c path-distance approximate ESS [23]

https://doi.org/10.1371/journal.pcbi.1005495.t003
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analysis (S1 Results). In the naïve analyses, the Slow Clock consensus trees were only slightly

less good (but not the infection times), whereas the Fast Clock consensus trees became much

worse, with only 65% of infectors correct. In conclusion, the method performs well if applied

to data simulated with a very different model. Good prior information on the sampling inter-

val can significantly improve both MCMC mixing and transmission tree inference, especially

if the genetic data contain many SNPs.

Analysis of published datasets

We finally applied the method to five published datasets on outbreaks of Mycobacterium
tuberculosis (Mtb, [7]), Methicillin-resistant Staphylococcus aureus (MRSA, [25]), Foot-and-

mouth disease (FMD2001 and FMD2007, [9, 11, 26, 27]), and H7N7 avian influenza (H7N7,

[12, 28–30]).

The results for the four smaller datasets are shown in Table 4, which shows that mixing of

the MCMC chains was generally good. Fig 2 shows the Edmond’s consensus trees (full details

in S1 Results), with each host’s estimated infection time and most likely infector, colour coded

to indicate posterior support. Fig 3 shows one sampled tree for each dataset (from the posterior

set of 50,000), matching the MPC consensus tree topology.

The Mtb data were analysed with naïve prior information, which resulted in a median sam-

pling interval of 419 days (similar to estimated incubation times [31]), a median generation

interval of 107 days, and a mutation rate equivalent to 0.3–1.3 mutations per genome per year,

as estimated before [32, 33]. The Edmonds’ consensus transmission tree (Fig 2A) shows low

support for most infectors, which is a reflection of the low number of SNPs, but also of the

long sampling interval relative to the generation interval, which makes the sampling time less

Table 4. Summary statistics for four published datasets.

Mtb MRSA FMD2001 FMD2007

Prior information Naïve a Informative b Naïve a Naïve a

MCMC sampling

Continuous parameter samples (ESS)

μ 273 3558 393 1007

mG 145 551 1614 1536

mS 38 560 362 292

r 591 428 866 1144

tinf (range of ESSs) 143; 1134 76; 2255 289; 3401 686; 3405

phylogenetic tree c 1126 600 1002 3071

Infectors (% Fisher’s exact tests accepted)

between chains 31/33 34/36 14/15 10/11

autocorrelation 31/33 36/36 14/15 11/11

Parameter inference (95% interval of posterior medians)

log10(μ) -9.4 (-9.7; -9.1) -8.1 (-8.3; -8.0) -4.4 (-4.5; -4.3) -4.6 (-4.8; -4.4)

mG 107 (49; 177) 22 (16; 33) 14 (10; 21) 7.5 (4.8; 13)

mS 419 (185; 619) 31 (21; 44) 14 (8; 22) 9.9 (5.5; 18)

r 0.88 (0.23; 2.3) 0.85 (0.21; 2.2) 1.1 (0.40; 2.5) 0.91 (0.27; 2.4)

Results are based on two MCMC chains of 25,000 samples each; ESS, effective sample size;
a aS = 3, μS = 1, σS =1
b aS = 1, μS = 15, σS = 5
c path-distance approximate ESS [23]

https://doi.org/10.1371/journal.pcbi.1005495.t004

Simultaneous inference of phylogenetic and transmission trees in infectious disease outbreaks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005495 May 18, 2017 10 / 32

https://doi.org/10.1371/journal.pcbi.1005495.t004
https://doi.org/10.1371/journal.pcbi.1005495


informative of the order of infection. However, the same index case K02 and three clusters as

identified in Didelot et al [7] are distinguished: one starting with K22, one with K35, and the

remaining cases starting with K16 or infected by the index case. The main difference compared

to the original analysis lies in the shape of the phylogenetic tree and the estimated infection

times (Fig 3A). Whereas the topology is very similar, the timing of the branching events is dif-

ferent: in the original tree, internal branches decrease in length when going from root to tips.

That shape is consistent with a coalescent tree based on a single panmictic population but

also reflects the fact that three mutations separate the two clades after the root node, whereas

the posterior median genome-wide mutation rate is estimated at 0.48 per year (mutation

rate × sequence length). By taking into account the fact that coalescent events take place within

individual hosts, our analysis shows branch lengths that are more balanced in length across the

Fig 2. Consensus Edmonds’ transmission trees for four of the five analysed datasets. Crosses indicate sampling days, coloured links indicate most

likely infectors, with colours indicating the posterior support for that infector. (A) Mtb data [7]; (B) MRSA data [25]; (C) FMD2001 data [26]; (D) FMD2007

data [27].

https://doi.org/10.1371/journal.pcbi.1005495.g002
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tree. Importantly, this results in a more recent dating of root of the tree: early 2008 (Fig 3A)

instead of early 2004 [7].

The MRSA data were analysed with an informative prior for the mean sampling interval mS

and a shape parameter aS based on data on the intervals between hospitalisation and the first

positive sample. The estimated mutation rate is similar to literature estimates [34, 35], but the

posterior median mS of 31 days is considerably higher than the prior mean of 15 days (Table 4).

This may be explained by the two health-care workers (HCW_A and HCW_B), which have

very long posterior sampling intervals that were not part of the data informing the prior

(Edmonds’ consensus tree, Fig 2B). In contrast with the original analysis, we now identify a

transmission tree rather than only a phylogenetic tree, resulting in the observation that the two

health-care workers may not have infected any patient in spite of their long infection-to-sam-

pling interval. Almost all transmission events with low support (<20%) involved unsequenced

Fig 3. Consensus MPC transmission and phylogenetic trees for four of the five analysed datasets. Each tree is one posterior sample matching

the MPC tree topology. Colours are used to indicate the hosts in the transmission tree: connected branches with identical colour are in the same host,

and a change of colour along a branch is a transmission event. (A) Mtb data [7]; (B) MRSA data [25]; (C) FMD2001 data [9, 26]; (D) FMD2007 data [9,

27].

https://doi.org/10.1371/journal.pcbi.1005495.g003
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hosts. Two of them were identified as possible infector (P5 and P7), in the initial stage of the

outbreak, when only few samples were sequenced. This indicates that some unsequenced hosts

may have played a role in transmission, but that it is not clear which. Finally, a major difference

between our results and those in the original publication is the shape of the phylogenetic tree

and the dating of the tree root: around 1st January (Fig 3B) instead of 1st September the year

before [25].

