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Abstract

In heme proteins, the efficient transport of ligands such as NO or O2 to the binding site is

achieved via ligand migration networks. A quantitative assessment of ligand diffusion in

these networks is thus essential for a better understanding of the function of these proteins.

For this, Xe migration in truncated hemoglobin N (trHbN) of Mycobacterium Tuberculosis

was studied using molecular dynamics simulations. Transitions between pockets of the

migration network and intra-pocket relaxation occur on similar time scales (10 ps and 20

ps), consistent with low free energy barriers (1-2 kcal/mol). Depending on the pocket from

where Xe enters a particular transition, the conformation of the side chains lining the transi-

tion region differs which highlights the coupling between ligand and protein degrees of free-

dom. Furthermore, comparison of transition probabilities shows that Xe migration in trHbN is

a non-Markovian process. Memory effects arise due to protein rearrangements and coupled

dynamics as Xe moves through it.

Author summary

Binding and transport of ligands in proteins is essential, in particular in globular proteins

which often exhibit internal cavities. In truncated Hemoglobin N (trHbN) these cavities

are arranged as a network with particular connectivities. The present work supports the

notion that ligand diffusion in trHbN is an active process and coupled to the protein

dynamics. Furthermore, transition probabilities between neighboring pockets depend on

the location from where the ligand entered the transition, which is typical for non-Mar-

kovian processes. Hence, ligand migration in trHbN exhibits memory effects due to

dynamical coupling between the protein and ligand motion.

Introduction

The interplay between protein and ligand degrees of freedom is of great interest in under-

standing protein function including catalysis, signaling or transport. Both, ligand binding

and transport between internal localization sites often leads to small changes in the function-

ally relevant protein structure and fluctuations around it. Changes in structure and fluctua-

tions constitute a way to store information in proteins, for example through the concept of
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configurational entropy. [1, 2] The transfer of such information between spatially separated

regions is essential for transducing signals in chemical and biological systems. One concrete

manifestation of this is allosteric communication in proteins whereby information is trans-

ferred over distances of the size of a protein. [3–7] Allostery involves a cascade of informa-

tion exchange processes which can be initiated by uptake of an exogenous ligand. This raises

the question whether and if yes, in which way and on what time scale ligands in proteins

influence “information flow” in proteins. Starting from a “system-bath” perspective it

appears natural that ligands in proteins are active entities beyond their mere chemical role in

chemical transformations.

Evolution has developed a range of mechanisms to transmit information across a protein

following specific triggering events such as binding of a ligand or absorption of a photon. A

recent review of the current state of understanding of allostery pointed out that the “new view”

of allostery, which is based on population shift, is actually reminiscent of the 1965 model put

forward by Monod, Wyman and Changeux (MWC). [3] This view of allostery underlines the

importance of equilibrium fluctuations for the function of allosteric proteins. In a protein-

ligand context these equilibrium fluctuations may be subject to localization of a ligand in dif-

ferent pockets and following different pathways. Allosteric control involves several key steps

which eventually lead to biological function. Often, the first step is a local structural change,

induced by ligand binding. Next, this information is propagated through the protein network.

The time scale for this ranges from picoseconds to microseconds, highlighting the large varia-

tion in temporal and spatial scales involved in allostery. In a later phase, structural changes

lead to affinity changes which complete the chain of events. Hence it is of genuine interest to

better understand the mechanistic basis of local structural changes induced by ligand localiza-

tion and migration, and the time scales on which they occur and relate them to the fate of the

system on longer time scales. [8–11]

The binding and reaction of small gas phase ligands like oxygen (O2) or nitrogen monoxide

(NO) with heme proteins is involved in processes that are essential for the physiological func-

tion of living organisms. The ligand binding sites of heme proteins are buried. Therefore,

ligand migration from the outside towards the active site involves ligand diffusion, often

occurring through a network of connected, internal sites. Extensive research has shown that

such networks of internal cavities (pockets, packing defects) exist particularly in globular pro-

teins, and has been confirmed for heme containing proteins including myoglobin (Mb) [12–

14], cytochrome bα3 oxidase [15, 16], dimeric hemoglobin [8, 14], or truncated hemoglobins

N and O [17–19].

The physico-chemical (thermodynamic and kinetic) properties of ligand migration and

reaction with heme proteins have been extensively investigated. Besides facilitating ligand dif-

fusion towards the binding site of the protein, ligand migration networks have also been sug-

gested to detain ligand molecules in their pockets, either for storage [13, 16], or for subsequent

detoxification [18]. Nonetheless, further investigation on the structural and temporal nature of

ligand motion in the protein is required to better understand whether and, if so, how protein

and ligand motion are coupled.

In Mb, it has long been suggested that the binding of small ligands to specific pockets affects

the internal motions and conformational substates adopted by the protein [12]. This should

also apply to other heme proteins exhibiting a similar ligand migration network. In fact, recent

computational work on i) NO and O2 migration in truncated hemoglobin N of Mycobacte-

rium Tuberculosis [20–22], ii) CO migration on myoglobin [23] or iii) Benzamidine in the

trypsin inhibitor [24] point in a similar direction: the conformational dynamics of the protein

and the ligand (probe) are coupled and, depending on the localization of the ligand within the

protein (or at its surface), the conformational dynamics of the protein changes.

