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Abstract

Genome-wide association studies (GWAS) have identified tens of thousands of genetic vari-

ants associated with hundreds of phenotypes and diseases, which have provided clinical

and medical benefits to patients with novel biomarkers and therapeutic targets. However,

identification of risk variants associated with complex diseases remains challenging as they

are often affected by many genetic variants with small or moderate effects. There has been

accumulating evidence suggesting that different complex traits share common risk basis,

namely pleiotropy. Recently, several statistical methods have been developed to improve

statistical power to identify risk variants for complex traits through a joint analysis of multiple

GWAS datasets by leveraging pleiotropy. While these methods were shown to improve sta-

tistical power for association mapping compared to separate analyses, they are still limited

in the number of phenotypes that can be integrated. In order to address this challenge,

in this paper, we propose a novel statistical framework, graph-GPA, to integrate a large

number of GWAS datasets for multiple phenotypes using a hidden Markov random field

approach. Application of graph-GPA to a joint analysis of GWAS datasets for 12 phenotypes

shows that graph-GPA improves statistical power to identify risk variants compared to statis-

tical methods based on smaller number of GWAS datasets. In addition, graph-GPA also

promotes better understanding of genetic mechanisms shared among phenotypes, which

can potentially be useful for the development of improved diagnosis and therapeutics. The

R implementation of graph-GPA is currently available at https://dongjunchung.github.io/

GGPA/.

Author summary

Recently, there has been accumulating evidence suggesting pleiotropy, i.e., genetic com-

ponents shared across multiple phenotypes. Incorporation of pleiotropy in genetic
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analysis might improve statistical power to identify risk associated genetic variants. Sev-

eral statistical approaches have been proposed to utilize pleiotropy for association map-

ping but they are currently still limited to a relatively small number of phenotypes, e.g., a

pair of phenotypes. This restricts potential gain in statistical power in association map-

ping and investigation of pleiotropic structure among a large number of phenotypes. In

order to address this challenge, in this paper, we propose graph-GPA, a novel statistical

framework to integrate a large number of phenotypes using a hidden Markov random

field architecture. Application of the proposed statistical method to GWAS datasets for

12 phenotypes showed that graph-GPA does not only provide a parsimonious represen-

tation of genetic relationship among these phenotypes, but also identify significantly

larger number of novel genetic variants that are potentially functional. We believe that

this novel approach might help investigation of common etiology and improvement of

diagnosis and therapeutics.

Introduction

Genome-wide association studies (GWAS) have identified many single-nucleotide polymor-

phisms (SNPs) associated with various phenotypes, including cancer, diabetes, and autoim-

mune diseases, among others. As of July 2016, more than 20,000 SNPs have been reported to

be significantly associated with at least one complex trait in the NHGRI-EBI catalog of pub-

lished GWAS [1] (http://www.ebi.ac.uk/gwas/). Despite these great achievements, researchers

have had concerns about the fact that these significantly associated SNPs could explain only a

small portion of genetic contributions to complex traits/diseases, which is referred to as “miss-
ing heritability” [2–4]. For example, while human height is known to be highly heritable and its

heritability is estimated to be up to 80% [5], genome-wide significant SNPs (p-value< 5 × 10−8

after Bonferroni correction) together can only explain 16% of variation in height [6]. Research-

ers have tried to identify sources of this missing heritability phenomenon and progress has

been made towards explaining some sources of the phenomenon. Among these efforts, Yang

et al. [7] reported that, in their cohort genotyped on HumanCNV370-Quad v3.0 BeadChips

(*351K SNPs) or Human610-Quad v1.0 BeadChips (*582K SNPs) platforms, all genotyped

common SNPs together can explain 45% of variation in human height using a random effects

model. This result suggests that a large proportion of the heritability is not actually missing:

given the limited sample size, many individual effects of genetic markers are too weak to pass

the genome-wide significance, and thus those variants remain undiscovered, which is usually

referred to as “polygenicity”.

Although polygenicity provides attractive explanation for the missing heritability phenome-

non, the polygenic architecture imposes a great practical challenge in GWAS. While identifica-

tion of genetic variants with small effect sizes requires a larger sample, it is often not a practical

option to recruit a larger sample because recruitment may be expensive and time-consuming.

Hence, it would be desirable if we could increase statistical power to detect risk associated

genetic variants with smaller effect sizes, without extensive additional subject recruitment.

Integrative analysis of genetic and genomic data has recently been considered as a promising

direction, including combining GWAS data of multiple genetically related phenotypes. In the

last few years, researchers have provided convincing evidence of “pleiotropy”, i.e. the sharing

of genetic factors, especially between human complex traits. For example, a systematic analysis

of the NHGRI GWAS Catalog demonstrated that 16.9% of the reported genes and 4.6% of the
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reported SNPs are associated with multiple traits [8]. As a specific example, recent genetic

studies for five psychiatric disorders reported high genetic correlation between schizophrenia

and bipolar disorders [9, 10]. Furthermore, a series of studies have shown that integration of

genetic data for multiple phenotypes can boost statistical power to identify risk associated

genetic variants [11–15]. For example, Andreassen et al. [12] showed that exploiting the pleiot-

ropy between schizophrenia and cardiovascular disease greatly improved the statistical power

to detect schizophrenia-associated genetic variants.