Analysis of the FMD2001 and FMD2007 datasets resulted in posterior sampling intervals

with means of 14 and 10 days, respectively, close to the 8.5 days estimated from epidemic data

[36]. Generation intervals were about the same (Table 4). Both datasets contained more SNPs

than the Mtb and MRSA data, with unique sequences for each host and higher mutation rates,

similar to published rates in FMD outbreak clusters [37]. This resulted in equal Edmonds’ and

MPC consensus transmission trees, and much higher support for most infectors (Figs 2C, 2D,

3C and 3D). Our transmission tree is almost identical to the one from Ypma et al [11], who

used a closely related method but did not allow for transmission after sampling. When com-

paring to the analysis of these data by Morelli et al [9], the topologies of the phylogenetic trees

(Fig 3C and 3D) match the topologies of the genetic networks (Fig S18 in [9]), but the trans-

mission trees are quite different. The main differences are that in the FMD2001 outbreak, they

identify farm B as the infector of C, E, K, L, O, and P; and in the FMD2007 outbreak, they have

IP4b infecting IP3b, IP3c, IP6b, IP7, and IP8. Differences are likely the result of their use of the

Table 5. Summary statistics for H7N7 dataset.

Sequenced gene

HA NA PB2 All genes

MCMC sampling

Continuous samples a

Μ 2023 1844 1418 1363

mG 1216 853 1262 1239

mS 190 192 171 171

r 166 120 133 248

tinf (range) 894; 8122 829; 6870 1004; 6485 1392; 10605

phylogenetic tree d 2898 2077 1960 1334

Infectors b

between chains 92.5% 95.4% 95.4% 93.3%

autocorrelation 95.9% 97.1% 95.4% 95.4%

Parameter inference c

log10(μ) -4.44 (-4.55; -4.35) -4.44 (-4.56; -4.33) -4.57 (-4.67; -4.46) -4.51 (-4.58; -4.45)

mG 4.0 (3.5; 4.6) 3.6 (3.1; 4.3) 4.0 (3.5; 4.6) 4.6 (4.0; 5.4)

mS 7.8 (6.8; 8.9) 7.8 (6.9; 8.9) 7.8 (6.9; 9.0) 8.5 (7.4; 9.8)

r 0.58 (0.16; 1.5) 0.45 (0.060; 1.6) 0.33 (0.060; 1.1) 0.67 (0.20; 1.6)

Phylogenetic inference

Tree parsimony scores c 102 (101; 103) 83 (82; 85) 100 (99; 101) 313 (312; 315)

#SNPs in data 90 73 94 257

Results are based on five MCMC chains of 25,000 samples each, with aS = 10; μS = 7; σS = 0.5; aG = 3; μG = 5; σG = 1; ar = br = 1. SNP = single nucleotide

polymorphism.
a effective sample sizes
b fraction of Fisher’s exact tests with P > 0.05
c medians and 95% credible intervals
d path-distance approximate ESS [23]

https://doi.org/10.1371/journal.pcbi.1005495.t005
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spatial data [9]. Use of additional data is expected to improve inference, although their esti-

mates of infection-to-sampling intervals (about 30 days) were unrealistically long.

The H7N7 dataset was analysed with the sequences of the three genes HA, NA, and PB2

separately, and combined; with informative priors for both the mean sampling and mean

Fig 4. Consensus Edmonds’ transmission tree for the H7N7 dataset [12, 28, 30]. Infected premises are (not uniquely) coded by location

(as in [12]), median posterior infection day, and sampling day. Coloured arrows indicate most likely infectors, with colours indicating the

posterior support for that infector. The asterisk (*) indicates the exceptionally long generation time at the start of a small Limburg cluster.

https://doi.org/10.1371/journal.pcbi.1005495.g004
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generation intervals. Five parallel chains were run, and mixing was generally good (Table 5); it

took about 7 hours on a 2.6GHz CPU to obtain 25,000 unthinned samples in a single chain.

Analysis of the three genes combined resulted in a posterior median mS of 8.4 days, slightly lon-

ger than the 7 days on which the informative prior was based [38], and longer than in the sepa-

rate analyses. The mean generation time was slightly shorter than the prior mean: 4.6 days with

all genes. We also calculated the parsimony scores of the posterior sampled trees, defined as the

minimum numbers of mutations on the trees that can explain the sequence data [39], and com-

pared these with the numbers of SNPs in the data (Table 5). It appeared that with the genes sepa-

rately analysed, parsimony scores were 6–13% higher than the numbers of SNPs, indicating

some homoplasy in the phylogenetic trees (this was not seen with any of the other datasets). The

analysis of all genes together resulted in parsimony scores of 18% higher than the number of

SNPs. The estimated mutation rates are among the highest estimates for Avian Influenza Virus,

as already noted before in earlier analyses of the same data [28, 40]. Fig 4 shows the Edmonds’

consensus tree in generations of infected premises, indicating locations and inferred infection

days (full details in S1 Results). Without the use of location data, there is a large Limburg

cluster, a Central cluster including two sampled Limburg cases, and a small Limburg cluster of

three cases with an exceptionally long generation time (asterisk in Fig 4). A closer look at the

sequences makes clear that the first of these cases (L24/34) has 3 SNPs different from assigned

infector G4/11, and 4 SNPs different from cases in the large Limburg cluster. Using geographic

data as in earlier analyses [12, 30] will probably place these cases within that cluster.

Discussion

We developed a new method to reconstruct outbreaks of infectious diseases with pathogen

sequence data from all cases in an outbreak. Our aim was to have an easily accessible and

widely applicable method. For ease of access, we developed efficient MCMC updating steps

which we implemented in a new R package, phybreak. We tested the method on newly simu-

lated data, previously published simulated data, and published datasets. Our model is fast:

25,000 iterations took roughly 30 minutes with the Mtb and MRSA datasets of about 30 hosts,

and 7 hours with the full three-genes H7N7 dataset in 241 hosts. Two chains with 50,000 poste-

rior samples proved sufficient (measured by ESS) for tree inference (infectors and infection

times) and most model parameters with most simulated and published data. The package con-

tains functions to enter the data, to run the MCMC chain, and to analyse the output, e.g. by

making consensus trees and plotting these (as in Figs 2 and 3).