Xenon diffusion in truncated hemoglobin N
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In this work, the nature of ligand migration in truncated hemoglobin N (trHbN, see Fig 1)

of Mycobacterium Tuberculosis has been investigated using molecular dynamics (MD) simu-

lations. The migration pathways for NO and O2 in trHbN have been extensively characterized

experimentally [17, 18] and computationally [20–22, 25–29]. TrHbN is an ideal protein for

such an investigation as earlier studies [20, 21, 25–27, 29] have revealed that the free energy

barriers between different pockets are low (1 to 2 kcal/mol) which allows to extensively sample

transitions between them. Xenon (Xe) has been selected as the ligand for this study as it has

been used in the experimental determination of binding pockets within trHbN [18] (see Fig 1)

and cytochrome bα3 oxidase [16]. In addition, Xe has been suggested to be a good mimic of

O2 [16], a physiologically relevant ligand of trHbN and other heme proteins. Furthermore, evi-

dence from theoretical studies on myoglobin [13] suggests that Xe migration networks in

heme proteins share the same pockets and pathways with natural ligands, such as O2, NO and

CO.

In the present work ligand migration and the interplay between ligand and protein dynam-

ics is investigated from a ligand perspective and at atomic resolution. In particular, the ques-

tion whether, how and on what time scale the motion of a diffusing Xenon atom influences

protein dynamics is quantitatively assessed. Furthermore, we analyze potential memory effects

Fig 1. TrHbN and important pockets. Main Figure: The crystal structure of trHbN, with the heme group in licorice, Xe1a/b, Xe2, Xe3a/b

and DS2 pockets as spheres. Inset: 2-dimensional cut through the free energy surface along the plane defined by Xe2, the saddle points

between Xe1a and Xe1b, and between Xe3a and Xe3b, respectively.

https://doi.org/10.1371/journal.pcbi.1005450.g001
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in the transition dynamics between neighboring pockets depending on where the Xenon atom

entered a transition path of interest.

Methods

Molecular dynamics simulations

All simulations were performed using the CHARMM suite of programs [30] with the

CHARMM22 force field [31] and the van der Waals radius of Xe was Rmin = 2.25 Å which is

close to a radius of 2.24 Å used in previous work [13]. For water, the TIP3P model was used

[32]. All simulations were carried out with a timestep of 1 fs and a cutoff of 14 Å was used for

the non-bonded interactions, and SHAKE was used for constraining the bonds involving

hydrogen atoms [33, 34]. Long-range electrostatic interactions were treated with Ewald sum-

mation [35, 36], employing 96, 64 and 64 grid points along the x−, y− and z−axis, respectively.

The B subunit of a crystallized structure of the trHbN dimer (Protein Data Bank (PDB)

Index: 1S56 [18]) was used as the starting structure with one Xe atom initially placed in either

the Xe1, Xe2 or Xe3 pocket, which are the focus of the present work. The monomer was sol-

vated in a pre-equilibrated periodic water box (71Å, 56Å, 56Å). The system was then heated

and equilibrated at 300 K. Two different equilibration procedures were considered. In the first,

Xe was weakly restrained with a force constant of 5 kcal/mol/Å2 to its initial pocket (Xe1, Xe2

or Xe3) which helps to better sample the region of interest (Xe1, Xe2, Xe3). Simulations based

on a second equilibration scheme (with no restraints imposed on Xe) confirmed that restraints

do not lead to artifacts. In both cases, frames were extracted every 2.5 ps and used as starting

points for the production phase (NVE) simulations. In total 725.5 ns of simulations were run

and analyzed.

Free energy surface for Xe migration

An effective 3-dimensional free energy surface for Xe migration in trHbN was constructed

using the Xe coordinates from� 200 ns of simulation. A regular grid with spacing of 1 Å
along the x−, y− and z−direction was employed for this. The Helmholtz free energy G(x, y, z)

at each grid point was computed according to G(x, y, z) = −RTln(P(x, y, z)) where P(x, y, z) is

the probability of observing Xe in point (x, y, z), R is the universal gas constant and T is the

temperature in K. A smooth free energy surface was then constructed by interpolating the dis-

crete points of G(x, y, z) using 3-dimensional cubic B-splines [37].

Clustering

k−means clustering. In k−means clustering [38] a collection of data points is decomposed

into disjoint sets with respect to the distance of each point from a number of geometrical cen-

ters, each defining a cluster. Every point is assigned to the cluster center closest to it. In the sys-

tem investigated here, the centers of mass of 9 main pockets (Xe1a, Xe2, Xe3, Xe4, Xe1b, DS2,

ENT, IS1, PDS) were provided as an initial input. For each pocket, the coordinates of its center

of mass were determined from the amino acids forming it [29]. The algorithm was used using

two cut-off distances rmin = 1.75 Å and rmin = 6.20 Å, similar to a previous analysis of ligand

migration in trHbN with k−means [21]. The inner cut-off defines a sphere within which Xe

positions should be used for re-calculating the centers of the clusters during the analysis,

whereas the outer cut-off decides which frames should not be assigned to any of the 9 clusters.

These points (outliers) were assigned to a tenth cluster, named “Else”.