In order to address these challenges and opportunities, Chung and others proposed a statis-

tical framework, namely GPA (Genetic analysis incorporating Pleiotropy and Annotation),

that integrates genetic data for multiple phenotypes [11]. Using extensive simulation studies,

the authors showed that GPA outperforms other methods utilizing pleiotropy for association

mapping, such as conditional FDR approach [13]. The GPA algorithm was successfully applied

to a joint analysis of five psychiatric disorders, including attention deficit hyperactivity disor-

der (ADHD), autism spectrum disorder (ASD), bipolar disorder (BPD), major depressive

disorder (MDD), and schizophrenia (SCZ). For example, GPA detected strong genetic rela-

tionship between BPD and SCZ and the joint analysis of GWAS data for these two diseases sig-

nificantly improved statistical power to identify genetic variants associated with risks of BPD

and SCZ. Specifically, at the local false discovery rate (FDR) of 0.05, separate analyses identi-

fied only 14 and 409 genetic variants associated with BPD and SCZ, respectively, while joint

analysis using GPA uncovered 383 and 821 associated genetic variants. Furthermore, some of

these additionally identified SNPs were confirmed by the findings of Cross-Disorder Group of

the Psychiatric Genomics Consortium [9, 10].

This paper is motivated by the joint analysis of GWAS data for 12 phenotypes, including

psychiatric disorders, autoimmune diseases, lipid-related phenotypes, and cardiovascular phe-

notypes. The extensive integrative analysis is of interest because it is expected that genetic basis

is not shared only within a phenotype group (e.g., psychiatric disorders) but also between phe-

notype groups (e.g., between psychiatric disorders and autoimmune diseases), as suggested in

recent literature [16]. However, the state-of-the-art approaches to integrating GWAS datasets

are still limited to a relatively small number of phenotypes, e.g., a pair of phenotypes [11–15,

17]. For example, GPA considers all possible combinations of phenotype associations of which

the number increases exponentially with the number of phenotypes. Specifically, the joint

analysis of 12 phenotypes requires consideration of 4,096 combinations of association status,

which is computationally prohibitive and can generate various estimation issues. As a result,

information sharing is permissible only among a small number of phenotypes with existing

methods, limiting potential improvement in statistical power to identify risk associated genetic

variants. This limitation highlights the urgent need for a statistical framework that enables

integration across a large number of GWAS datasets.

In order to address the challenge, in this paper, we propose a novel statistical framework,

namely graph-GPA. Specifically, we utilize the Markov random field (MRF) architecture to

model hidden binary indicators for association of a SNP with each phenotype. The MRF archi-

tecture does not only provide a parsimonious representation of genetic relationship among

phenotypes, but also improves statistical power to identify risk associated genetic variants by

sharing information across GWAS data for these phenotypes. This paper is structured as fol-

lows. We first propose our novel Bayesian hierarchical model for the joint analysis of GWAS

data for multiple phenotypes. Then, we evaluate the proposed method with simulation studies

and conduct the joint analysis of GWAS datasets for 12 phenotypes, including psychiatric dis-

orders, autoimmune diseases, lipid-related phenotypes, and cardiovascular phenotypes. Our

real data analysis reveals genetic mechanisms shared among the phenotypes. Furthermore,

graph-GPA improves statistical power to identify both risk variants associated with each

graph-GPA

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005388 February 17, 2017 3 / 20



phenotype (bipolar disorders) and those with pleiotropic effects (psychiatric disorders and

inflammatory bowel diseases).

Materials and methods

graph-GPA model

In this paper, we integrate GWAS data for multiple phenotypes at the level of summary statis-

tics rather than full genotype and phenotype datasets. For example, they might be p-values

obtained from a logistic regression of phenotype on genotype or a contingency table for geno-

type-phenotype association. This approach allows broader application of the proposed method

because summary statistics are more readily available. Let pit denote the p-value of association

testing of SNP t = 1, 2, � � �, T with phenotype i = 1, 2, � � �, n. To facilitate data visualization and

modeling, we transformed pit as yit = F−1(1 − pit), where F(�) is the cumulative distribution

of the standard normal variable [18]. Let eit denote the latent (unobservable) association indi-

cator for t-th SNP and i-th phenotype, where eit = 1 if SNP t is associated with phenotype i and

eit = 0 otherwise. We model the density of yit given the latent association status eit by a normal

