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Abstract

The metabolism of microorganisms is regulated through two main mechanisms: changes of

enzyme capacities as a consequence of gene expression modulation (“hierarchical control”)

and changes of enzyme activities through metabolite-enzyme interactions. An increasing

body of evidence indicates that hierarchical control is insufficient to explain metabolic behav-

iors, but the system-wide impact of metabolic regulation remains largely uncharacterized.

To clarify its role, we developed and validated a detailed kinetic model of Escherichia coli

central metabolism that links growth to environment. Metabolic control analyses confirm that

the control is widely distributed across the network and highlight strong interconnections

between all the pathways. Exploration of the model solution space reveals that several

robust properties emerge from metabolic regulation, from the molecular level (e.g. homeo-

stasis of total metabolite pool) to the overall cellular physiology (e.g. coordination of carbon

uptake, catabolism, energy and redox production, and growth), while allowing a large

degree of flexibility at most individual metabolic steps. These properties have important

physiological implications for E. coli and significantly expand the self-regulating capacities of

its metabolism.

Author summary

Metabolism is a fundamental biochemical process that enables cells to operate and grow

by converting nutrients into ‘building blocks’ and energy. Metabolism happens through

the work of enzymes, which are encoded by genes. Thus, genes and their regulation are

often thought of controlling metabolism, somewhat at the top of a hierarchical control

system. However, an increasing body of evidence indicates that metabolism plays an active

role in the control of its own operation via a dense network of metabolite-enzyme interac-

tions. The system-wide role of metabolic regulation is hard to dissect and so far remains

largely uncharacterized. To better understand its role, we constructed a detailed kinetic
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model of the carbon and energy metabolism of the bacterium Escherichia coli, a model

organism in Systems and Synthetic biology. Model simulations indicate that kinetic con-

siderations of metabolism alone can explain data from hundreds of experiments, without

needing to invoke regulation of gene expression. In particular, metabolic regulation is suf-

ficient to coordinate carbon utilization, redox and energy production, and growth, while

maintaining local flexibility at individual metabolic steps. These findings indicate that the

self-regulating capacities of E. colimetabolism are far more significant than previously

expected, and improve our understanding on how cells work.

Introduction

Metabolism is a fundamental biochemical process that converts nutrients into energy and bio-

mass precursors, thus enabling cells to maintain their structures, grow, and respond to their

environment. While the topology of metabolic networks is fairly well known, understanding

how metabolic behaviours emerge from the dynamic interactions of their molecular compo-

nents remains one of the main challenges faced by systems biology and is crucial for the devel-

opment of synthetic biology [1].

The operation of metabolic networks, i.e. the metabolic fluxes, represents the ultimate out-

put of several regulatory mechanisms. Metabolic fluxes are functions of enzyme activities and

of the concentrations of reactants, products, and other effectors. While the enzyme activities

are the ultimate outcome of gene expression through the hierarchy of transcriptional, post-

transcriptional, translational and post-translational regulatory mechanisms, the reactant and

effector concentrations are directly regulated at the metabolic level by enzyme activities them-

selves. Hierarchical regulation, and in particular transcriptional regulation, has attracted much

attention because of mature experimental methods, but also because of early examples of flux

increase with enzyme induction [2, 3]. These studies suggested an intuitive picture where

fluxes mainly depend on enzyme concentrations, themselves mainly dependent on the level of

transcript—a view that puts genes and their regulation at the top of a hierarchy of control and

that regards metabolism as mostly a consequence of gene expression. An increasing body of

evidence, however, indicates that this view of a hierarchical (or “dictatorial”) regulation of

metabolism by gene expression is too simplistic. Large-scale 13C-flux analyses revealed that

flux distributions in Saccharomyces cerevisiae and Escherichia coli are incredibly robust to the

deletion of global transcriptional regulators [4, 5]. Integration of transcript and enzyme abun-

dances with fluxes measured under different environmental conditions indicated that hierar-

chical regulation is insufficient to explain most of the flux reorganizations [6–9]. Therefore

metabolism can no longer be seen as a passive process primarily regulated at the hierarchical

level, but rather that it plays an active role in the control of its own operation via a dense net-

work of metabolite-enzyme interactions. However, because hundreds of these interactions

simultaneously regulate fluxes, which in turn affect metabolite levels, the system-wide role of

metabolic regulation is hard to dissect and so far remains largely uncharacterized.

Mathematical frameworks such as metabolic control analysis [10, 11] were developed to

analyze such complexity and improve our understanding of the role of each interaction on the

metabolic network. These frameworks are particularly useful when applied to (validated)

kinetic models that quantitatively describe the mechanistic interactions between the molecular

species and their dynamics. However, developing models that are truly representative of real

cell metabolism requires large amounts of experimental data to establish complex rate laws

and identify parameters for each interaction [12]. Most models have focused on single
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pathways or on small sub-systems [e.g. 13, 14–18]. Such models accurately predict the response

of those pathways to perturbations and reveal insights on the role of particular regulatory

interactions on the metabolic operation [19–21]. Great progress has recently been made to

develop larger scale kinetic models using top-down approaches [22–29], hence paving the way

towards comprehensive understanding of the role of metabolic regulation at the whole cell

level. These large-scale kinetic models highlighted the system-wide impact of local properties

on the functioning of metabolic networks, such as an improved metabolic flexibility caused by

enzyme saturation [26]. However, these large scale models are typically constructed from

whole-genome metabolic reconstructions using generic rate laws, and contain a low level of

mechanistic details (in particular are mostly devoid of allosteric regulation). An alternative

approach constructed a highly detailed model of an entire cell ofMycoplasma genitalium [30],

but unfortunately while this model represents a considerably high level of mechanistic detail in

many cellular processes, it entirely lacks metabolic regulation (as it uses dynamic flux balance

analysis rather than a mechanistic kinetic model). Hence, many of the properties that emerge

from metabolic regulation are not captured by current large-scale models.