Robust Growing Neural Gas algorithm. Xe coordinates were also clustered using the

Robust Growing Neural Gas (RGNG) algorithm [39]. Contrary to k−means, RGNG does not

Xenon diffusion in truncated hemoglobin N
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require an initial guess for the centers of the clusters. The algorithm is very robust due to (i)

its insensitivity to the presence of outliers, and (ii) its ability to auto-determine the optimal

number of cluster centers for a given dataset based on a minimum description length crite-

rion [40].

Final clustering. Based on the free energy surface, the position of each pocket center was

refined using conjugate gradient descent starting from the pocket center coordinates obtained

by the clustering techniques (k−means, RGNG). In addition, the minimum energy paths

(MEPs) for relevant transitions within the (Xe1, Xe2, Xe3) states including their substates were

also determined. For each transition, the corresponding MEP was obtained using conjugate

peak refinement [41]. The pockets (defined by pocket centers) and the transition regions

(defined by saddle points) determined on the free energy surface of trHbN were used for the

final clustering of the Xe coordinates.

Results/discussion

Before discussing the transition dynamics between neighboring pockets and their dependence

on the trajectory history, the relevant states for the present work are discussed.

Characterization of the states

Table 1 provides a summary of the percentage occupation of each state (i.e. the fraction of total

simulation time spent by Xe in a particular pocket), according to k−means clustering, RGNG,

and the final clustering (clustering with respect to both, pocket centers and transition regions).

According to Table 1, based on k−means clustering, the most occupied pocket is Xe1b, fol-

lowed by DS2, Xe1a, Xe3b, Xe2, and Xe3a. In addition, Table 1 shows that over the course of

the MD simulations, the region comprising pockets Xe1a/b, Xe2, and Xe3a/b are highly popu-

lated with an aggregated population of 64.4% of the total simulation time. The region contain-

ing Xe3 is particularly interesting as previous work showed that it is a hub of the ligand

migration network of trHbN [22, 27–29]. The high occupation of the (Xe1, Xe2, Xe3) region

was expected, given that the majority of MD simulations were started with Xe in any of these

Table 1. Clustering of Xe position.

Pocket k−means (%) RGNG (%) Final Clustering (%)

Xe1a 13.1 12.9 11.5

Xe1b 31.5 33.0 33.4

Xe2 6.9 6.9 6.4

Xe3a 5.9 6.1 5.5

Xe3b 7.0 7.2 7.5

Xe4 1.5 — 0.5

DS2 15.2 15.1 15.2

ENT 2.9 — 0.9

IS1 1.5 — 1.1

PDS 0.6 — 0.0

Else 13.9 18.8 13.6

Transition States — — 4.9

The fraction of total simulation time that Xe spent in each pocket (occupation) according to k−means clustering, the RGNG algorithm, and the final

clustering. In RGNG, “Else” corresponds to k−means “Else” + Xe4, ENT, IS1 and PDS, which are not found by RGNG. In the final clustering, “Else” is used

to cluster all points not belonging to any of Xe1a/b, Xe2, Xe3a/b, Xe4, DS2, ENT, IS1, PDS pockets or transition states. The occupation of PDS for the final

clustering is 0.003%

https://doi.org/10.1371/journal.pcbi.1005450.t001
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three pockets to increase sampling probability of the relevant transitions involving these pock-

ets. Hence, the occupations in Table 1 are probably not representative of an equilibrium popu-

lation which, however, is of no concern for the purpose of the present work. Ligand diffusion

in trHbN has previously been investigated for O2 and was analyzed with different clustering

methods, including k−means, kinetics-based Markov Clustering (MCL) and the locally scaled

diffusion map (LSDMap) [21]. The O2−occupation of trHbN differs significantly from the one

found in the present work for Xe a) because Xe and O2 interact differently with the protein,

and b) because the simulations started with Xe in either Xe1, Xe2 or Xe3. Hence, for O2 explo-

ration of the network started from an equilibrium distribution which was not the case here.

As an independent validation of k−means, pocket analysis was carried out with the RGNG

algorithm. The RGNG clustering yielded six clusters which correspond to the most frequently

visited Xe pockets according to k−means clustering, see Table 1. Compared to k−means, the

centers of pockets Xe1a, Xe1b, Xe2 and DS2 shift by less than 1 Å. The finding of 2 clusters

that both belong to the Xe3 pocket agrees with previous indications of this pocket being large

and diffuse [29]. In hindsight the separation of Xe3 into Xe3a and Xe3b could already have

been anticipated in an earlier investigation of O2 diffusion in trHbN [21]. In the present work,

RGNG allows to explicitly identify two separate sub-states within the Xe3 pocket. This is simi-

lar to the situation in Mb where the Xe4 pocket is also large but contains two substates which

are separated by a small but nonzero free energy barrier [42]. To distinguish these two pockets,

they are referred to as Xe3a and Xe3b, respectively. These two states are separated by a 1.1

kcal/mol and 0.9 kcal/mol forward and reverse barrier, respectively. Finally, for Xe3a and

Xe3b, the respective occupations are 6.1% and 7.2% in RGNG. For the (Xe1, Xe2, Xe3) region

the total occupation fraction is 66.1%, which supports the 64.4% fraction obtained from

k−means.