mixture

pðyitjeit; mi; s
2

i Þ ¼ eitLNðyit; mi; s
2

i Þ þ ð1 � eitÞNðyit; 0; 1Þ; ð1Þ

where LN(y; μ, σ2) and N(y; 0, 1) denote the log-normal density with mean emþs2=2 and the stan-

dard normal density, respectively. Here, the standard normal distribution assumption for

background SNPs (eit = 0) is equivalent to the theoretical null distribution assumption (unifor-

mity of p-values) [18]. We assume the log-normal distribution for yit corresponding to associ-

ated SNPs (eit = 1) because it is likely that associated SNPs will only account for a negligible

proportion of the SNPs with p-values larger than 0.5, i.e., yit smaller than zero. We evaluated

the appropriateness of these assumptions using real GWAS datasets and confirmed that no sig-

nificant violation of these assumptions is detected (Sections 6 and 7 in S1 Text). However, we

note that other distributions can also be considered, especially for associated SNPs, because we

chose the log-normal distribution mainly due to convenience and interpretability. In order to

check this issue and further confirm the robustness of our results, we also considered Gamma

distribution as an alternative distribution for associated SNPs instead of log-normal distribu-

tion. The results indicate that our results are still robust to this alternative choice of emission

distribution for associated SNPs (Section 8 in S1 Text).

For effective integration of multiple GWAS datasets for genetically related phenotypes, we

suggest a graphical model based on an MRF [19] that represents a conditional independent

structure for genetic relationship among phenotypes. Let G = (V,E) denote an MRF graph,

where V = (v1, . . ., vn) are the vertices and E represents the edges such that E(i, j) = 1 if there is

an edge between vi and vj and E(i, j) = 0 otherwise. Here, vi corresponds to phenotype i and

E(i, j) = 1 implies that phenotypes i and j are genetically correlated in the sense of conditional

dependence. Assuming an auto-logistic spatial scheme, the conditional distribution of et =

(e1t, . . ., ent) is written by

pðetjα; β;GÞ ¼ Cðα; β;GÞ � exp
Xn

i¼1

aieit þ
X

i�j

bijeitejt

 !

; ð2Þ

where

Cðα; β;GÞ� 1
¼
X

e�2E

exp
Xn

i¼1

aie
�

i þ
X

i�j

bije
�

i e
�

j

 !

; ð3Þ
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E is the set of all possible values of e� ¼ ðe�
1
; . . . ; e�nÞ, βij is the MRF coefficient for the pair of

phenotypes i and j, and i * j denotes that vi is adjacent to vj, i.e., the sum of the second term is

over all pairs of phenotypes i and j such that E(i, j) = 1.

For Bayesian inference, we introduce conjugate prior distributions for Model (1),

mi � Nðym; t
2

m
Þ; s2

i � IGðas; bsÞ; ð4Þ

where IG denotes the inverse-gamma distribution. For coefficients in the MRF Model (2),

prior distributions are assumed as

ai � Nðya; t
2

a
Þ; bij � Eði; jÞ Gðbij; ab; bbÞ þ f1 � Eði; jÞg d0ðbijÞ; ð5Þ

where Γ(a, b) denotes the gamma distribution with mean a/b and δ0 denotes the Dirac delta

function at zero. This prior setting for βij reflects the graph structure G by putting βij = 0 if

there is no edge between phenotypes i and j in the graph, i.e., E(i, j) = 0. We put p(G) = 1/|E|,

where |E| denotes the number of edges in the current graph G, which leads the model to favor

simple graphical representation with a small number of edges, i.e., the small number of βij hav-

ing non-zero values. As informed by a referee, our estimation of the graphical structure G is

conceptually similar to “learning the structure” of MRF in the machine learning literature.

Specifically, in the “learning the structure” approach, the L1 (Lasso) regularization is directly

imposed instead of using the prior distribution of G in our current model. This approach

tends to lead to sparse models where many βij have zero values while not much sacrificing the

model fit (e.g., [20–22]). In our simulation and application studies, weakly informative priors

are used by setting the following hyperparameters: θμ = 0, t2
m
¼ 10000, θα = 0, and t2

a
¼ 10000.

We set aσ = bσ = 0.5 to put substantial prior mass on modest-sized variances. We put aβ = 4

and bβ = 2 to let most of βij with E(i, j) = 1 a priori distinct from zero, having mean 2 and vari-

ance 1, while allowing a handful of values be close to zero. Note that we defer the discussion

about model robustness to the hyperparameters to the Results Section.

Posterior inference

Given the p-values from GWAS datasets, we estimate the parameters of the graph-GPA model

and other related interesting quantities based on posterior samples from a Markov Chain

Monte Carlo (MCMC) sampler. Specifically, we implement a Metropolis-Hastings within

Gibbs algorithm whose full details are provided in Section 1 in S1 Text. Here, we address a few

key points about the MCMC implementation. As adopting some conjugate forms of prior dis-

tributions, most MCMC steps consist of Gibbs updating which is computationally efficient.