Analysis of simulated datasets showed that the sampling times play an important role in

transmission tree reconstruction. Firstly, the use of prior information on the sampling interval

distribution (shape parameter as well as mean) greatly improves mixing of the MCMC chain

(Tables 1 and 3). Secondly, the use of (correct) prior information on the sampling interval dis-

tribution can significantly improve infection time estimation as well as transmission tree

reconstruction (Table 3). Thirdly, the extent to which sampling times are correlated with infec-

tion times determines how well the method is capable of reconstructing transmission trees,

which appears from the fact that outbreaks are less well reconstructed with wider sampling

interval distributions (Table 1 vs S1 Results) and the low support for the posterior infectors in

the Mtb analysis, where sampling intervals were much longer than generation intervals. There-

fore, it is advisable to use prior information on sampling intervals in the analysis (if available),

and also to base conclusions not only on the summary transmission tree, but also on the poste-

rior support of links in that tree.

We tested the method on five published datasets, with outbreaks of viral and bacterial infec-

tions, and in diverse settings of open and closed populations, in human and veterinary context.
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The method performed well on all datasets in terms of MCMC chain mixing and tree recon-

struction. With naive priors on mean sampling intervals and mutation rates, we obtained esti-

mates that were all very accurate when compared to literature, and the inferred transmission

trees seemed as good, or even better when considering estimated infection times. With two

datasets (MRSA and H7N7) we included some prior information on sampling and/or genera-

tion intervals, which mainly affected the inferred infection times, but not so much the trans-

mission trees. It is possible that not all cases have been observed in these outbreaks, especially

in the Mtb and MRSA outbreaks, an assumption nevertheless made by our model. If not too

many cases are missing, the analyses of simulations show that this does not disturb identifica-

tion of infector-host pairs that are in the data. It will only limitedly affect identification of

transmission clusters, because if a host’s true infector is not in the data, the true infector’s

infector is often selected as the most likely infector. Only some of the infection times may have

been estimated too early.

For wide applicability, we kept the underlying model simple without putting prior con-

straints on the order of unobserved events such as infection and coalescence times. Four sub-

models with only one or two parameters each were used for sampling, transmission, within-

host pathogen dynamics, and nucleotide substitution. The sampling model, a gamma distribu-

tion for the interval between infection and sampling, has a direct link to inferred infection

times, and is the model for which it is most likely that prior information is available from

epidemiological data in the same or other outbreaks. We used simulated data to study the

effect of uninformative or incorrect prior information on shape parameter aS and mean mS.

It appears that an incorrect aS or an incorrect informative prior for mS does reduce accuracy

of inferred infection times. However, consensus trees are hardly affected, at least if the number

of SNPs is in the order of the number of hosts as we saw in the actual datasets (Table 1 and

Table 2 Slow Clock). Only the precision of consensus trees is reduced, i.e. there are fewer

inferred infectors with high support. Results with the Fast Clock simulations did show a signifi-

cant reduction in consensus tree accuracy. In that case, there are so many SNPs that the phylo-

genetic tree topology and times of coalescent nodes are almost fixed; then, too much variance

in sampling intervals (low aS) results in many incorrect placements of infection events on that

tree. Possibly, with so many SNPs it could be more efficient to first make the phylogenetic tree,

and then use that tree to infer transmission events [7, 10], but it is questionable whether

genome-wide mutation rates are ever so high that this becomes a real issue [41].

The submodel for transmission is relevant for transmission tree inference in describing the

times between subsequent infection events. Transmission is modelled as a homogeneous

branching process, implicitly assuming that there was a small outbreak in a large population,

with a reproduction number (mean number of secondary cases per primary case) of 1. If all, or

almost all, infectors are in the data, the generation interval distribution reflects the course of

infectiousness, separating the cases in time along the tree. This interpretation may be obscured

with many unobserved cases, as in the absence of the actual infector, the method often identi-

fies an earlier ancestor in the transmission tree as infector (Table 2). Apart from not taking het-

erogeneity across hosts into account (an extension we wish to leave for future development,

see below), the current model also neglects the possibility that susceptibles can have contact

with several infecteds in a smaller population or more structured contact network. That could

be modelled by a force of infection, which would more realistically describe contraction of

the generation interval during the peak of the outbreak, and provide estimates for relevant

quantities such as reproduction ratios [6]. However, it requires information about uninfected

susceptibles in the same population and a more complicated transmission model, which is a

significant disadvantage when it comes to general applicability, one of our primary aims. More

importantly, for transmission tree inference it does not seem to be a problem: the analyses of
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the published simulations were almost as accurate as in the original publication [12], and these

simulations were in very small populations with almost all hosts infected.

The role of the within-host model is to integrate over all possible phylogenetic mini-trees

and mutation events within the hosts, and through that, to obtain a posterior distribution of all

transmission trees consistent with the (genetic) data. For this, we used a coalescence model

based on a linearly growing within-host population, combined with a Jukes-Cantor substitu-

tion model. These models contain each only one parameter, but we think that—as long as only

few mutations occur in each host, as in our own simulations, the published Slow Clock simula-

tions, and most datasets—for most applications more complex models are not needed for the

following reasons. First, the gross structure of the phylogenetic tree topology and branch

lengths result from transmission and sampling models, and only the finer within-host details

are determined by the within-host model. With only few mutations within each host, precise

mini-tree inference is not possible, and for our aim of inferring transmission trees, unneces-

sary. Second, and confirming this imprecise mini-tree inference, most tree proposal steps

include simulation of the within-host phylogenetic mini-trees, resulting in good mixing of

transmission and phylogenetic tree topologies. The fact that proposing from the prior distribu-

tion works so well indicates that the sequence data do not contain much information on

within-host branch lengths. Third, if there are few SNPs, the posterior contains almost only

phylogenetic trees with fewest mutations (maximum parsimony). It is therefore not likely that

tree inference will improve with more general substitution models. Fourth, inference of trans-

mission trees and infection times appears not to be biased if the underlying simulation model

was more realistic (Table 2). If data do contain many SNPs, as in the Fast Clock simulations,

more detailed and realistic models for within-host pathogen growth and nucleotide substitu-

tion do probably improve inference, especially on the phylogenetic tree. Nonetheless, even

then our method was still capable of correctly inferring the infection times and transmission

trees with almost the same accuracy as in the original publication.

With two exceptions, the parsimony scores of posterior tree samples were always equal to

the number of SNPs in the datasets (the minimum possible). The first exception is the set of

Fast Clock published simulations, which had so many SNPs that many of the same mutations

had occurred in parallel. The second exception is the H7N7 dataset. In that case, the analyses

of the three genes separately resulted in parsimony scores with 6–12 (6%-13%) more muta-

tions than the number of SNPs, whereas the analysis of all genes together resulted in a parsi-

mony score of 313 (median) to explain only 257 SNPs, a surplus of 56 mutations (18%). The

results for separate genes could indicate positive selection, confirming the analysis by Bataille

et al [28], who even identified specific mutations that had occurred multiple times. The even

higher discrepancy for the combined analysis is suggestive of reassortment events, also recog-

nised by Bataille et al [28].