In this study, we aim at investigating the role of metabolic regulation on the central meta-

bolic network of E. coli, which constitutes the backbone of its metabolism by providing macro-

molecular precursors, reducing equivalents, and energy for growth and maintenance. While

previous studies typically focused on the role of particular regulatory interactions, we attempt

to determine whether more global and generic properties arise from the interplay of the many

regulatory interactions that compose metabolic regulation. To accomplish this, a kinetic

model of E. coli central carbon and energy metabolism was developed and validated against a

large set of existing experimental data. This model includes more mechanistic details than pre-

vious ones, and the impact of metabolic regulation on this system was analyzed using local and

global methods.

Results

Model development

The kinetic model developed in this study represents the central metabolism of Escherichia coli
cultivated on glucose under aerobic conditions (Fig 1). This model contains 3 compartments

(environment, periplasm and cytoplasm), 62 metabolites, and 68 reactions which represent the

main central carbon and energy pathways of E. coli, namely: glucose phosphotransferase sys-

tem (PTS), glycolysis and gluconeogenesis (EMP), pentose phosphate (PPP) and Entner-Dou-

doroff (EDP) pathways, anaplerotic reactions (AR), tricarboxylic acid cycle (TCA), glyoxylate

shunt (GS), acetate metabolism (AC), nucleotide interconversion reactions (NC) and oxidative

phosphorylation (OP). A reaction was also included to account for the consumption of meta-

bolic precursors, reducing equivalents, and energy, and thus linking metabolism to cell prolif-

eration. To account for metabolic regulation, a total of 255 metabolite-enzyme interactions

(i.e. where metabolites modulate the reaction rates through thermodynamic or kinetic regula-

tion, such as being substrates, products, allosteric modulators, or other type of inhibitors or

activators) were included in the model, amongst which 34 are long-range regulatory interac-

tions (i.e. where certain metabolites, which are not reactants, modulate the rates of these

reactions).

Previously published kinetic models of E. colimetabolism were used as scaffolds to con-

struct this model [18, 31, 32]. Both the number of pathways and the level of mechanistic detail

were increased in the present model (S1 Table). For instance, this model now couples carbon

metabolism with a detailed representation of oxidative phosphorylation, which makes it possi-

ble to balance the concentrations of cofactors (ATP/ADP/AMP, NAD(P)(H) and FAD(H2))
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and simulate energy and redox metabolism. Previous models accounted for the consumption

of metabolic precursors for growth in a decoupled way. This may be enough from the point

of view of mass balance, but results in artifacts if used for an understanding of dynamics and

regulation. In contrast the present model includes a single reaction to model growth, which

ensures that the building blocks are consumed in stoichiometric proportions fixed by the cell

composition, and not independently from each other. The rate of this reaction is a function

of the intracellular concentrations of all the building blocks. This represents a significant

improvement by satisfying the following growth rate properties: i) it monotonically increases

with the availability of each building block, ii) it is asymptotically independent of each pool

Fig 1. Representation of the central carbon and energy network of Escherichia coli. Metabolites and enzymes are shown in blue and green,

respectively. The diagram adopts the conventions of the Systems Biology Graphical Notation process description [87].

doi:10.1371/journal.pcbi.1005396.g001
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above a saturating concentration, and iii) it approaches zero if any pool approaches zero [21].

These properties were not reflected in the previous models [33].

The present model was calibrated to represent the metabolic state of E. coli cultivated under

carbon limitation, a condition frequently experienced by this bacterium in laboratories, in

industrial bioprocesses, and likely in its natural environment. To the extent possible, values of

the biochemical parameters were taken from experimental determinations available in the lit-

erature. Parameters not available in the literature were estimated to reproduce steady-state and

time-course experimental data obtained from a unique E. coli strain (the model strain K-12

MG1655) grown under a unique reference condition (M9 minimal medium with glucose as

sole carbon source, dilution rate = 0.1 h-1, temperature = 37˚C, pH = 7.0, pO2 > 20%) [13, 34–

37]. This step is critical since both metabolite concentrations and fluxes depend on environ-

mental conditions and differ between strains [38–40]. While results described below are largely

in agreement with other experimental observations, the model was not forced to reproduce
them, providing an important validation of the model. Detailed information on the construc-

tion and validation of the model is given in the Methods section and Supporting Information

(S1 Text). The model is included in Supporting Information (S1 Model) formatted in SBML

[41] and COPASI [42] formats, and is available from the BioModels database [43] with acces-

sion number MODEL1505110000.

Metabolic regulation ensures robustness to fluctuations in enzyme levels

and a high sensitivity to the environment

The control properties of E. coli central metabolism in the reference state (see above) were

investigated under the metabolic control analysis framework [10, 11]. Flux (CJE) and concen-

tration (CME ) control coefficients quantify the impact of a small change in the rate of each reac-

tion (e.g. through change in the enzyme concentration E), on each flux (J) and each metabolite

concentration (M). Since each metabolic step affects all fluxes and concentrations to some

extent, we calculate a metric of its overall control on fluxes and concentrations as the L2 norm

of all its flux- and concentration-control coefficients (see Methods), respectively.