In order to validate the assignment of Xe positions to particular pockets, explicit time series

along the Xenon x−, y−, and z−coordinates are compared with the discrete time series from

the clustering. It is found (see Fig 2) that pocket assignments can be difficult at boundaries

between regions because of the non-spherical shape of the cavities. As a consequence, an event

may be assigned to the wrong state if Xe is in a transition region between neighboring states.

This was indeed confirmed when visualizing k−means- and RGNG-clustered points in 3

dimensions. Further analysis of the clustered points would thus lead to non-realistic estimates

of life times, transition times, and transition probabilities. As a consequence, additional states

corresponding to transition regions were introduced to alleviate this problem (see top panel of

Fig 3 for more detail).

The pockets (defined by pocket centers) and transition regions (defined by saddle points)

determined on the free energy surface of trHbN were used for the final clustering of Xe coordi-

nates for the subsequent analysis. The occupation of each pocket following this procedure is

presented in the fourth column of Table 1. When transition states are included in the cluster-

ing, the total occupation of the (Xe1, Xe2, Xe3) region is 64.3% of the total simulation time,

consistent with k−means and RGNG clustering. In addition, Xe is found in transition regions

during 4.9% of the total simulation time.

Dwell and transition time distributions

After clustering with respect to both pockets and transition regions, 19252 transitions were

identified from more than 700 ns of simulation. The transitions between neighboring pockets

are summarized in Table 2 and graphically represented in Fig 3. Once “states” are defined,

transitions between them can be analyzed quantitatively by means of residence (“dwell”) times

τ, their distributions p(τ) and transition times. The residence time is defined by the time Xe

Xenon diffusion in truncated hemoglobin N
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Fig 2. Illustration of transitions in a 9 ns trajectory. Identification of Xe transitions by tracking the evolution

of the Fe-Xe distance and x−, y−, and z−distances from origin (Fe atom), over 9 ns of explicit MD. The

selected transitions are shown via vertical dashed lines. For clarity, points belonging to transition regions

(index 12) are not displayed in the bottom panel of the figure.

https://doi.org/10.1371/journal.pcbi.1005450.g002
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remains at a given basin, prior to its transition to another basin via the corresponding transi-

tion state, and the transition time is defined as the time spent by Xe in a transition region as it

moves between different pocket basins, see Fig 3.

Table 2 and Fig 3 highlight the role of the entire Xe3 pocket as a hub in the Xe-migration

network in trHbN. Xe3a and Xe3b are connected to all other pockets, except for ENT. It is

noted that the transition matrix is nearly symmetric. Furthermore, previous work for O2

migration in trHbN found barriers ranging from 0.5 kcal/mol to 1.5 kcal/mol between neigh-

boring sites when treating O2 with a fluctuating charge model. [29] Given that the present sim-

ulations were initiated with Xe being in one of the Xe1a/b, Xe2 or Xe3a/b pockets, the

Fig 3. The network of Xe migration in trHbN. The top part of the figure illustrates the definition of residence

times τ1,res and τ2,res in pockets 1 (blue) and 2 (green) and the definition of transition time τ12,trans between the

two pockets. For the network, the thicker the arrow is, the more transitions are observed between the two

pockets it connects. The width of the circular borders represents the occupation probability of the respective

pocket.

https://doi.org/10.1371/journal.pcbi.1005450.g003
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populations of pockets outside this region do in general not correspond to an equilibrium dis-

tribution. This is, however, of no concern because the focus here is on ligand diffusion within

the (Xe1a/b, Xe2, Xe3a/b) region. The stability of O2 in these 5 pockets is within 0.5 kcal/mol.

[22] Given the total simulation time of 725.5 ns, the low barriers between the pockets and the

large number of transitions observed (almost 20000), the Xe-distributions for the relevant

Xe1a/b, Xe2 and Xe3a/b states are expected to be unbiased by the initial conditions.

The residence time distributions were analyzed for the core network (Xe1a, Xe1b, Xe2,

Xe3a, Xe3b, and DS2), and is shown in Fig 4. For all states, 70% or more of the residence times

are shorter than 25 ps, see inset of Fig 4. On the other hand, a small fraction of dwell times is

on the 1 ns time scale or longer.

The time scale within which transitions occur was also determined. For later analysis, tran-

sition times between two particular pockets A and B were separately determined depending on

the pocket C the Xe atom originated from. In other words, for a transition A!B the transition

time was separately determined for C1!A!B to Cn!A!B, where C1 to Cn runs over all n
pockets connected to pocket A. A!B transitions within the (Xe1a/b, Xe2, Xe3a/b) region were

all found to occur on the 10 ps time scale, independently of where Xe came from before. This

analysis for five different transitions is reported in Table 3. For each event, (C!)A!B, the

probability was obtained by normalizing with respect to the total number of transitions from

A to any other pocket, with Xe having arrived to A from C. For instance, taking Xe2 as state A

and Xe1a as Cn, (Xe1a!Xe2!B), the probabilities are 0.070 for Xe1a!Xe2!Xe1b and 0.720

for Xe1a!Xe2!Xe1a. The remaining probabilities for Xe1a!Xe2!(Xe3a,Xe3b,DS2,IS1) are

0.060, 0.078, 0.067 and 0.005 respectively, which are not shown in Table 3.