The proposed method and implementation opens perspectives for further extending the

methodology to reconstruct phylogenetic and transmission trees from pathogen sequence

data. One possible set of extensions arises from changes to the models embedded in our

method, to include additional aspects of outbreak dynamics. For instance, the generation time

distribution (infectiousness curve) could be made dependent on the sampling interval, which

may be relevant for the MRSA outbreak analysis in which the two health-care workers may

have transmitted the bacterium until late after infection. This dependence is implicit in meth-

ods in which transmission is modelled more mechanistically (e.g. [11, 12, 16]), but we chose

not to do that to keep the model more generic. Another important extension would be to relax

the assumption of a complete bottleneck at transmission; the bottleneck may be larger in real-

ity [42, 43] and it has previously been relaxed by looking at transmission pairs [44] or model-

ling it as separate transmission events [18], but not yet in a timed transmission tree. In our
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model, this would mean that a host can carry multiple phylogenetic mini-trees, rooted at the

same infection time to the same infector. A third extension would be to include the possibility

of reassortment of genes within a host, primarily motivated by the results of the H7N7 analysis.

This may be done by modelling the coalescent process within hosts, the phylogenetic mini-

trees, differently for different genes, but constrained by a single transmission tree. Finally, it

would be possible to allow for multiple index cases, which may play a role in open populations

with possible re-introductions (as in the MRSA setting), or when only a subset of a large epi-

demic is analysed (the FMD2001 dataset). This is implemented in models using genetic models

based on pairwise genetic distances [8, 16] and with a model assuming coalescence at trans-

mission [45], but is considered a major challenge with a within-host coalescent model [46].

Multiple index cases could also reflect unobserved hosts in the outbreak itself, recently

addressed by Didelot et al [24] in their two-step approach of first inferring a phylogenetic and

then a transmission tree.

A second type of extension would stem from incorporating additional data. An example is

the use of data that make particular transmissions more or less likely, such as contact tracing

data, or censoring times for infection times per host or transmission times between sets of

hosts, motivated by the MRSA dataset in which admission and discharge days are known for

each patient. Sampling of infection times and infectors could be constrained by these addi-

tional data (as in [12, 30]) and could then become less dependent on the sampling times and

sampling interval distribution, as in the current implementation. Another example is the use

of spatial data in combination with a spatial transmission kernel, so that the likelihood of infec-

tors includes a distance-dependency, a possible extension motivated by the FMD and H7N7

analyses (as in [9, 30]). A third example is the use of host characteristics to model infectivity as

a function of covariates. With the MRSA data, it would then be possible to test for increased

infectivity of the health-care workers, or to test for differences in transmissibility in the three

wards. In general, the use of additional host data would make dealing with hosts for which a

sequence is not available less problematic: the method currently can include these hosts, but

without additional data their role is unclear and they are often placed at the end of transmis-

sion chains in consensus trees (Fig 2B, Fig 3).

Methods

Data

We developed our model for fully observed outbreaks of size n hosts. Data consist of the sam-

pling times S and DNA sequences G, which means that for each host i we know the time of

sampling or diagnosis Si and the sequence Gi associated with the sampling time. Hosts without

available sequence are given a sequence with noninformative nucleotides (only ‘n’).

We illustrate the method with the following five datasets from earlier publications (all in S1

Data):

1. Tuberculosis (Mycobacterium tuberculosis, Mtb). This dataset was analysed by Didelot et al

[7]. It consists of 33 Mtb cases in a population of drug users (approximate population size

400), with samples collected in a 2.5 years time frame. The 4.4 Mbp long sequences con-

tained 20 SNPs. Analysis of this dataset tests the performance of this method in an outbreak

with relatively few cases in a large population.

2. Methicillin-resistant Staphylococcus aureus (MRSA). This is the dataset from Nubel et al

[25], with 36 MRSA cases in a neonatal ICU sampled within a time period of 7 months.

Sampling dates were available for all cases, but sequences only for 28 cases, revealing 26

SNPs in the non-repetitive core genome of 2.7 Mbp. Analysis of this dataset tests for the
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performance of this method in an outbreak in a small population, including cases without

sequence.

3. Foot-and-mouth disease (FMD2001). This is the dataset from Cottam et al [26] also ana-

lysed by several others [9, 11], with 15 infected premises within a time period of 2 months.

Sequences were available for all cases, with 85 SNPs among 8196 nucleotides. Analysis of

this dataset and the next tests for the performance of this method in a small completely

sampled outbreak in a large population and allows comparison of the estimated transmis-

sion tree to earlier results.

4. Foot-and-mouth disease (FMD2007). This is the dataset from Cottam et al [27], also ana-

lysed by Morelli [9], with 11 infected premises within a time period of 2 months. Sequences

were available for all cases, with 27 SNPs among 8176 nucleotides

5. H7N7 avian influenza (H7N7). This dataset has been analysed by several authors [12, 28–

30], and consists of 241 poultry farms in a time period of about 2.5 months. Sequences of

the HA, NA, and PB2 genes were available on GISAID for 228 farms, with associated sam-

pling dates. The total number of SNPs was 257 in 5541 nucleotides. For the 13 unsampled

farms we used the culling date minus 2 days as the observation day (the mean sampling-to-

culling interval was 2.4 days in the 228 sampled farms). We analysed the data for the three

genes separately, and combined (concatenated). To inform a prior distribution for the

interval from infection to sampling, we used estimated infection times from Boender et al

[38]. Analysis of this dataset tests for the performance of this method in a large outbreak,

including cases without sequence.

The model and likelihood

The model describes the spread of an infectious pathogen in a population through contact

transmission, the dynamics of the pathogen within the infected hosts, and mutation in the

DNA or RNA of that pathogen. Furthermore, it describes how these dynamics are observed

through sampling of pathogens in infected hosts. We infer the transmission tree and parame-

ters describing the relevant processes by a Bayesian analysis, using Markov-Chain Monte

Carlo (MCMC) to obtain samples from the posterior distributions of model parameters and

transmission trees (infectors and infection times of all cases). We first introduce the models

and likelihood functions; then we explain how we update the transmission trees and parame-

ters in the MCMC chain.