The overall flux- and concentration-control by each step in the network is displayed in Fig

2. The main control point is the glucose inflow reaction with a control of 8.7 on fluxes and 5.3

on concentrations, using this summary metric. The system is therefore sensitive to its environ-

ment, as expected. Note that this is a direct sensitivity of metabolism to the environment, not

through the (hierarchical) action of signal transduction and gene expression, which is not rep-

resented in this model; if it were its effect would thus be overlaid (likely with a delay) on the

direct effect displayed in our model. Reactions that were identified by previous models as

exerting a strong flux control under similar environmental conditions, such as the glucose

phosphotransferase reactions or phosphofructokinase [13, 32, 44, 45], showed low control in

our model (respectively 0.1 and 0.8). Rather, consistently with experimental evidence (see for

example [46, 47–49]), the flux control was predicted to be shared between enzymes of all the

pathways, amongst which cytochrome bo oxidase (reaction CYTBO, with 4.7 overall flux con-

trol), glucose-6-phosphate dehydrogenase (ZWF, 3.9), glyceraldehyde-3-phosphate dehydro-

genase (GDH, 2.6), citrate synthase (GLT, 2.9) and the anabolic machinery (GROWTH, 1.4)

are the ones with the largest share. A similar situation was observed for the control of concen-

trations, which is widely distributed across the network, and with the environment as the

strongest control. In fact, a significant correlation (Pearson R = 0.86, P-value = 10−15) can be

observed between the overall flux- and concentration-control exerted by each step (Fig 2C),

indicating that, in general, enzymes which exert the strongest control on fluxes also exert the
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strongest control on concentration. A global sensitivity analysis [50] shows that these conclu-

sions are robust with regard to parameter uncertainties (Fig 2A and 2B).

Further analysis confirmed the wide distribution of flux control across all the enzymes, with

97% of the individual control coefficients between -0.3 and 0.3 (Fig 2D). These observations,

in agreement with the view that “rate-limitation” is distributed across the network and is vari-

able [51], explain why fluxes are robust to moderate or even large changes of enzyme levels.

The fluxes in this reference state are more sensitive to the environment, with 75% of the

Fig 2. Control of E. coli metabolism. Overall control exerted by each reaction on fluxes (A) and metabolite concentrations (B). The overall flux and

concentration control exerted by each reaction are correlated, as shown in panel C. Gray histograms show the distribution of flux control coefficients of

enzymes (D) and environment (glucose supply reaction, E) on all the fluxes, and the distribution of concentration control coefficients of enzymes (F) and

environment (G) on all the intracellular pools. Red lines (D-G) represent the cumulative frequency of each distribution.

doi:10.1371/journal.pcbi.1005396.g002
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control coefficients exerted by the glucose supply reaction higher than 0.3 (Fig 2E). Similar

conclusions were reached regarding the control of metabolite concentrations, which is distrib-

uted across the network (Fig 2B), with 97% of the control coefficients exerted by enzymes

between -0.3 and 0.3 (Fig 2F) and 49% of the control coefficients exerted by the glucose supply

reaction higher than 0.3 (Fig 2G).

The distributed control results in strong interconnections between all the

pathways

Despite the low control exerted by enzymes over fluxes and concentrations at the network

level, a detailed analysis of flux control coefficients reveals generic regulatory patterns between

most of the pathways (Fig 3). A general observation is that the control of each pathway resides

largely outside of itself.

For example, the control of the partition of carbon through competing pathways is shared

between enzymes of each pathway. The glycolytic phosphofructokinase (PFK) exerts a (small)

negative control on the PPP and ED fluxes (CZWFPFK ¼ � 0:15) and a positive control on the gly-

colytic flux (CPGIPFK ¼ 0:05), while the glucose-6-phosphate dehydrogenase (ZWF) of the PPP

and ED pathways exerts a strong positive control on its own flux (CZWFZWF ¼ 0:75) and a negative

control on the glycolytic flux (CPFKZWF ¼ � 0:12). Similar behavior is observed at the main meta-

bolic branch nodes, e.g. between the TCA cycle and the glyoxylate shunt or between the pen-

tose phosphate and Entner-Doudoroff pathways. It is important to note that the fraction of

flux diverted to each branch does not depend only on the local enzyme kinetics, contrary to

what is sometimes suggested [6], but on several enzymes of each of the competing pathways.

Several feedforward and feedback interactions are also observed between the pathways. For

instance, the pyruvate kinase (PYK) controls fluxes through the TCA cycle (CSDHPYK ¼ 0:07), and

is controlled by some TCA reactions (CPYKLPD ¼ 0:06, CPYKSDH ¼ 0:19). Similarly, the ATP demand

(that can be represented by the ATP utilization for maintenance, ATP_NGAM) is activated by

glycolysis (CATP NGAM
GDH ¼ 0:26) and exerts in turn a positive feedback control on this pathway

(CPGIATP NGAM ¼ 0:12) and a negative control on growth (CGROWTHATP NGAM ¼ � 0:09), as observed in vivo
[72]. Interestingly, biomass synthesis (GROWTH) is strongly controlled by the upstream glu-

cose supply (CGROWTHGLC INFLOW ¼ 1:5), with all other control coefficients lower than 0.13. In turn, bio-

mass synthesis exerts a small but global feedback control on most catabolic fluxes.

Those several, intertwined feedback and feedforward interactions stress the high degree of

functional organization of the central carbon and energy metabolism. This may be an impor-

tant feature to maintain the coordination between the different pathways at the cellular level: if

the rate of a particular reaction—be it upstream or downstream—is affected by a perturbation,

this information will be transmitted from this “sensor reaction” to the entire system, resulting

in a global response. Note that this response is sensed in a very short time scale, rather than

the slower response that happens after signal transduction and consequent changes in gene

expression.

Metabolic regulation couples growth to glucose uptake

To get a broader picture of the role of metabolic regulation on the coordination of E. coli
metabolism, the solution space of this network was explored with and without considering

metabolic regulation. Two versions of the model were used: the kinetic version which accounts

for metabolic regulation, and a stoichiometric version of the same model which contains only

stoichiometric constraints (and is thus similar to a flux balance analysis model). The solution

space of each model was explored using a random sampling approach: 600,000 flux distribu-

tions were uniformly sampled from the solution space using the stoichiometric model, and
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steady-states were simulated for 600,000 sets of random enzyme levels using the kinetic model.