Table 3 shows that transition probabilities for A!B!A transitions are considerably more

likely to occur than C!B!A transitions. This suggests that the physical process of ligand

migration in trHbN involves appreciable dynamical coupling between ligand and protein

degrees of freedom. This finding underlines the importance of trHbN fluctuations in Xe

migration.

Analysis of the Xe1a$Xe2 transition

In a next step the dynamical coupling between ligand and protein motion is further analyzed.

For this, the Xe1a$Xe2 transition is considered in more detail. Fig 5 shows pockets Xe1a and

Table 2. Table of transitions.

Xe1a Xe2 Xe3a Xe3b Xe4 Xe1b DS2 ENT IS1 PDS Else

Xe1a 0 391 61 4 1 1467 0 0 0 0 418

Xe2 396 0 110 383 0 101 348 0 8 1 3

Xe3a 57 103 0 129 1 326 1 1 11 1 1208

Xe3b 5 428 128 0 171 13 6 1 636 1 454

Xe4 0 0 0 175 0 0 1 0 0 0 505

Xe1b 1505 94 316 11 3 0 0 230 35 0 561

DS2 0 356 1 9 1 1 0 0 0 0 998

ENT 0 0 2 2 0 224 0 0 0 0 28

IS1 0 10 11 610 0 28 0 0 0 0 1216

PDS 0 0 1 0 0 0 1 0 0 0 2

Else 417 3 1201 462 505 543 994 28 1188 1 0

The transition matrix between initial (row) and final (column) pocket as obtained from the explicit MD simulations. A total of 19252 transitions was found.

https://doi.org/10.1371/journal.pcbi.1005450.t002
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Xe2 along with the five amino acids that according to the MEP are involved in the Xe1a$Xe2

transition. This transition was selected because a) it is extensively sampled, b) both Xe1a and

Xe2 are connected with several other pockets, in particular, Xe1a is connected to Xe2, Xe3a

and Xe1b, while Xe2 is linked to Xe1a, Xe3a, Xe3b, Xe1b and DS2, and c) Xe1a$Xe2 is a rep-

resentative transition of the (Xe1,Xe2,Xe3) core of trHbN ligand migration network.

The transition and dwell times for the Xe1a$Xe2 transition depending on from where Xe

arrived in either Xe1a or Xe2 are summarized in Tables 2 and 3. The analysis indicates that

A!B!A transitions (e.g. Xe2!Xe1a!Xe2) are considerably more probable than C!B!A

(e.g. Xe1b!Xe1a!Xe2) (0.698 vs. 0.071). Furthermore, the probability for a particular transi-

tion also depends on where Xe originally came from. However, transition times for Xe1a$Xe2

do not differ significantly regardless of where the ligand came from. In a broader perspective

all transition times are on the several picosecond time scale (3 to 8 ps) as can be seen in

Table 2. Similarly, typical dwell times are 5 to 10 ps for all states, see Fig 4, although a small but

potentially interesting fraction resides for up to 3.5 ns in individual states.

Pockets Xe1a and Xe2 are connected through a channel which involves amino acids PheB9,

PheE15, ValB6, GlnE11 and LeuG12 (see Fig 5). The conformational space sampled by all residues

involved in the channel is analyzed in the following. Only amino acid- and Xe-coordinates

during the time Xe spends in the transition region (see Fig 5) are considered and analyzed. For

Fig 4. Residence time distributions. Cumulative distributions, p(tres) of Xe residence times, tres, in states Xe1a (blue), Xe2

(red), Xe3a (green), Xe3b (orange), Xe1b (brown) and DS2 (magenta) (double-logarithmic representation). While in all cases,

up to at least 70% of the residence times are shorter than 25 ps, the logarithmic scale allows for a better illustration of the

difference in the statistics of infrequently sampled long residence times for each pocket. The inset reports dwell times using a

linear time axis for pockets Xe1a (blue) and Xe2 (red); 5% of the dwell times are longer than 150 ps.

https://doi.org/10.1371/journal.pcbi.1005450.g004
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this analysis, the protein backbone atoms, excluding the flexible N-terminus region of trHbN

(first 13 amino acids) were reoriented with respect to the crystal structure of trHbN.

The Cα-Cβ-Cγ-Cδ2 dihedral angle distribution p(ϕ) of PheE15 is considered first. All distri-

butions are normalized with respect to their individual flux as indicated in Fig 6B and Table 3

and a bin size of 5˚ was employed. The results show that depending on where Xe came from,

p(ϕ) is different, see Fig 6A, and all distributions differ from the equilibrium distribution

(orange).

The equilibrium distribution is characterized by two peaks, at around −50˚ and 150˚

respectively. On the contrary, in distributions corresponding to C!Xe1a!Xe2 transitions,

these peaks are shifted. In particular, the relative populations of the two favorable orientations

differ whether Xe accesses the Xe1a!Xe2 coming from Xe2 (blue) or Xe3a (red). Also, the

maxima of p(ϕ) for these two cases differ by up to −100˚. Moreover, besides the two peaks at

−100˚ and 100˚, the distribution for Xe2!Xe1a!Xe2 events is characterized by a significant

presence of points in the intermediate region, contrary to the distributions of Xe3a/

Xe1b!Xe1a!Xe2 transitions. This outcome implies a greater rotational flexibility for the

PheE15 ring when Xe originates from Xe2, which would indeed facilitate Xe2!Xe1a!Xe2

transitions.