The posterior distribution is given by

PrðI;M; P; θjS;GÞ / PrðS;GjI;M; P; θÞ � PrðI;M;P; θÞ: ð1Þ

Eq (1) is the probability for the unobserved infection times I, infectors M, phylogenetic tree P,

and model parameters θ, given the data (sampling times and sequences). The posterior proba-

bility can be split up into separate likelihood terms representing the four processes, times a

prior probability for the parameters (see S1 Methods):

PrðI;M; P; θjS;GÞ / PrðGjP; θÞ � PrðPjS; I;M; θÞ � PrðSjI; θÞ � PrðI;MjθÞ � PrðθÞ: ð2Þ

We now introduce the four models, the associated likelihoods, and prior distributions for

associated parameters.

Transmission. We assume that the outbreak started with a single case. Each case pro-

duced secondary cases at random generation intervals after their own infection (Gamma dis-

tribution with shape aG and mean mG). We consider that all untimed transmission tree
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topologies are equally likely, so that the probability of the transmission tree only depends on

its timing. The outbreak is described by the vectors I and M with infection times Ii and infec-

tors Mi for all numbered cases i. The infector of the index case is 0. The likelihood is the prod-

uct of probability densities (dGðaG;mGÞ
ð�Þ) of all generation times in the outbreak:

PrðI;MjaG;mGÞ ¼
Y

ijMi>0

dGðaG ;mGÞ
ðIi � IMi

Þ: ð3Þ

Sampling. We assume that all cases are observed and sampled once at random times after

they were infected, according to a Gamma distribution with shape aS and mean mS. Transmis-

sion and sampling are independent, so transmission can take place after sampling, and a case

can be sampled earlier than its infector. The likelihood is the product of probability densities

of all sampling intervals in the outbreak:

PrðSjI; aS;mSÞ ¼
Y

i

dGðaS;mSÞ
ðSi � IiÞ: ð4Þ

Within-host dynamics. The main function of the within-host model is to allow for a sto-

chastic coalescent process within the host. Each host i harbours its own phylogenetic mini-tree

Pi, with the tips being the transmission and sampling events, and the root being the time of

infection, before the first coalescent node. Thus, samples are assumed to be clonal lineages. In

its simplest form, a phylogenetic mini-tree consists of a single branch from infection time to

sampling time. The likelihood is the product of all likelihoods per host:

PrðPjS; I;M; rÞ ¼
Y

i

PrðPijSi; I;M; rÞ; ð5Þ

in which r is the parameter describing the within-host dynamics (see below). The likelihoods

per mini-tree are dependent on all infection times and infectors, because these determine the

transmission times with host i as infector.

Going backwards in time, coalescence between any pair of lineages within a host takes place

at rate 1/w(τ,r), where w(τ,r) = rτ denotes the linearly increasing within-host pathogen popula-

tion size at (forward) time τ since infection of the host. With this particular function coalescent

nodes tend to be close to the transmission events if r is small, whereas they tend to be soon

after infection of the infector if r is large. This function also naturally results in only one lineage

at the time of infection (complete transmission bottleneck), as the coalescence rate goes to

infinity near the time of infection.

In the complete phylogenetic tree P, three types of nodes x are distinguished (Fig 1A):

nodes x = 1. . .n are the sampling nodes of the corresponding hosts i = 1. . .n, i.e. the tips of the

tree at which sampling took place; nodes x = n+1. . .2n-1 are the coalescent nodes; nodes

x = 2n. . .3n-1 are the transmission nodes, i.e. the points in the tree at which a lineage goes

from one host to the next. By hx we identify the host in which node x resides; for transmission

nodes it identifies the primary host (infector). The mini-tree Pi is the set of nodes within host i,
and τx is the time of node x since infection of host hx, so τi is the time of sampling. Let Li(τ)

denote the number of lineages in host i at time τ since infection:

LiðtÞ ¼ 1þ
X

xjx2Pi\n<x<2n

uðt � txÞ �
X

xjx2Pi\x�2n

uðt � txÞ � uðt � tiÞ; ð6Þ

in which u(τ) is the heaviside step function, i.e. u(τ) = 0 if τ< 0, and u(τ) = 1 if τ� 0. In other

words, Li(0) = 1 by definition because of the complete transmission bottleneck, and then it
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increases by 1 at each coalescent node and decreases by 1 at each transmission event and at

sampling. The likelihood for each mini-tree can then be written as

PrðPijSi; I;M; rÞ ¼ exp �
Z 1

0

LiðtÞ

2

 !
1

wðt; rÞ
dt

 !
Y

xjx2Pi\n<x<2n

1

wðtx; rÞ
; ð7Þ

with
0

2

 !

�
1

2

 !

� 0. The first term is the probability to have no coalescent events during

the intervals in which there are two or more lineages, the second term is the product of coales-

cent rates at the coalescent nodes.

Mutation. We use a single fixed mutation rate μ for all sites, with mutation resulting in

any of the four nucleotides with equal probability (Jukes-Cantor). This parameterisation

means that the effective rate of nucleotide change is 0.75μ. Given the phylogenetic tree, this

results in the likelihood:

PrðGjP; mÞ ¼
Y

loci

X

fA;C;G;Tg3n� 1

Y

x

1

4
�

1

4
expð� mðtx � tvxÞÞ

� �Imut ð1� NÞ

�
1

4
þ

3

4
expð� mðtx � tvxÞÞ

� �ð1� Imut Þð1� NÞ

:ð8Þ

Here, we multiply over all coalescent and transmission nodes x, which occur at time tx and

have parent node vx; Imut indicates if a mutation occurred on the branch between x and νx, and

N indicates if a branch ends with a tip with noninformative nucleotide (‘n’ in the sequence).

The likelihood is calculated using Felsenstein’s pruning algorithm [47].

Prior distributions. Here we describe our general choice of prior distributions, not the

particular parameterization in our analyses (Section Evaluating the method). We chose fixed val-

ues for aG and aS, the shape parameters of generation and sampling intervals. For their means

mG and mS, we used prior distributions with means μG and μS and standard deviations σG and

σS, which are translated into Gamma-distributed priors for rate parameters bG = aG/mG and

bS = aS/mS, distributed as Γ(a0,G,b0,G) and Γ(a0,S,b0,S) (see S1 Methods). For the slope r of the

within-host growth model, we chose a Gamma-distributed prior with shape and rate ar and br.
We chose log(μ) to have a uniform (improper) prior distribution, equivalent to Pr(μ)/ 1/μ.

Inference method

We use Bayesian statistics to infer transmission trees and estimate the model parameters from

the data, and MCMC methods to obtain samples from the posterior distribution. The proce-

dure is implemented as a package in R (phybreak), which can be downloaded from GitHub

(www.github.com/donkeyshot/phybreak) and is available on CRAN (cran.r-project.org/web/

packages/phybreak/index.html). The package also contains functions to simulate data, and to

summarize the MCMC output.