To deal with the dimensional changing structure of βij given G, we adopt the reversible jump

MCMC [23] to add or remove edges in the graph G during the MCMC run.

The graph structure of G representing genetic relationship among phenotypes can be sum-

marized by p(E(i, j)|Y), interpreted as the posterior probability that two phenotypes i and j are

genetically correlated with each other. In addition, the posterior summary of βij can be inter-

preted as a relative metric to gauge the degree of correlation between phenotypes i and j. Using

these posterior summaries, we can come up with several strategies to make an inference about

the pairwise relationship between phenotypes. A convenient and widely used approach is to

set an arbitrary threshold for p(E(i, j)|Y) to declare phenotypes i and j to be correlated, for

example, p(E(i, j)|Y)> 0.5 as in [24, 25]. However, we found that this approach gives subopti-

mal results in estimation of a graph structure because it does not exclude the case that two phe-

notypes are connected in the graph (E(i, j) = 1) but their corresponding MRF coefficient (βi, j)

is close to zero. Hence, here we adopt an alternative approach to improving specificity in iden-

tifying correlated pairs of phenotypes using both p(E(i, j)|Y) and the posterior summary of βi, j.

graph-GPA
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Specifically, we declare phenotypes i and j to be correlated when p(E(i, j)|Y)> 0.5 and βij is sig-

nificantly different from zero, e.g., p(βij > 0|Y)> 0.95.

Association mapping of a single SNP on a specific phenotype is inferred from p(eit = 1|Y),

i.e., the posterior probability that SNP t is associated with phenotype i. SNPs associated with

both i-th and j-th phenotypes can be inferred based on p(eit = 1, ejt = 1|Y) and SNPs associated

with more than two phenotypes can also be identified in similar ways. We use the direct poste-
rior probability approach [26] to control global false discovery rates to determine associated

SNPs. Specifically, given the graph-GPA model fitting, we first sort SNPs by their local false

discovery rates from the smallest to the largest. For example, we can sort SNPs by their local

false discovery rates for phenotype i, denoted as fit� 1 − p(eit = 1|Y). Then, we increase the

threshold for local false discovery rates, κi, from zero to one until

Fdri �

PT
t¼1

fit1 fit � kif g
PT

t¼1
1 fit � kif g

� t;

where τ is the pre-determined bound of global false discovery rates, and 1{�} is the indicator

function with value one if the statement is true and zero otherwise. Finally, we declare SNPs

with corresponding fit < κi to be associated with phenotype i. Similarly, SNPs shared between

phenotypes i and j can be identified by using

Fdrij �

PT
t¼1

fijt1 fijt � kij

n o

PT
t¼1

1 fijt � kij

n o � t;

where fijt� 1 − p(eit = 1, ejt = 1|Y).

Results

Simulation studies

We conducted simulation studies to evaluate the performance of the proposed graph-GPA

model. In the simulation studies, we mainly investigate the proposed model from the perspec-

tives of 1) parameter estimation and false discovery rate control; 2) estimation of genetic rela-

tionship among diseases (graph structure); and 3) statistical power to identify risk-associated

SNPs. We generated our simulation data as follows. First, we assumed the true phenotype

graph (G) as depicted in Fig 1a. Specifically, we considered a group of tightly linked pheno-

types (P1, P2, and P3) and a group of weakly linked phenotypes (P3, P4, and P5). In addition,

we also assumed two isolated phenotypes (P6 and P7) as negative controls. Given this graph,

we set α1 = −4.7, α2 = −3.0, α3 = −5.5, α4 = −4.8, α5 = −3.6, α6 = −2.5, and α7 = −3.5, while set-

ting β12 = 4.0, β13 = 1.8, β23 = 2.3, β34 = 2.5, and β45 = 5.0 (all the remaining βij were set to

zeros). These MRF coefficients were determined based on the estimated coefficients obtained

using real GWAS datasets. Then, given the MRF coefficients, we generated association status

of 20,000 common SNPs (eit) from the model in the Eq (2) by running the Gibbs sampler

for 1,000 iterations [25]. Finally, given the association status of SNPs, we generated yit from

Nðmi; s
2
i Þ if eit = 1, and N(0, 1) if eit = 0, where μ = (1.1, 1.0, 1.2, 1.2, 1.3, 1.1, 1.3) and σ = (0.4,

0.3, 0.35, 0.3, 0.45, 0.4, 0.3). Note that we set the signal strengths relatively weak in order to

mimic the distribution of p-values in real GWAS datasets. We applied the graph-GPA model

with 10,000 burn-in and 40,000 main MCMC iterations to the simulation dataset. We also ana-

lyzed the simulation dataset with GPA as a representative method that can utilize a smaller

number of phenotypes because GPA outperformed other currently available methods such as

conditional FDR [12, 13] in previous studies [11].