In addition, we also considered the distribution of Xe distances from the initial pocket

(Xe1a pocket in Xe1a!Xe2 transitions, and Xe2 pocket in Xe2!Xe1a transitions). The results

for Xe1a!Xe2 transitions are illustrated in Fig 6B, while those for Xe2!Xe1a transitions are

depicted in Figure S1B in S1 Text. Depending on the pocket Xe was before the transition, the

magnitude and shape of p(dXe!Xe1a) differs. For Xe3a/Xe1b!Xe1a!Xe2 p(d) extends to

Table 3. Overview of selected Xe transitions.

C A!B Probability Time (ps) Counts

Xe1a Xe2!Xe1b 0.070 6.6 27

Xe3a 0.098 6.8 10

Xe1b 0.564 4.5 53

DS2 0.014 4.8 5

Xe1a Xe3a!Xe1b 0.138 5.9 8

Xe3a 0.211 2.4 23

Xe1b 0.142 4.8 18

DS2 0.789 4.2 247

Xe1a Xe3a!Xe2 0.155 4.1 9

Xe3a 0.532 5.0 58

Xe1b 0.063 8.3 8

DS2 0.064 3.6 20

Xe2 Xe1a!Xe2 0.698 6.9 270

Xe3a 0.268 4.2 15

Xe1b 0.071 8.6 104

Xe1a Xe2!Xe1a 0.720 5.3 278

Xe3a 0.186 8.9 19

Xe3b 0.116 3.2 49

Xe1b 0.191 7.2 18

DS2 0.086 5.9 30

Transition probabilities, average transition times, and number of events observed (counts) for selected transitions, obtained from the explicit MD

simulations.

https://doi.org/10.1371/journal.pcbi.1005450.t003
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larger distances between Xe and the center from the initial pocket compared to the other two

transitions.

Next, the interplay between the Xe motion and the surrounding amino acids (PheB9,

PheE15, ValB6, GlnE11 and LeuG12) in the transition region was analyzed. For that, a plane

orthogonal to the tangent along the minimum energy path for the Xe1a$Xe2 transition con-

taining the saddle point as the origin was defined, see Fig 7B. All positions of the Xe and

amino acid atoms were projected onto this plane and their densities are shown as isocontours

Fig 5. Xe1a$Xe2 transition region. Xe1a and Xe2 pockets (orange and gray sphere, respectively),

together with surrounding residues ValB6 (cyan), PheB9 (green), PheE15 (magenta), GlnE11 (red), and

LeuG12(blue). The minimum energy transition path (in blue cylinder) and one particular transition path (small

black spheres) are shown between the two pockets. In grey (background) the ribbon structure of the protein

and in licorice the heme-unit.

https://doi.org/10.1371/journal.pcbi.1005450.g005
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in Fig 7. For clarity, filled contours and non-filled contours are used for Xe and the amino

acids, respectively. The analysis finds that depending on state C before the C!Xe1a!Xe2

transition the orientation of the amino acids is different, i.e. the side chain and ligand dynam-

ics are coupled and influence each other.

Fig 6. Analysis for C!Xe1a!Xe2 transitions. Distribution of the (A) Cα-Cβ-Cγ-Cδ2 dihedral angle of

Phe61 depending on state C in the transition C!Xe1a!Xe2. The equilibrium distribution (orange) is shown

together with p(ϕ) for C = Xe2 (blue), C = Xe3a (red), C = Xe1b (green). (B) Xe distance from center of the

Xe1a state for the Xe1a!Xe2 transitions, from explicit MD simulations. Depending on where Xe entered the

Xe1a!Xe2 transition the distributions differ.

https://doi.org/10.1371/journal.pcbi.1005450.g006
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Fig 7A and 7C establish that for Xe2!Xe1a!Xe2 transitions the side chain of PheE15 is ori-

ented predominantly perpendicular to the transition plane. Contrary to that, for

Xe3a2!Xe1a!Xe2 transitions it is oriented parallel to that plane. This can be clearly seen in

Fig 7A where individual atom projections of the side chain ring atoms (in color) are shown.

Fig 7. Difference in PheE15 ring orientation and projection of Xe and amino acid atom positions upon C!Xe1a!Xe2 transitions.

Panel A: The average orientations of the benzene ring of Phe61 for the two transitions (top) Xe2!Xe1a!Xe2 and (bottom)

Xe3a!Xe1a!Xe2 together with the projection of each atom onto the transition plane (colored isocontours). Panel B: The projection of

Xenon-positions onto the transition plane (grey)—and hence the transition plane itself-together with the Xe2!Xe1a transition (orange).

Panel C: Projection of the position of Xe (greyscale) and ValB6 (cyan), PheB9 (green), GlnE11 (red), PheE15 (magenta) and LeuG12 (blue)

atoms onto the plane containing the transition points for the Xe1a!Xe2 transition. Only transition points are included. The integrated

density corresponds to 100%. Moving from inner to outer contours, each of them contains an additional 10% of the total number of points.