The main novelty of our method lies in the proposal steps for the phylogenetic and trans-

mission trees, used to generate the MCMC chain. It makes use of the hierarchical tree perspec-

tive, in which the phylogenetic tree is described as a collection of phylogenetic mini-trees (one

for each host), connected through the transmission tree. Most proposals are done by taking

one host, changing its position in the transmission tree, and simulating the phylogenetic mini-

trees in the hosts involved in that change. In a second type of proposal, the transmission tree is

changed while keeping the phylogenetic tree intact. A third type of proposal only resimulates

the within-host mini-tree topology, keeping the transmission tree and coalescent times intact.

Initialization of the MCMC chain requires initial values for the six model parameters (aG,

mG, aS, mS, r, and μ). The transmission tree is initialized by generating an infection time for

Simultaneous inference of phylogenetic and transmission trees in infectious disease outbreaks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005495 May 18, 2017 21 / 32

http://www.github.com/donkeyshot/phybreak
http://cran.r-project.org/web/packages/phybreak/index.html
http://cran.r-project.org/web/packages/phybreak/index.html
https://doi.org/10.1371/journal.pcbi.1005495


each host (sampling day minus random sampling interval). The first infected host is the index

case, and for the remaining hosts an infector is randomly chosen, weighed by the density of

the generation time distribution. Finally, the phylogenetic mini-trees in each host are simu-

lated according to the coalescent model and combined with one another to create a complete

phylogenetic tree.

Each MCMC iteration cycle starts with updates of the transmission and phylogenetic trees,

followed by updates of the model parameters. To start with the latter, the parameters mS and

mG are directly sampled from their posterior distribution given the current infection times and

transmission tree (Gibbs update). This is done by sampling the rate parameters bS and bG,

which were given conjugate prior distributions (see above). If TS ¼
X

Si � Ii is the sum of n
sampling intervals in the tree, a0,S and b0,S are the shape and rate of the prior distribution for

bS, then a new posterior value is drawn as

bS � Gðshape ¼ a0;S þ aSn; rate ¼ b0;S þ TSÞ; ð9Þ

from which mS is calculated as aS/bS. Posterior values for mG are drawn from a similar distribu-

tion, with TG ¼
X

Ii � IMi
the sum of n– 1 generation intervals. The parameters r and μ are

updated by Metropolis-Hastings sampling; proposals r’ and μ’ are generated from lognormal

distributions LN(r,σr) and LN(μ,σμ), i.e. with current values as mean. The standard deviations

are calculated based on the expected variance of the target distributions, given the outbreak

size for σr, and number of SNPs for σμ (see S1 Methods).

Updating the phylogenetic and transmission trees. The phylogenetic and transmission

trees, described by the unobserved variables Z = {I,M,P}, are updated by proposing a new tree

with proposal density H(Z’|Z,S,θ), and accepting with Metropolis-Hastings probability (using

Eq (1)) α,

a ¼ min 1;
PrðS;GjZ0; θÞ � PrðZ0; θÞ � HðZjZ0; S; θÞ
PrðS;GjZ; θÞ � PrðZ; θÞ � HðZ0jZ; S; θÞ

� �

: ð10Þ

Per MCMC iteration cycle, n proposals are done with each host as a focal host once, in ran-

dom order. Each proposal starts by taking a focal host i, drawing a sampling interval T �
G 2

3
aS;mS

� �
from a Gamma distribution with shape parameter 2

3
aS and mean mS, and calculating

a preliminary proposal for the infection time Ii’ = Si−T. The 2

3
is chosen to have a slightly higher

variance for the proposal than in the likelihood, to improve mixing. Based on this preliminary

proposal, the topology of the transmission tree is changed (see below), and in most cases the

phylogenetic tree as well (80% probability). However, we also allowed for proposal steps with-

out changing the phylogenetic tree (20% probability); this greatly improves mixing of the

MCMC chain if there are many SNPs, which more or less fixes the phylogenetic tree topology.

The 80%–20% distribution for the two types of proposal was not optimized but chosen such

that mixing of the phylogenetic tree is only limitedly less efficient than without the second type

of proposal (keeping the phylogenetic tree fixed). It is possible to include a third type of pro-

posal, in which only the topology of the phylogenetic mini-tree of focal host i is resimulated, to

improve phylogenetic tree mixing if there are many SNPs. In the default setting in the phy-
break package, 80% of proposals are of the first type and 20% of the second type, but the user is

free to change these percentages. We used these settings in all our analyses, expect for the Fast
clock simulations, where we used a 75%–20%–5% distribution.

Proposals for changes in transmission and phylogenetic trees. Here we describe how

changes in the transmission and phylogenetic trees are proposed for six different situations,

based on the preliminary proposal for the infection time Ii’ and on whether the index case is
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involved. Fig 5 shows the proposed changes. More detail on the proposal distribution and cal-

culation of acceptance probability is given in the S1 Methods.

A. The focal host i is index case, and the preliminary Ii’ is before the first transmission event.

In that case, the infection time of host i becomes Ii’, and no topological changes are made

in the transmission tree (Fig 5A).

B. The focal host i is index case, and the preliminary Ii’ is after the first transmission event, but

before host i’s second transmission event, if there is any. In that case, the infection time of

host i becomes Ii’, and host i’s first infectee becomes index case, transmitting to i (Fig 5B).

C. The focal host i is index case, and the preliminary Ii’ is after host i’s second transmission

event, if there is any. In that case, the infection times of host i and its first infectee are

switched, and host i’s first infectee becomes index case. They may or may not exchange

infectees, with 50% probability (Fig 5C).

D. The focal host i is not index case, and the preliminary Ii’ is before infection of the index

case. In that case, the infection time of host i becomes Ii’, and host i becomes index case,

transmitting to the original index case (Fig 5D).

E. The focal host i is not index case, and the preliminary Ii’ is after infection of the index

case, but before host i’s first transmission event. In that case, the infection time of host i
becomes Ii’, and a new infector is proposed from all hosts infected before Ii’ (Fig 5E).

F. The focal host i is not index case, and the preliminary Ii’ is after host i’s first transmission

event. In that case, the infection times of host i and its first infectee are switched, as well

as their position in the transmission tree. They may or may not exchange infectees, with

50% probability (Fig 5F).

Each change in the transmission tree is followed by proposing new phylogenetic mini-trees

for all hosts involved, i.e. if their infection time was changed or transmission nodes were

added or removed (grey hosts in Fig 5).