graph-GPA
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We first evaluated the estimation accuracy of the proposed method. Figure A in S1 Text

indicates that all the parameters are accurately estimated with high confidence. Specifically, for

all parameters, the point estimates are close to true values and their 95% credible intervals

always include true values. In addition, Figure B in S1 Text indicates that the global FDR is

well controlled at the nominal FDR level for a wide range of FDR levels, regardless of whether

it is for genetically related phenotypes or independent phenotypes. We then evaluated the

Fig 1. Simulation studies. (a) true phenotype graph, which was accurately recovered by graph-GPA. (b) phenotype graph

estimated by GPA, which added an additional edge between P3 and P5. (c, d) receiver operating characteristic (ROC) curves

for phenotypes P1 and P7. For a phenotype correlated with other phenotypes, such as P1 (c), joint analyses (graph-GPA and

GPA) improve statistical power to identify associated SNPs compared to separate analyses, while graph-GPA further

significantly outperforms GPA and separate analyses. In contrast, for independent phenotype such as P7 (d), joint and separate

analyses have comparable statistical power in association mapping. Note that in (c) and (d), we show the averaged ROC for

GPA, based on the pairs estimated to be correlated with P1 in (b), i.e., P1–P2 and P1–P3.

doi:10.1371/journal.pcbi.1005388.g001

graph-GPA
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estimation of genetic relationship among phenotypes. Fig 1a and 1b show the phenotype

graph estimated using graph-GPA and GPA, respectively. We can see that graph-GPA accu-

rately recovers true phenotype graph, while GPA adds an additional edge between P3 and P5.

This is essentially because P3 and P5 are still correlated (which GPA infers) although they are

conditionally independent given P4 (which graph-GPA infers). The result implies that graph-

GPA has potential to better prioritize important pairs of genetically correlated phenotypes

while it also provides more parsimonious representation of genetical correlation.

Finally, we evaluated the SNP prioritization performance of graph-GPA. As a baseline, we

ran a null model without interaction term (βij) as follows:

Pðetja;GÞ / exp
X

i

aieit

( )

: ð6Þ

The no interaction model is interpreted as a special case of our suggested model in Eq (2) by

putting the point mass at zero for prior distribution of βij, i.e., the extremely strong prior belief

that the phenotypes are independent. Note that these models correspond to separate analyses

of GWAS datasets because they do not share information between phenotypes. Fig 1c shows

the receiver operating characteristic (ROC) curves for graph-GPA, GPA, and separate analysis

for the phenotype P1, which is genetically highly correlated with other phenotypes. Compared

to the separate analysis, both graph-GPA and GPA improve area under the curve (AUC) val-

ues. More importantly, graph-GPA significantly outperforms GPA in the sense of AUC, due to

more extensive information sharing across phenotypes. On the other hand, for independent

phenotypes such as P7 illustrated in Fig 1d, there is no gain in AUC by employing graph-GPA

or GPA compared to the separate analysis. The ROC curves for all the phenotypes are also

provided in Section 5 of S1 Text and our conclusion remains valid across seven phenotypes.

Tables A and C in S1 Text show numbers of SNPs identified by graph-GPA and in separate

analyses at nominal FDR level of 10%. As expected, graph-GPA identified significantly larger

number of associated SNPs (Table A in S1 Text) than separate analyses (Table C in S1 Text).

In summary, graph-GPA significantly improves statistical power to identify associated SNPs

compared to GPA and separate analyses by sharing information among larger number of phe-

notypes. Additionally, graph-GPA promotes understanding of genetical relationship among

phenotypes by providing a parsimonious representation of pleiotropic architecture among

these phenotypes.

graph-GPA provides interpretable and stable representation of

pleiotropic architecture

To evaluate the potential of the proposed model for genetic studies, we applied the proposed

graph-GPA model and the GPA model to the GWAS data of European ancestry for 12 pheno-

types, using summary statistics that are publicly available from consortium websites. Specifi-

cally, we considered 1) five psychiatric disorders, including attention deficit/hyperactivity

disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BPD), major depressive

disorder (MDD), and schizophrenia (SCZ) from the Psychiatric Genomics Consortium [9, 10]

(http://www.med.unc.edu/pgc); 2) three autoimmune diseases, including Crohn’s disease

(CD) and ulcerative colitis (UC) from the International Inflammatory Bowel Disease Genetics

Consortium [27, 28] (http://www.ibdgenetics.org/) and rheumatoid arthritis (RA) [29] (http://

www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/); 3) two lipid-

related phenotypes, including high-density lipoprotein (HDL) from the Global Lipids

Consortium [30] (http://csg.sph.umich.edu//abecasis/public/lipids2010/) and type 2

diabetes (T2D) from the DIAbetes Genetics Replication And Meta-analysis Consortium [31]

graph-GPA
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(http://diagram-consortium.org); and 4) two cardiovascular phenotypes, including

coronary artery disease (CAD) from the CARDIoGRAM Consortium [32] (http://www.

cardiogramplusc4d.org/data-downloads/) and systolic blood pressure (SBP) from the

International Consortium for Blood Pressure [33] (http://www.georgehretlab.org/icbp_

088023401234-9812599.html). We used the intersection of SNPs among these datasets, which

consists of 228,944 SNPs. For the graph-GPA model, we collected the posterior sample of

40,000 MCMC iterations, removing the first 10,000 iterations as burn-in. The MCMC con-

verged quickly to a stationary distribution (Figure K in S1 Text) and our sensitivity analysis

results indicate that the model is not sensitive to misspecification of hyperparameters (Tables

E and F in S1 Text).