For each set, enzyme levels (i.e. Vmax) were sampled from a log uniform distribution (between

0.1 and 10 times the enzyme levels of the initial model) to ensure each order of magnitude to

be sampled in similar proportions. It is important to mention that cells do not express enzymes

levels according to the distribution generated, therefore the distribution of the variables is not

expected to provide any information on the probability for a cell to reach a specific state in
vivo [50]. Rather, uniformity is used to clearly grasp the functional implications of applying

metabolic regulation to the network.

Fig 3. Heatmap of individual flux control coefficients. Columns represent the controlling reactions and rows represent the fluxes under control. Red

and blue colors represent negative and positive values of flux control coefficients, respectively, and color intensity indicates strong (darker) to low (lighter)

control.

doi:10.1371/journal.pcbi.1005396.g003
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We first investigated the relationship between supply (glucose uptake) and demand

(growth), which provides information on the allocation of resources by the metabolic network

[52]. Direct sampling of the solution space (Fig 4A) revealed that most of the metabolic states

are not efficient in term of resource allocation: most of them correspond to a high glucose

uptake rate, but with a low growth rate, because this situation significantly increases the attain-

able intracellular flux states. Interestingly, the opposite picture is observed when metabolic reg-

ulation is applied on this network (Fig 4B): a smaller region of the solution space is reached,

where the growth rate is now coupled to the glucose uptake rate.

To evaluate this prediction quantitatively, we gathered from the literature experimental

data obtained from 254 growth experiments carried out under similar environmental condi-

tions (glucose as sole carbon source in aerobic conditions) [5, 27, 34, 53–67] (S2 Dataset).

These data were collected from “wild-type” and mutant strains obtained by deletion or overex-

pression of central metabolic enzyme genes or global regulators of gene expression, and culti-

vated under a wide range of experimental conditions. Therefore, these 254 data represent a

very broad range of the metabolic states that can be expressed by E. coli growing on glucose.

Importantly, these data were not used for parameter estimation, thereby they constitute an

independent validation and provide a robust assessment of the predictive ability of the model.

These experimental observations correspond to the region of the solution space less frequently

sampled using the stoichiometric model, but they closely match the region sampled by the

kinetic model (Fig 4B). This means that the observed physiology of E. coli is closer to the meta-

bolic model that is regulated by metabolite-enzyme interactions (the kinetic model) than it is

to a metabolic model that would be regulated by gene expression alone (the stoichiometric

model). Hence, metabolic regulation alone, without needing to invoke coordinated expression of
genes, seems to be sufficient to explain the emergence of a coupling between anabolic (growth)

and catabolic (glucose uptake) fluxes, and thereby appears to be a major determinant of the

overall cellular physiology by ensuring an efficient and robust allocation of nutrients towards

growth.

Metabolic regulation coordinates several processes at the cellular level

while maintaining flexibility

We extended the above analysis to determine whether additional couplings emerge from meta-

bolic regulation. Several variables representative of the physiological state of E. coli were

Fig 4. Exploration of the solution space of E. coli metabolism with and without metabolic regulation.

Density of scatter plots between glucose uptake and growth rates sampled using the stoichiometric model (A,

without metabolic regulation) or the kinetic model (B, with metabolic regulation). Shades of white to blue

denote null to high frequency, respectively. Red dots are measurements obtained from 254 independent

cultivations of wild-type and mutant E. coli strains on glucose, carried out under a wide range of cultivation

conditions.

doi:10.1371/journal.pcbi.1005396.g004
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calculated for each steady-state reached by the kinetic model, namely: growth and glucose

uptake rates, ATP, NADH and NADPH production rates, sum of all intracellular fluxes, sum

of all intracellular metabolite concentrations and cost of enzymes (defined as the product of

enzyme concentration and number of amino acids of the corresponding enzyme, summed

over all reactions, as detailed in Methods). Additional variables derived thereof were also com-

puted: biomass, ATP, NADH and NADPH yields, enzyme cost and ATP production rate per

sum of fluxes, and sum of fluxes per glucose consumed. Pairwise relationships between sys-

temic variables and (absolute and relative) fluxes through the main pathways were examined

using Spearman correlation and mutual information. The outcome is a correlation matrix

which maps the degree of functional coupling between all the variables (Fig 5A). The same pat-

terns were highlighted by both methods, which indicate that these couplings are monotonic

since mutual information, but not Spearman correlation, would identify non-monotonic

relations.

Fig 5. Identification of the functional couplings that are independent of enzyme levels. Steady-states were simulated for 600,000 sets of random

enzyme levels, and the relationships between various systemic variables, absolute fluxes, and relative fluxes through the different pathways were

identified using Spearman correlation test (above diagonal) and mutual information (below diagonal). For Spearman correlation test, red and blue colors

represent negative and positive correlations, respectively, and color intensity and circle size indicates high (darker, larger) to low (lighter, smaller)

correlation coefficient. For mutual information, color and circle size denote low (white, smaller) to high (blue, larger) mutual information, respectively. The

density of scatter plots between particular steady-state variables (glucose and oxygen uptake, growth rate, biomass yield, and relative fluxes through the

TCA cycle) sampled using the kinetic model (B-D, with metabolic regulation) or the stoichiometric model (E-G, without metabolic regulation). Shades of

white to blue denote null to high frequency, respectively. Red dots are measurements obtained from a total of 266 independent cultivations (254, 65 and

192 in panels B, C and D, respectively) of wild-type and mutant E. coli strains on glucose, carried out under a wide range of cultivation conditions.

doi:10.1371/journal.pcbi.1005396.g005
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A systematic positive correlation was predicted between some anabolic and catabolic

fluxes and yields: glucose uptake rate, growth rate, NADPH production rate, biomass yield

and NADPH yield (with ρ> 0.85), indicating a considerable degree of coordination in the

metabolic operation. These variables are negatively correlated with the energetic (ATP and

NADH) yields (ρ< -0.85), which is consistent with the fact that the single carbon source,

glucose, is used by two competing metabolic processes: energy production and biomass syn-

thesis, reflected in an increase in YATP and increase in biomass yield, respectively. The oxy-

gen uptake rate also correlated positively with ATP and NADH production (with ρ> 0.90),

reflecting the important role of oxidative phosphorylation in energy production under aero-

bic conditions.