Proposals for changes in the transmission tree only. Here we describe how changes in

the transmission tree are proposed without changing the phylogenetic tree, based on the pre-

liminary Ii’ and on whether the index case is involved. Fig 6 shows the proposed changes.

More detail on the proposal distribution and calculation of acceptance probability is given in

the S1 Methods.

G. The focal host i is the index case. If the preliminary Ii’ is before the first coalescence node,

the infection time of host i becomes Ii’, and no changes are made in the transmission and

phylogenetic trees. If the preliminary Ii’is after the first coalescence node, the proposal is

rejected.

H. The focal host i is not the index case, and the preliminary Ii’is after the most recent com-

mon ancestor (MRCA) of the samples of host i and his infector j, which is a coalescent

node in infector j. In that case, the infection time of host i becomes Ii’, and infectees may

move from host i to infector j or vice versa (Fig 6A).

I. The focal host i is not the index case, but his infector j is the index case, and the prelimi-

nary Ii’ is before the MRCA of the samples of host i and his infector j. In that case, an

infection time Ij’ is proposed for the infector j. If Ij’ is after the MRCA, the infection time

of the infector j becomes Ij’, and the infection time of host i becomes the original infection

time of his infector j. Infectees may move from host i to infector j or vice versa (Fig 6B). If

Ij’ is before the MRCA, the proposal is rejected.
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Fig 5. Graphics depicting proposal steps A-F for new transmission and phylogenetic trees. In panels A, B, D, and E, the initial situation is at

the top, and the proposal below. In panels C and F, the initial situation is in the middle, and two alternative proposal above and below. Every panel
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J. The focal host i is not the index case, and neither is his infector j, and the preliminary Ii’ is

before the MRCA of the samples of host i and his infector j, but after the MRCA of the

samples of host i and infector j’s infector. In that case, an infection time Ij’ is proposed for

the infector j. If Ij’ is after the MRCA, the infection time of the infector j becomes Ij’, and

the infection time of host i becomes Ii’. Infectees may move between host i, infector j, and

infector j’s infector (Fig 6C). If Ij’ is before the MRCA of host i and infector j, or Ii’ is

before the MRCA of host i and infector j’s infector, the proposal is rejected.

Proposal for changing the phylogenetic mini-tree only

In a single proposal path K, only a new topology of the phylogenetic mini-tree of focal host i is

proposed; the coalescent times are kept unchanged.

Evaluating the method

We took three approaches to evaluate our method: analysis of newly simulated data, analysis

of published simulated data [12], and analysis of published observed data. When not specified,

the following parameter settings and priors were used: shape parameters for sampling and gen-

eration interval distributions aS = aG = 3, uninformative priors for mean sampling and genera-

tion intervals with μS = μG = 1 and σS = σG =1, and a prior for within-host growth parameter

r with ar = br = 3. The prior for log(μ) (mutation rate) is always uniform.

Analyses were done by two MCMC chains, in each taking 25,000 samples (25,000 MCMC

cycles). Burn-ins were different: 5000 MCMC cycles for the newly simulated data, 25,000 for

the published simulated data [12], and 5000 for the observed data. With the H7N7 data, five

MCMC chains were run, with a burn-in of 5000 samples, followed by 25,000 samples. Burn-in

lengths of simulated data were based on visual inspection of convergence for two datasets, and

then choosing a burn-in period at least 10 times longer than necessary for all the other simula-

tions, followed by comparing ESS and infector sampling in the parallel chains. The Slow clock
published simulations had not all converged in the uninformative analysis (S1 Results). For

the published data, all chains were inspected visually to confirm convergence.

Analysis of newly simulated data. Four outbreak scenarios were simulated, each repli-

cated 25 times: outbreak sizes of 20 and 50 cases, each with aG = aS = 3, resulting in overlap-

ping generations and cases sampled earlier than their infector, or aG = aS = 10, resulting in

more discrete generations and cases mostly sampled in order of infection. Further, the mean

generation and sampling intervals were mG = mS = 1 year, the mutation rate μ = 10−4 per year

in a DNA sequence with 104 sites resulting in a genome-wide mutation rate of 1 per year and a

number of SNPs in the same order of magnitude as the outbreak size. For the within-host

model we used r = 1 per year.

The transmission trees were simulated assuming populations of size 35 or 86 individuals

and R0 = 1.5, corresponding to expected final outbreak sizes of about 20 and 50 [22], respec-

tively. Simulations started with one infected individual. All individuals were assumed to be

equally infectious, resulting in a Poisson-distributed number of contacts at times since

shows an outbreak with four hosts, with red arrows indicating transmission: the purple host is the focal host, with the purple arrow indicating the

proposal for the new infection time Ii’; filled hosts have a new phylogenetic mini-tree proposed; greyed-out hosts do not play a role in the proposal.

(A) the focal host is the index case, and Ii’ is before the first transmission event; (B) the focal host is the index case, and Ii’ is after the first, but before

the second secondary case; (C) the focal host is the index case and Ii’ is after his second secondary case; (D) the focal host is not the index case

and Ii’ is before infection of the index case; (E) the focal host is not the index case and Ii’ is before his first secondary case; (F) the focal host is not

the index case and Ii’ is after his first secondary case.

https://doi.org/10.1371/journal.pcbi.1005495.g005
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Fig 6. Graphics depicting proposal steps H-J for new transmission trees, keeping the phylogenetic

tree unchanged. In all panels, the initial situation is at the top, and the proposal below. Every panel shows
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infection drawn from the generation time distribution; these contacts were made with ran-

domly selected individuals and resulted in transmissions if that individual had not been

infected before. Simulations were repeated until 25 outbreaks were obtained of the desired

size.

Given the infection times, sampling times were drawn, and phylogenetic mini-trees were

simulated for each host. These were combined into one phylogenetic tree on which random

mutation events were placed according to a Poisson process with rate 1. Each mutation event

was randomly assigned to one site, and generated one of the four nucleotides with equal proba-

bilities (reducing the effective mutation rate by 25%). By giving the root an arbitrary sequence,

the sampled sequences were obtained by following the paths from root to sample and changing

the nucleotides at the mutation events.

The simulated data (sampling times and sequences) were analysed with four sets of parame-

ter settings:

• Reference: aG = 3, all other parameters at simulation value (except for μ);

• Informative Correct: aS at simulation value, informative prior for mS with μS = 1 and σS =

0.1;

• Uninformative: aS at simulation value;

• Informative Wrong: aS at simulation value, informative prior for mS with μS = 2 and σS = 0.1.