The overall orientations of all side chains are the same throughout the Figure.

https://doi.org/10.1371/journal.pcbi.1005450.g007
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The probability distribution functions in Fig 7C underline the importance of Phe61 in this

transition but other residues also show differing orientations depending on the transition con-

sidered. It is also noteworthy that the overlap of the Xe distributions differs for the three transi-

tions considered. However, the present illustration may be exaggerated as all snapshots were

reoriented with respect to the same protein structure (X-ray structure) which brings out the

differences rather than the common features of individual transition paths for the same

transition.

Depending on the time spent by the Xe probe in a particular pocket its shape can change in

different ways. Fig 8 shows that the probability distribution of Xe positions in Xe1a from many

short (� 5 ps) dwell times differs considerably from the space sampled during one long (con-

tinuous 1.2 ns) occupation trajectory of the same pocket. This suggests that for longer dwell

times the pocket has time to adapt its shape whereas for short (picosecond) dwell times the

pocket does not have sufficient time to adapt.

Finally, the orientation of the PheE15 side chain as defined by the (χ1, χ2) angles is analyzed

for Xea1$Xe2 transitions depending on state C. The equilibrium distribution (see Fig 9A)

exhibits pronounced maxima at χ1 = −90˚ and χ2 = (145, −45)˚. Due to the small number of

events for certain transitions (see Table 3) the probability distribution functions p(χ1, χ2) are

not converged. Nevertheless, they show rather characteristic structures. For the

Xe2!Xe1a!Xe2 transition (270 transitions, well sampled) p(χ1, χ2) exhibits a clear shift of

the maximum occupation to (χ1 = −145˚, χ2 = 145˚). Hence, no new state is found compared

to the equilibrium distribution, but the occupation of the states changes. Conversely, for

Xe1b!Xe1a!Xe2 transition (104 transitions, well sampled) the distribution is more reminis-

cent of the equilibrium distribution. Finally, for Xe3a!Xe1a!Xe2 (15 transitions, under-

sampled) the majority of the distribution is along χ1 = −145˚ which differs from the

equilibrium distribution.

For the reverse transition Xe2!Xe1a similar observations can be made. The most sampled

transition is Xe1a!Xe2!Xe1a (278 transitions) for which p(χ1, χ2) confirms the finding for

the Xe2!Xe1a!Xe2 transition. All other transitions are sampled less than 50 times and

Fig 8. Xe position probability distributions, short vs long residence times. Comparison of probability distributions P(x, y) from many

short dwell times (left, 5 ps) with P(x, y) of a simulation with a 1.2 ns dwell time (right) in the Xe1a state. The two distributions differ in

shape and size because for short dwell times, Xe samples the available volume with little protein adaptation taking place whereas for long

dwell times the protein is able to pack more closely around the Xe atom which typically leads to reduction of the volume of the sampled

space.

https://doi.org/10.1371/journal.pcbi.1005450.g008
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hence not particularly well converged. It is found that for the Xe3a!Xe2!Xe1a, the distribu-

tion resembles that for Xe3a!Xe1a!Xe2, whereas the remaining transitions are more similar

to the equilibrium distribution. Hence, overall it is found that for the best sampled transitions

the distribution functions p(χ1, χ2) differ in a characteristic fashion from the equilibrium dis-

tribution, whereas for other transitions the distributions can be more similar to peq.

Fig 9. Dihedral probability distributions for PheE15. 2-dimensional probability distributions p(χ1, χ2) of χ1

and χ2 dihedral angles upon Xe1a!Xe2 transitions, compared to the equilibrium distribution. A single Phe is

reported in the left upper corner, along with the definition of angles χ1 and χ2. p(χ1, χ2) in panels B and C are

different from the equilibrium distribution. Distributions also differ depending on where Xe came from before

the transition. Characteristic examples are Xe2!Xe1a!Xe2 vs Xe1b!Xe1a!Xe2 events from panel B and

Xe1a!Xe2!Xe1a vs Xe1b!Xe2!Xe1a events from panel C.

https://doi.org/10.1371/journal.pcbi.1005450.g009
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These observations establish that depending on from where Xe enters the Xe1a$Xe2 tran-

sition region the channel-forming amino acids are arranged differently. Ultimately, this

strongly supports the notion that protein and ligand motion are coupled for Xe migration

through trHbN. Here, this was explicitly demonstrated for amino acids involved in the

Xe1a$Xe2 transition, and especially for the PheE15 side chain. It is known from recent work

[22, 24, 43–45] that Markov State Models (MSMs) containing protein degrees of freedom can

be constructed. However, the purpose of the present work is not to construct a MSM, but to

characterize the nature of Xe migration itself.

Discussion

The present work suggests that for Xe migration through the network formed by the Xe-pock-

ets (which are internal packing defects) in trHbN, the protein and ligand degrees of freedom

are coupled. The analysis of the MD simulations demonstrated that even the diffusion of the

weakly interacting Xe atom is coupled to the continuous structural rearrangement of trHbN as

the ligand migrates through it. In fact, trHbN directs Xe migration to the extent that the proba-

bility of observing a specific transition (between states A and B) at a given time depends on

where the ligand was before (state C). This was explicitly illustrated for Xe1a$Xe2 events,

where the amino acids composing the Xe1a$Xe2 transition channel adopted different confor-

mations depending on where Xe arrived from before the transition took place. The explicit

MD simulations imply the presence of protein-induced memory effects through coupling

between ligand and protein degrees of freedom, which greatly affect the migration of Xe. In

other words, for a given transition, A!B, depending on where Xe comes to A from, trHbN

rearranges differently.