The low correlation coefficient between the sum of fluxes and the cost of enzymes (ρ =

0.11) indicates that the sum of fluxes cannot be considered as a proxy for enzyme investment

per se. The outcome of predictive analyses based on this assumption (such as the minimization

of the sum of fluxes in FBA according to the hypothesis that cells minimize their enzyme lev-

els) should therefore be interpreted with caution.

In general, systemic variables correlated poorly with relative and absolute fluxes from most

of the pathways. This is interesting as it shows that while there is coordination between several

processes, there is nevertheless a significant degree of flexibility in the intracellular flux distri-

bution. A notable exception was observed for the TCA cycle: its absolute flux is positively cor-

related with catabolic and energy fluxes (vO2_uptake, vGlc_uptake, vNADH_production, vATP_production,

with ρ> 0.84), and the relative contribution of this pathway negatively correlated with ana-

bolic rates and yields (growth and NADPH production rates, ρ< -0.92) and positively corre-

lated with energy yields (ρ> 0.90 for ATP and NADH yields). Thus, the partition of carbon

between energy production (ATP and NADPH) and growth (via the synthesis of many ana-

bolic precursors) is predicted to be realized primarily at the level of the TCA cycle and appears

to be largely controlled at the metabolic level.

To evaluate these model predictions, additional experimental data on extracellular and

intracellular fluxes (growth rate, glucose and oxygen uptake rates, and TCA cycle fluxes

through the citrate synthase) were collected from the literature [5, 27, 34, 53, 54, 56, 58–60,

62–65, 67] (S2 Dataset). These data, which were not used to calibrate the model, covered the

particular regions highlighted by the kinetic model (Fig 5B–5D). The excellent agreement

between the spread of simulated and experimental data strongly supports the existence of the

functional couplings predicted by the model. It is important to mention that these couplings

are not caused by stoichiometric constraints since they are not observed when the solution

space is uniformly sampled using the stoichiometric model (Fig 5E–5G). The results also show

that the coordination of gene expression by hierarchical regulatory mechanisms is not an

important factor in these couplings since they are still maintained when enzyme levels are

changed randomly. In contrast, metabolic regulation brought about by metabolite-enzyme

interactions is sufficient to explain their emergence; therefore they represent intrinsic proper-

ties of the central metabolism of E. coli.
Interestingly, additional couplings predicted by the model were recently observed in vivo in

both prokaryotic (E. coli) and eukaryotic (S. cerevisiae) microorganisms [73]: between the ATP

and NADH production rates (ρ = 0.93, Fig 6A), between the sum of fluxes per glucose uptake

rate and the ATP yield (ρ = 0.71, Fig 6B), and between the growth rate per sum of fluxes and

the sum of fluxes per glucose uptake rate (ρ = -0.85, Fig 6C). Since the central metabolic net-

works of E. coli and S. cerevisiae are highly conserved, the present results may explain why sim-

ilar properties are observed in both microorganisms, though this hypothesis requires further

investigation.

Global role of metabolic regulation in Escherichia coli metabolism
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Metabolic regulation does not significantly shrink the solution space

defined by the stoichiometric constraints

The results presented above support the view that metabolic regulation reduces the solution

space defined by the stoichiometric constraints, as previously suggested [68, 69]. However, the

very low probability regions of the solution space might not be captured by random sampling

approaches [50]. To test further if metabolic regulation actually shrinks the solution space of E.

coli central metabolism, its boundaries were determined with and without considering meta-

bolic regulation by using the kinetic and the stoichiometric models, respectively. Unexpect-

edly, the boundaries were similar for both models (Fig 7). This indicates that metabolic

Fig 6. Some functional couplings observed in different microorganisms are predicted by the model.

Predicted couplings between the ATP and NADH production rates (A), between the sum of fluxes per glucose

uptake rate and the ATP yield (B), and between the growth rate per sum of fluxes and the sum of fluxes per

glucose uptake rate (C). Shades of white to blue denote null to high frequency, respectively. The red line in

panel A corresponds to the linear correlation proposed by [73] from energy production fluxes estimated using
13C-flux data.

doi:10.1371/journal.pcbi.1005396.g006

Fig 7. Boundaries of the solution space with and without metabolic regulation. The solution space

defined only by stoichiometric constraints (blue area) was computed using the stoichiometric model. The

solution space defined when metabolic regulation is taken into account (orange area) was estimated using the

kinetic model, by optimizing enzyme levels with particular metabolic states (orange dots) as objective

functions. The two solution spaces are similar, indicating that metabolic regulation does not significantly shrink

the solution space, at least for the variables investigated here (A, glucose uptake rate vs. growth rate; B,

biomass yield vs. glucose uptake rate; C, oxygen uptake rate vs. glucose uptake rate; D, TCA cycle flux—

relative to glucose uptake—vs. growth rate).

doi:10.1371/journal.pcbi.1005396.g007
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regulation does not shrink the solution space of the system—and thus does not restrict the

metabolic capabilities of E. coli–, at least for the variables considered here. Thus we have to

conclude that evolution must have “discovered” this region of parameter space which gives

selective advantage to the organism.