In addition, the data were analysed with the Outbreaker [8] and TransPhylo [7, 24] packages

in R, with the correct generation and sampling intervals, in Outbreaker discretized in steps of

0.1 year. Outbreaker analyses consisted of a 200,000 iterations burn-in, followed by 2000 sam-

ples with thinning interval of 500. TransPhylo analyses consisted of 500,000 iterations burn-in,

followed by 500,000 samples without thinning; the required phylogenetic trees were maximum

clade credibility (mcc) trees obtained in BEAST v2 [19], assuming a constant coalescent popu-

lation model. Both the Outbreaker and TransPhylo outputs were summarized by Edmonds’

consensus transmission trees (see below).

Analysis of published simulated data. We used two sets of 25 simulated outbreaks, iden-

tified as Fast clock and Slow clock in the original paper [12], in which full details on the simula-

tions can be found. Briefly summarizing some characteristics, 50 hosts were placed on a grid

and a spatial transmission model was run, with exponential transmission kernel. Outbreaks

with fewer than 45 cases were discarded. An SEIR (susceptible–exposed–infectious–removed)

transmission model was used, with fixed latent period of 2 days and normally distributed

infectious period (mean(sd) of 10(1) days). Sampling occurred at the time of removal. Phyloge-

netic mini-trees were simulated using a logistic within-host growth model w(τ) = 0.1(1 + e6)/

(1 + e6–1.5τ), starting at w(0) = 0.1, then growing to w(4) = 20.2 and going to w(1) = 40.4.

Sequences were generated with a 14,000 base pair genome and a mutation rate of 10−5 per site

per day (Slow clock) or 5�10−4 per site per day (Fast clock), using a Hasegawa-Kishino-Yano

(HKY) substitution model. The Slow Clock resulted in a mean number of mutations of 0.14 per

part of an outbreak, with red arrows indicating transmission to depicted or undepicted hosts. Only in panel B

host I must be the index case. The purple host is the focal host, with the dark purple arrow indicating the

proposal for the new infection time Ii’; the light purple arrow in panels B and C indicate the proposal for the new

infection time Ij’ of the focal host’s infector. The grey parts of the phylogenetic tree are moved between the

hosts. (H) the focal host is not the index case, and Ii’ is after MRCAI,II of the focal host and his infector; (I) the

focal host is not the index case, and Ii’ is before MRCAI,II of the focal host and his infector (the index case), and

Ij’ is after MRCAI,II; (J) the focal host is not the index case, and Ii’ is before MRCAII,III of the focal host and his

infector, but after the MRCAI,III of the focal host and his infector’s infector; also, Ij’ is after MRCAII,III.

https://doi.org/10.1371/journal.pcbi.1005495.g006
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day, or 0.98 per mean generation time of 7 days (latent period plus half infectious period),

equivalent to the rate used in the new simulations; the Fast Clock was 50 times as fast.

The simulated data (sampling times and sequences, not locations and removal times) were

analysed with three levels of prior knowledge on the sampling interval distribution:

• Naive: default settings;

• Uninformative: aS = 144 (coefficient of variation of 0.083, as in the simulation);

• Informative: aS = 144, an informative prior for mS (μS = 12, σS = 1).

Analysis of published datasets. The published Mtb, FMD2001, and FMD2007 datasets

were analysed with default settings. The MRSA data contained information on times between

hospital entry and first positive sample for 32 patients. Because of their mean and standard

deviation of 20 days, we analysed these data with different prior information on the sampling

interval only: aS = 1, μS = 15, σS = 5. For the H7N7 outbreak data, infection times of the flocks

had been estimated [38], from which the mean and standard deviation of the sampling interval

was calculated (7.0 and 2.2 days). We used this to inform the sampling intervals with: aS = 10,

μS = 7, σS = 0.5. Because transmission after culling is not possible, we also used a weak informa-

tive prior for the mean generation interval: μG = 5, σG = 1.

Performance and outcome measures. The aim of the method is to reconstruct outbreaks

in terms of infection times of all hosts and the transmission tree. This requires good mixing of

the MCMC chain, especially of infection times and infectors, and a useful method to summa-

rize all sampled transmission trees into a consensus tree.

To test for good mixing, we used effective sample sizes (ESS, calculated with the coda pack-

age in R) to evaluate mixing of the parameters and infection times. There are no strict thresh-

olds, but in BEAST, an ESS< 100 is considered too low, whereas an ESS> 200 is considered

sufficient [48]. Phylogenetic tree topology mixing was evaluated by the approximate topologi-

cal ESS [23], available through the rwty package in R. Mixing of the transmission tree topology

(infector per host) was evaluated as follows. To test for 200 independently sampled infectors

per host, the chains were thinned by 250, giving 100 sampled infectors per chain. Then two

Fisher’s exact tests were done for each host. The first test was to compare the posterior fre-

quency distributions of infectors between the two chains, with a two-row contingency table,

entry {i, j} counting how often infector j occurred in chain i (100 infectors per chain in total).

The second test was to assess independency of subsequent samples within the chains, i.e.

absence of autocorrelation, with a contingency table in which entry {i, j} counts how often

infector i was followed by infector j in the chains (198 pairs of infectors). We used the propor-

tion of successful tests (i.e. P> 0.05) as a measure of mixing, expecting 95% successful tests

with good mixing.

Two methods were used to make consensus transmission tree topologies (who infected

whom), both based on the frequencies of infectors for each host among all posterior trees. The

support of host j being the infector of host i is defined as the proportion of posterior trees in

which host i infected host j. The first consensus tree is the maximum parent credibility (MPC)

tree [12], which is the tree among all posterior trees that has the highest product of infector sup-

ports. The second consensus tree is the tree constructed using an adaptation of Edmonds’ algo-

rithm, which starts by taking the infector with highest support for each host, and resolves cycles

if there are any [21]. Whereas in the original algorithm the sum of weights between nodes is

minimized conditional on the absence of cycles, we maximize the sum of supports. Because the

algorithm requires prior choice of an index case, we adapted it by repeating the algorithm for all

supported index cases, and selecting the tree with highest sum of posterior supports.
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Posterior infection times were summarized either outside the context of a consensus tree,

i.e. based on all MCMC samples, or for a particular consensus tree, i.e. for each host based

only on those samples in which the infector was the consensus infector. The latter is to

improve consistency between topology and infection times, although even then consistency is

not guaranteed. For plotting transmission trees only, we used the Edmonds’ consensus tree;

for plotting transmission and phylogenetic trees together, we used the MPC consensus tree,

which comes with a consistent phylogenetic tree because it is one of the sampled trees.
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