Fig 2a shows the phenotype graph estimated using the graph-GPA approach, where edges

are connected if p(E(i, j)|Y)> 0.5 and the 95% credible interval of βij does not include zero.

Tables G and H in S1 Text show estimates of P(Gij|Y) and βij, which demonstrates the effective-

ness of our approach in constructing a phenotype graph using both βij and Gij, discussed in the

Materials and Methods Section. Specifically, by additionally considering credible interval of

βij, we could exclude the case to have nonzero E(i, j) with βij close to zero. In Fig 2a, as

expected, clinically related phenotypes make a cluster, e.g., a psychiatric disorder cluster of

ADHD-BPD-SCZ-MDD and an autoimmune disease cluster of CD-UC-RA. In addition, this

phenotype graph indicates pleiotropy between psychiatric disorders and autoimmune diseases,

also recently reported [34, 35]. On the other hand, the pleiotropy between T2D and CAD, and

between cardiovascular complications and diabetes in general, has also been reported in multi-

ple literature [36–38]. Fig 2b shows the phenotype graph estimated using the GPA algorithm.

Although some key edges (such as RA-ASD) are still observed here, the phenotype graph esti-

mated using GPA is denser than that estimated using graph-GPA and this makes it challenging

to interpret genetic relationship among phenotypes. For example, all of T2D, CAD, UC, CD,

and RA are tightly linked in the phenotype graph estimated using the GPA model. Moreover,

in the graph, we also lost some edges between phenotypes, for example, ADHD is totally iso-

lated from all the other phenotypes.

In order to further demonstrate stability of our findings, we introduced slight perturbation

to the dataset. Specifically, we partitioned the cohorts for RA into two groups (WTCCC/EIRA/

CANADA vs. NARAC-I/NARAC-III/BRASS, namely cohort groups A and B, respectively; see

[29] for more details about these cohorts) and fitted graph-GPA models to each of two GWAS

datasets (i.e., based on each RA GWAS data while GWAS data for all the remaining 11 pheno-

types remain fixed). In general, the estimated phenotype graph for each RA cohort group

(Figure L in S1 Text) is similar to the phenotype graph estimated using the full RA cohorts (Fig

2a). Not surprising, the estimated phenotype graph for each RA cohort group is slightly sparser

than that using the full RA cohorts because we significantly reduce the sample size for RA by

partitioning its cohorts into two groups. Although the weaker signals for RA affected the esti-

mated graph, its effects are essentially local and limited to the first neighbors of RA in the esti-

mated phenotype graphs. These results indicate that the proposed graph-GPA model can

achieve a good balance between sensitivity and specificity in construction of a phenotype

graph, which can be beneficial for prioritizing important pairs of phenotypes for further inves-

tigation of common etiology.

graph-GPA allows robust identification of novel, potentially functional

genetic variants

We next evaluated the association mapping performance of graph-GPA model. Table 1 shows

the number of identified SNPs when we control the global FDR for each phenotype or each

graph-GPA
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pair of phenotypes at the nominal level of 10%. These results confirm our finding in the previ-

ous section in the sense of identified SNPs. Specifically, we observe strong pleiotropy between

BPD and SCZ, among autoimmune diseases (RA, CD, and UC), and between T2D and CAD,

among others. It might look contradictory to observe that ADHD does not share SNPs with

any other phenotypes in Table 1 while ADHD is linked to BPD, CD, and HDL in Fig 2a. How-

ever, this is likely due to less confidence in identification of SNPs associated with ADHD with

weak effect sizes and, as a result, no SNP could pass the cut-off at the nominal FDR level. We

confirmed this by observing that SNPs associated with ADHD were identified when we used

looser FDR level (Tables M and N in S1 Text). In addition, as a baseline, Table 2 shows the

Fig 2. GWAS of twelve phenotypes. (a, b) phenotype graphs estimated by graph-GPA and GPA. graph-GPA

provides more parsimonious representation of genetic relationship among phenotypes than GPA. (c) GenoCanyon

scores for SNPs identified in separate analysis, by GPA, and by graph-GPA. GenoCanyon analysis shows that novel

genetic variants identified by graph-GPA might be as functional as or more functional than those identified in separate

analyses.