Metabolic regulation maintains global metabolite homeostasis

It has been shown that metabolic regulation plays an important role in metabolite homeostasis,

which prevents osmotic stress and disadvantageous spontaneous reactions by avoiding large

changes in metabolite concentrations (for example see [20, 70]). Interestingly, we noticed that,

for 86% of the steady-states reached by the kinetic model (when the enzyme levels were chosen

at random), changes in total concentration of metabolites are lower than three-fold relative to

the calibrated state (47 mM) (Fig 8), but the changes in fluxes are several orders of magnitude

higher. This narrow range of predicted intracellular concentrations is physiologically relevant

[63, 71]. Since no constraints on metabolite concentrations were included in the model, we

conclude that metabolic regulation alone may explain global metabolite homeostasis, while

still allowing significant changes in fluxes.

Discussion

In this study, we investigated the contribution of metabolic regulation on the operation of the

central metabolism of E. coli, which provides building blocks, cofactors, and energy for growth

and maintenance. We developed, to our knowledge, the first detailed kinetic model of this sys-

tem that links metabolism to environment and cell proliferation through intracellular metabo-

lites levels. This model, validated by 778 independent flux data from some 266 experiments,

allowed the identification of several properties which emerge from metabolic regulation and

explain many experimental observations of E. coli’s physiology. The intrinsic, self-regulating

capacities of E. coli central metabolism appear to be far more significant than previously

expected. The results presented here imply that gene regulation is not required to explain these

properties.

Metabolic control analysis showed that the flux and concentration control exerted by single

enzymes is low and largely distributed across the network, confirming again the insights of

Fig 8. Metabolite homeostasis is largely driven my metabolic regulation. Distribution (blue bars) and

cumulative frequency (red line) of the total concentrations of intracellular metabolites for steady-states

simulated from 600,000 random enzyme levels.

doi:10.1371/journal.pcbi.1005396.g008
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Kacser and Burns [51]. This significantly contrasts with the outcome of previous kinetic mod-

els [13, 32, 44, 45], where a few enzymes were predicted to exert most of the flux control, but is

in line with much experimental evidence [7, 21, 46, 47, 72]. Our results therefore support the

view that the concept of “rate-limiting” steps does not apply to E. colimetabolism, and likely

not to the metabolism of other organisms. Its persistence in the literature is a major handicap

to understanding metabolism. In fact, the central metabolism is not even self-contained in

terms of control due to a large portion of control being exerted by the environment, making E.

coli responsive to environmental changes. One of the most striking examples of this phenome-

non is manifested in growth controlling most fluxes but being controlled virtually by glucose

availability alone. The low control exerted by single enzymes on the system makes the meta-

bolic operation of E. coli robust to fluctuations of enzyme levels that may arise from noise in

gene expression or other factors. Moreover, the majority of control resides not within but out-

side the controlled pathways. The dense, yet highly organized, interactions between pathways

allow a rapid and coordinated response of the entire system to perturbations.

Exploration of the solution space indicated that metabolic regulation does not significantly

restrict the metabolic capabilities of E. coli, as was previously believed [68, 69]. While the

observed behavior of many different E. coli strains and mutants are confined to a small region

of the solution space, this is not due to kinetic constraints as it is possible to simulate other

behaviors simply by changing parameter values. This apparent paradox can be resolved, of

course, if the action of natural selection had favored these behaviors.

The systematic mapping of the relationships between various systemic variables revealed

that metabolic regulation is sufficient to explain the emergence of several functional couplings,

which are independent from gene regulation (since they are conserved when enzyme levels are

changed randomly by orders of magnitude) and cannot be explained by stoichiometric con-

straints. An important finding is that metabolic regulation alone may be responsible for the

coordination of major catabolic, energetic and anabolic processes at the cellular level to opti-

mize growth. Metabolic regulation thus appears to be sufficient to maintain multi-dimensional

optimality of E. colimetabolism [65]. Despite this overall coordination, there is a large degree

of flexibility at most individual metabolic steps. The role of metabolic regulation in maintain-

ing global homeostasis of intracellular metabolite pools under a broad range of flux states was

also verified by the present model. The modeling results were in excellent agreement with

experimental data, even quantitatively. E. colimetabolism displays remarkably robust yet sim-

ple emergent properties, and these properties have major implications on its overall cellular

physiology, e.g. by preventing unnecessary osmotic stress, maintaining the coordination

between key processes, and optimizing the allocation of resources towards particular functions

such as growth.

The self-regulating capabilities of E. coli central metabolism reflect the evolutionary selec-

tion that has been exerted on the ensemble of enzymes (in terms of kinetic and regulatory

properties, but not necessarily of expression levels) to realize a network with these properties.

Since central metabolism is essential in most organisms and is highly conserved across the

three domains of life, it is tempting to speculate that metabolic regulation is responsible for the

very similar operation principles observed in different organisms [73].

Of course we do not suggest that hierarchical regulation does not play an important role in

the metabolic operation of E. coli, but it is in addition to the properties observed here, since

these can operate without it. For instance, the robustness of the flux partition to the deletion of

global transcriptional regulators was interpreted as a low control of this partition at the hierar-

chical level [5], and our results confirm that this robustness lies, to some extent, in metabolic

regulation, given the low control exerted by enzymes. However, this conclusion is valid only

for moderate changes of enzyme levels (with the notable exception of the flux through the
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TCA cycle), and other mechanisms (such as hierarchical regulation) are required to explain

the robust flux partition. Expanding the kinetic model to incorporate regulation of gene

expression will be needed ultimately to understand the interplay between these two regulatory

levels [19, 74, 75, 88].