The observation of memory effects raises the question whether, and if so, on what time

scale ligand migration is a Markovian process. Based on time scale considerations [46, 47] a

process is expected to be Markovian when one of its major sub-processes occurs on a consider-

ably longer time scale with respect to other major sub-processes. For ligand migration, this

would translate in transition times and intra-pocket relaxation occurring on different time

scales. This should be possible when the free energy barriers separating the different pockets of

the network are sufficiently high to ensure dwell times that are significantly longer than transi-

tion times, which is not the case in the present work.

While the assumption of Markovianity is commonly employed when describing chemical

and biological processes, it has been known from several cases that it is not always valid [46,

48]. Characteristic examples of processes exhibiting non-Markovian behaviour are enzymatic

reactions [49, 50] or the glass transition in polymers [51]. The true nature of the dynamics of

such processes remains hidden unless appropriate reaction coordinates [46] or analysis tech-

niques [48] are used for their investigation.

Ultimately, the preferable approach to probe the Markov-assumption is to address the

problem in terms of probabilities. A ligand migration network is only Markovian if the

Markov property holds for the transition probabilities between two pockets, A and B:

P(C!)A!B = P(D!)A!B. In this equation, C and D correspond to any two different pockets of

the migration network from which the ligand can arrive to A. From a physical point of view,

this equation states that the probability of observing A!B transitions is the same no matter

from where the ligand arrived to A. That is, memory effects do not impact ligand diffusion

through the protein.

However, as repeatedly shown in the present work, this is not found for Xe migration in

trHbN. Rather, depending on the origin of the ligand (state C), the probability for the transi-

tion and the ensuing dynamics and conformations of the protein differ. The comparison of
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transition probabilities revealed that back-and forth events (B!A!B) are far more common

than transitions C!A!B. Hence Xe migration in trHbN belongs to an expanding group of

chemical and biological processes [46, 49–51] for which such an unbiased description reveals

that the Markovianity assumption is not valid. The present study finds that Xe migration in

trHbN is non-Markovian and occurs on a time scale of 10 to 20 ps. This time scale is identical

to the one determined on a theoretical investigation of enantioselective reactions [52]. More-

over, the present work provides solid evidence that memory effects are operative in protein

motion [53]. More precisely, for a specific event (transition), this translates to a different rear-

rangement of the amino acids involved in the transition region, depending on where Xe came

from before the transition.

A question that arises is whether the present findings also apply to the migration of

trHbN’s natural ligands, O2 and NO. Compared to Xe, both of these ligands have a different

van der Waals shape, as well as the potential of interacting with the side chains of the amino

acids that are involved in trHbN’s ligand migration network. Earlier computational investi-

gations of O2, NO, CO and Xe migration in myoglobin [13] demonstrated that all four

ligands localize in the same pockets and migrate along the same channels, but the free energy

barriers separating these pockets are different for each ligand. For trHbN, Xe, NO and O2

migrate through the same pockets and transition channels, and the free energy barriers sepa-

rating the pockets in NO and O2 migration [20, 21, 25–27, 29] (1-2 kcal/mol) are on the

same order of magnitude as those for Xe migration determined in the present work. This

suggests that the nature of Xe migration in trHbN is similar for NO and O2 migration in

trHbN. Hence, it is expected that for the physiologically relevant NO and O2 ligands, migra-

tion is also non-Markovian but further investigation of this point is warranted to substanti-

ate this.

Finally, it is also of interest to briefly touch on the question whether and how such effects

could be observed experimentally. Potential experiments for the problem at hand require a

spatial resolution of a few Å and a time resolution on the picosecond time scale. In addition,

it will be advantageous to control the number of possible migration pathways through suit-

able point mutations as has already been successfully done for Myoglobin. [54] Time-

resolved Laue diffraction allows characterization of structural changes on the sub-Å scale

with a time resolution of 100 ps which is, however, probably too slow for the present pur-

poses. [55] On the other hand, using different ligands (NO, CO) the dynamics may be slo-

wed down due to increased barriers for ligand migration. X-ray free electron lasers (XFELs)

offer new promising avenues to characterize the short-time dynamics of biological systems.

It is expected that time-resolved serial femtosecond crystallography (SFX) and wide angle

X-ray scattering (WAXS) at XFELs allow to investigate ultrafast protein structural dynamics

on the femtosecond to picosecond time-scale. [56, 57] Alternatively, femtosecond X-ray

solution scattering has been used to characterize the ultrafast increase of the radius of gyra-

tion of Mb on the 1 ps time scale. Such studies suggest that with ultrafast laser pulses the

intrinsic motions in proteins can be characterized in the nonequilibrium (protein quake)

regime. [58]

In summary, the migration of Xe in trHbN of Mycobacterium Tuberculosis was investi-

gated using classical MD simulations. The analysis shows that Xe migration in trHbN occurs

on the 10 to 20 ps time scale and is non-Markovian. In addition, the results demonstrate that

memory effects are in operation during Xe motion through the internal protein pockets. For

a specific transition, this translates into different rearrangements of the amino acids lining

the transition region, depending on where Xe came from before. Whether or not this obser-

vation is physiologically relevant requires simulations with chemically active ligands such as

NO or O2.
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