doi:10.1371/journal.pcbi.1005388.g002

graph-GPA
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number of SNPs identified using the null model (i.e., without interaction terms, corresponding

to separate analysis) at the same global FDR level. As expected, in this case, a much lower num-

ber of SNPs are shared between phenotypes, which means that separate analysis has reduced

statistical power in identifying pleiotropic SNPs. More importantly, the numbers of SNPs

associated with each phenotype (diagonal terms in Table 2) were also smaller than those in

Table 1. This implies that information sharing via the graph-GPA model significantly boosts

statistical power to identify SNPs associated with each phenotype as well. Finally, as in the pre-

vious section, we further demonstrated stability of the results in Table 1 by partitioning the

cohorts for RA into two groups, fitting graph-GPA models for each of two GWAS datasets,

and evaluating their association mapping results (Tables I–L in S1 Text). As before, the associ-

ation mapping results for each RA cohort group are similar to those obtained using the full RA

cohorts. Also, such perturbation in dataset had local effects; for the pairs involving RA, less

associated SNPs were identified as the sample size for RA decreased in this case. In summary,

graph-GPA robustly improved statistical power to identify both SNPs with pleiotropic effects

Table 1. GWAS of 12 phenotypes (graph-GPA analysis): Numbers of SNPs identified to be associated with each pair of phenotypes by controlling

the global FDR at nominal level of 10%. Diagonal elements show the number of SNPs inferred to be associated with each phenotype when the global FDR

is controlled at the same level.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP

ADHD 0 0 0 0 0 0 0 0 0 0 0 0

ASD 0 9 0 0 0 0 0 0 0 0 0 0

BPD 0 0 81 0 35 8 14 3 5 0 0 0

MDD 0 0 0 20 1 1 0 0 0 0 0 0

SCZ 0 0 35 1 415 72 63 48 44 3 18 17

RA 0 0 8 1 72 689 296 265 44 13 17 18

CD 0 0 14 0 63 296 2343 854 126 26 37 23

UC 0 0 3 0 48 265 854 1799 119 17 35 14

HDL 0 0 5 0 44 44 126 119 894 71 99 17

T2D 0 0 0 0 3 13 26 17 71 282 61 12

CAD 0 0 0 0 18 17 37 35 99 61 320 47

SBP 0 0 0 0 17 18 23 14 17 12 47 169

doi:10.1371/journal.pcbi.1005388.t001

Table 2. GWAS of 12 phenotypes (separate analysis): Numbers of SNPs identified to be associated with each pair of phenotypes by controlling the

global FDR at nominal level of 10%. Diagonal elements show the number of SNPs inferred to be associated with each phenotype when the global FDR is

controlled at the same level.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP

ADHD 0 0 0 0 0 0 0 0 0 0 0 0

ASD 0 7 0 0 0 0 0 0 0 0 0 0

BPD 0 0 30 0 0 0 0 0 0 0 0 0

MDD 0 0 0 12 0 0 0 0 0 0 0 0

SCZ 0 0 0 0 270 9 2 1 0 0 2 2

RA 0 0 0 0 9 594 63 71 0 0 0 1

CD 0 0 0 0 2 63 1564 228 30 0 0 1

UC 0 0 0 0 1 71 228 1054 25 0 0 0

HDL 0 0 0 0 0 0 30 25 736 9 3 0

T2D 0 0 0 0 0 0 0 0 9 161 1 0

CAD 0 0 0 0 2 0 0 0 3 1 139 3

SBP 0 0 0 0 2 1 1 0 0 0 3 101

doi:10.1371/journal.pcbi.1005388.t002

graph-GPA
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and SNPs associated with each phenotype by information sharing across wider range of

phenotypes.

We next considered novel SNPs identified by graph-GPA by evaluating and comparing

functional importance between the SNPs identified in separate analyses and by graph-GPA.

Specifically, we used the GenoCanyon score [39] that measures functional importance of each

genomic locus by integrating functional annotations for conservation, open chromatin, his-

tone modification, and transcription factor binding. For this purpose, we first implemented a

lift-over of genomic coordinates to HG19 and annotated with the GenoCanyon annotation file

downloaded from its website (http://genocanyon.med.yale.edu/). Fig 2c indicates that the Gen-

oCanyon scores for graph-GPA are larger than 0.5 on average for most phenotypes considered

above. Moreover, the GenoCanyon scores for the SNPs identified by graph-GPA are compara-

ble to or higher than those for the SNPs identified in separate analyses. The GenoCanyon

scores for GPA are significantly lower than those for graph-GPA, and sometimes even lower

than those for separate analysis. We found that the phenotypes with low GenoCanyon scores

in GPA analysis correspond to those with weak signals (Tables 1 and 2). This might imply that

when signals are weak for certain phenotype, some “bad” combinations of phenotypes might

result in false positives for GPA (Table O in S1 Text) because information sharing is allowed

between a much smaller number of phenotypes. However, it is often not a trivial task to deter-

mine optimal pairs of phenotypes to integrate a priori. In contrast, graph-GPA integrates a

much larger number of GWAS datasets and this might result in more robust improvement in

statistical power in the sense of both sensitivity and specificity, regardless of its signal strength.