Materials and methods

Model construction

The kinetic model of the central carbon and energy metabolism of Escherichia coli K-12

MG1655 (Fig 1) was developed with the software COPASI (build 45) [42]. This model is briefly

described in this section, and additional information can be found in Supporting Information

(S1 Text). The model is available in SBML and COPASI formats in Supporting Information

(S1 Model), as well as from the Biomodels database [43] with identifier MODEL1505110000.

Compartments. The model contains three compartments: the environment and the two

cellular compartments: periplasm and cytoplasm. The periplasmic volume is set to be 20% of

the total cell volume [76]. Since the calibrated model simulates the metabolic operation of

E. coli cultivated under glucose-limited conditions (chemostat), two reactions were included

to represent the continuous glucose inflow into the environment and acetate wash out

(GLC_FEED and ACE_OUT, respectively).

Exchange reactions. Biological systems are open systems, three exchange reactions were

therefore included to enable the transport of extracellular glucose (XCH_GLC), acetate

(XCH_ACE) and phosphate (XCH_P) between the environment and the periplasm. Their rate

was modelled as a saturable, porin-facilitated diffusion process through the outer membrane

[77], using a reversible Michaelis-Menten kinetics.

Central carbon metabolism. Detailed description of the glucose phosphotransferase sys-

tem was taken from [18]. Reactions of glycolysis, TCA cycle, glyoxylate shunt, and pentose

phosphate and Entner-Doudoroff pathways were taken from [32]. Inhibition of 6-phosphoglu-

conate dehydratase (GND) by phosphoenolpyruvate (PEP) was removed due to lack of experi-

mental evidence. Inhibition of glucose-6-phosphate isomerase (PGI) by 6-phosphogluconate

(PGN) [78] was added, and an error in the kinetic rate law of Entner-Doudoroff aldolase

(EDA) in [32] was corrected. Reactions involved in acetate metabolism (acetyl-CoA synthe-

tase, ACS; phosphotransacetylase, PTA; acetate kinase, ACK) were taken from [31]. The rate

law of ACS was modified to be function of the concentration of the cofactors that are actually

involved in this reaction (ATP and CoA) instead of NADP.

Oxidative phosphorylation. In aerobic conditions, E. coli uses oxidative phosphorylation

to produce ATP. The main components of this pathway are two NADH dehydrogenases (reac-

tions NDHI and NDHII), the succinate dehydrogenase complex (reactions SDH and SQR),

the cytochrome bo oxidase (CYTBO) and the ATP synthase (ATP_SYN) [79]. NDHI and

NDHII catalyze the transfer of electrons from NADH to the quinone pool (Q) in the cyto-

plasmic membrane. In contrast to NDHII, NDHI also generates a proton gradient by translo-

cating H+ from cytoplasm to periplasm, with an H+/e- ratio of 2 [79]. SQR is a complex of four

proteins (SdhA, B, C and D). SdhA is a part of the TCA cycle (reaction SDH) and oxidizes suc-

cinate to fumarate by reducing FAD to FADH2. Further transfer of electrons from FADH2 to

Q (reaction SQR) occurs via the three other proteins. CYTBO couples the two-electron oxida-

tion of ubiquinol (QH2) with the four-electron reduction of molecular oxygen to water. This

enzyme also functions as a proton pump, with an H+/e- ratio of 2 [79]. The proton gradient is

eventually used by the ATP synthase to generate ATP, with an H+/ATP ratio of 4 [80]. Oxida-

tive phosphorylation was modelled using mass action kinetics. The sigmoidal dependence of

the rates of H+ pumps (NDHI and CYTBO) and ATP synthase on pH gradient across the
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membrane was considered using the relation proposed by [81]. The rate of these reactions was

modeled using the following rate laws:

vNDHI ¼ Vmax:
1

1þ DpH2
: NADH:Q �

NAD:QH2

Keq

 !

ð1Þ

vNDH2 ¼ Vmax: NADH:Q �
NAD:QH2

Keq

 !

ð2Þ

vSQR ¼ Vmax: FADH2:Q �
FAD:QH2

Keq

 !

ð3Þ

vCYTBO ¼ Vmax:
1

1þ DpH2
: QH2

2:O2 �
Q2

Keq

 !

ð4Þ

vATP SYN ¼ Vmax:
DpH4

1þ DpH4
: ADP:P �

ATP
Keq

 !

ð5Þ

with

DpH ¼ log
Hcytoplasm

Hperiplasm

 !

ð6Þ

Interconversion of nucleotides and reduced cofactors. Several processes strongly impact

the balance of ATP/ADP/AMP/cAMP pools and had to be considered to fit the experimental

data: i) non-growth associated processes which consume ATP are lumped in the reaction

ATP_NGAM, ii) adenylate kinase (reaction ADK), which catalyzes the reversible conversion

of AMP and ATP into two molecules of ADP, iii) adenylate cyclase (CYA), which catalyzes the

synthesis of cAMP from ATP, and iv) cAMP phosphodiesterase (DOS), which hydrolyses

cAMP into AMP. The reversible reduction of NADP by NADH is catalyzed by two transhy-

drogenases [56] lumped into the reaction PNT. These reactions were modeled using mass

action kinetics.

Growth. An overall pseudo-reaction was defined to describe cellular growth in terms of

all the required metabolic precursors, with stoichiometric coefficients taken from the biomass

function of iAF1260 [36]. Assuming the growth rate (μ) is controlled by intracellular concen-

tration of all the cell building blocks Si, the rate of this reaction was modeled using the follow-

ing equation:

m ¼ Vmax:
Y

i

Si
Si þ K

Si
m

ð7Þ

Parameter estimation

Values of 56% of the parameters (253 on a total of 449) were directly taken from the literature.

Parameters not available in the literature, which do not have a real biochemical estimate (e.g.
Michaelis constants of the biomass function), or for which biochemical measurements are
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generally not representative of intracellular conditions (e.g. Vmax) were estimated to repro-

duce in the best possible way 276 experimental data obtained from E. coli K-12 MG1655

grown on glucose, under aerobic condition, at a dilution rate of 0.1 h-1. These data were steady

state fluxes and metabolite concentrations [13, 34, 36, 37, 82] and time-course concentrations

of intracellular metabolites in response to a glucose pulse [35] (S1 Dataset). Parameter estima-

tion was formulated as a constrained optimization problem:

minimize f ðpÞ

subject to gðpÞ � c

where p is the parameter vector, f is the objective function which evaluates the deviation

between the simulated and measured data, g(p) is the constraint function, and c is the con-

straint vector. The objective function f was defined as the sum of squared weighted errors:

f ðpÞ ¼
X

i

xi � yiðpÞ
si

� �2

where xi is the experimental value of the data point i, with experimental standard deviation σi,
and yi(p) is the corresponding simulated value. Constraints were defined on estimated parame-

ters (10−4 mM� KM� 103 mM; 10−2 mM/s� Vmax � 103 mM/s; 10−4� Keq� 106) to ensure

they are kept within a biologically reasonable range. The objective function was minimized

with the Particle Swarm Optimization algorithm [83], using the Condor-COPASI system [84]

on a pool of 2500 CPU cores. The experimental and fitted data are provided in Supporting

Information (S1 Dataset). Values of all the parameters (and the corresponding references for

those values taken from the literature) are given in Supporting Information (S1 Text).

Model analysis and validation

Analyses described below were performed using R (v3.0, www.r-project.org) after converting

the model into Fortran. All the scripts are provided in Supporting Information (S1 Code).

Simulations. Steady-states were calculated using the runsteady function of the rootSolve R

package (v1.6.5). Absolute and relative error tolerances were set to 10−8 and 10−6, respectively.

Metabolic control analysis. Scaled flux (CJE) and concentration (CME ) controls, which rep-

resent the fractional change in the steady-state flux J and metaboliteM in response to a frac-

tional change in the rate of the step E coefficients, were calculated as follows:

CJE ¼
@lnJ
@lnE

ð8Þ

and

CME ¼
@lnM
@lnE

ð9Þ

The overall flux (CJE) and concentration (CCE) controls exerted on the system by the step E
were calculated as the L2-norm of all its control coefficients:

CJE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

J
ðCJEÞ

2
q

ð10Þ
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and

CCE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

M
ðCME Þ

2
q

ð11Þ

To evaluate the sensitivity of these coefficients to parameters, this analysis was performed

for 100,000 sets of random parameters uniformly sampled within ±20% around their reference

values.

Sampling of the solution space. A total of 600,000 flux distributions were uniformly sam-

pled within the solution space of a stoichiometric version of the kinetic model, using the

Cobra Toolbox (v2.0.5) and Matlab 2013. In parallel, the runif function of R was used to gener-

ate 600,000 random sets of enzyme levels, and the corresponding steady-states were simulated

under excess glucose (concentration fixed at 10 mM). For each set, enzyme levels were sam-

pled over two orders of magnitude (between 0.1 and 10 times the Vmax of the initial model)

from a log uniform distribution, which ensures each order of magnitude to be sampled in sim-

ilar proportions.

Identification of functional couplings. For each steady state, the following variables were

calculated: growth rate, glucose and oxygen uptake rates, ATP, NADH and NADPH produc-

tion rates and yields, sum of fluxes, cost of enzymes, biomass yield, total intracellular metabo-

lites pool, ATP production rate and enzyme cost per sum of fluxes, and sum of fluxes per

glucose consumed. Enzyme cost, defined as the total amount of amino acids present in central

metabolic enzymes, was calculated by summing for each reaction the product of enzyme con-

centration by the number of amino acids in the corresponding enzyme, similarly to [85, 86].

Enzyme concentrations were taken from [63], those not available were assumed to be the aver-

age concentration of other enzymes (18 μM). Pairwise relationships between steady-state sys-

temic variables and (absolute and relative) intracellular fluxes through the main pathways

were evaluated using Spearman correlation test (cor function of R stats package) and mutual

information (mutinformation function of infotheo R package v1.2.0).

Model validation. Exploration of the model solution space suggested the existence of

robust couplings between several metabolic processes (carbon uptake, catabolism, energy and

redox production, and growth). We independently validated these model predictions based on

a test set of experimentally observed phenotypes that were not used during model construc-

tion. We collected from the literature a total of 778 intracellular and extracellular flux data

from some 266 experiments where several wild-type and mutant E. coli K-12 strains (MG1655

and its close derivatives JM101, BW25113, W3110 and TG1) were grown in different condi-

tions (deep well plate, bioreactor, shake flask, and chemostat) (S2 Dataset) [5, 27, 34, 53–67].

This data set therefore represents a very broad range of the metabolic states that can be

expressed by E. coli growing on glucose. The testing data set is very different from the training

data set, which contains experimental data from a single wild-type E. coli strain grown in a

unique condition. This provides a robust assessment of the predictive ability of the model.

The good agreement between simulated and experimental validation data (Figs 4–6) indi-

cates the model yielded fairly accurate predictions of the metabolic states that can be expressed

by E. coli growing on glucose. Glucose uptake, catabolism, energy and redox production and

growth were predicted to be strongly coupled despite large, random changes of gene expres-

sion. All the experimental data support the model-driven hypothesis that metabolic regulation

is sufficient to maintain the tight coordination between these key metabolic processes.
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