These results indicate that graph-GPA improves statistical power to identify associated SNPs

in a more robust way and the novel genetic variants identified by graph-GPA might also be

potentially important ones associated with disease risks.

graph-GPA identifies bipolar disorder risk associated genetic variants

with pleiotropic effects

Fig 3a and 3b show Manhattan plots for separate analysis and joint analysis using graph-GPA

for bipolar disorders (BPD). In the separate analysis under the global FDR level of 10%, we

already identified some interesting SNPs, including those located in GNL3, SYNE1, and

ANK3 genes, among others. These SNPs were previously identified to be associated with BPD

in the literature [10, 40]. For example, GNL3 encodes nucleostemin, which is thought to be a

critical regulator of the cell cycle. Aberrant regulation of nucleostemin would be consistent

with the neurotrophic hypothesis of mood disorders, which posits that stem-cell proliferative

potential in the brain modulates BPD risk [40]. At the same global FDR level, graph-GPA

could identify a significantly larger number of novel risk SNPs, especially in chromosomes 3

and 6. Specifically, graph-GPA did not only identify more SNPs located in these genes such as

GNL3, but also identified additional biologically interesting SNPs, such as SNPs located in

ITIH1 gene in chromosome 3 and multiple SNPs located in the MHC region. These SNPs

were also previously identified to be associated with BPD in the literature [10, 40]. For exam-

ple, ITIH1 encodes a serine protease inhibitor, which is thought to play an anti-inflammatory

role [40]. In-depth cross-phenotype investigation indicates that some of these SNPs associated

with BPD risk are also related to risk of other diseases, as already suggested by the phenotype

graph (Fig 2a). For example, a joint analysis using graph-GPA determined that the GNL3 and

ITIH1 genes were also associated with SCZ risk.

We next evaluated overall and tissue-specific functional importance of novel SNPs identi-

fied by graph-GPA. Here, in addition to the GenoCanyon scores, we also utilized GenoSkyline

scores [41] that measure tissue-specific functional importance of each genomic region, using

graph-GPA
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epigenetic data (H3K4me1, H3K4me3, H3K36me3, H3K27me3, H3K9me3, H3K27ac,

H3K9ac, and DNase I hypersensitivity) selected from the Epigenomics Roadmap Project’s 111

consolidated reference epigenomes database. Again, we first implemented a lift-over of geno-

mic coordinates to HG19 and annotated with the GenoSkyline annotation files downloaded

from its website (http://genocanyon.med.yale.edu/GenoSkyline/). Fig 3c and 3d indicate that

overall functional importance of associated SNPs increased in graph-GPA compared to sepa-

rate analyses (GenoCanyon). Moreover, the associated SNPs identified by graph-GPA were

enriched for more diverse group of tissues. Specifically, while the SNPs identified in a separate

Fig 3. Manhattan plots for association with bipolar disorder (BPD) in separate analysis (a) and joint analysis using graph-GPA

(b). Blue and red horizontal lines mean nominal levels for local FDR at 20% and global FDR at 10%, respectively. GeneCanyon

([overall]) and GeneSkyline scores for various tissues for the SNPs associated with BPD, identified in separate analysis (c) and

by graph-GPA (d).

doi:10.1371/journal.pcbi.1005388.g003

graph-GPA
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analysis were mainly enriched for brain and epithelium, we observed enrichment for blood,

brain, epithelium, and gastrointestinal tissues in the associated SNPs identified in graph-GPA

analysis (GenoSkyline). Note that although the GenoSkyline score for brain tissue might look

lower in Fig 3d compared to Fig 3c, it is actually not the case because graph-GPA identified a

significant number of additional SNPs with both high and low scores in brain but simply more

SNPs with lower scores in brain were identified by graph-GPA (Figure U in S1 Text). We

observed similar enrichment patterns for other psychiatric disorders as well (ASD, MDD, and

SCZ; Figures M–O in S1 Text). We note that the SNPs associated with autoimmune diseases

are specifically enriched for blood, epithelium, and gastrointestinal tissues (Fig 4 and Figure P

in S1 Text), as previously reported [41]. This might imply that graph-GPA identified more

pleiotropic genetic variants that are potentially associated with both bipolar disorder and auto-

immune diseases. This is again consistent with our observation of genetic correlation between

psychiatric disorders and autoimmune diseases (Fig 2a).

graph-GPA suggests significant genetic sharing among autoimmune

diseases

We first investigated the genes that were previously reported to be associated with both CD

and UC, which are collectively called as inflammatory bowel disease (IBD) [42]. Separate anal-

ysis at the global FDR level of 10% could identify some of these genes, including KIF21B, BRE,

IL18RAP, DAP, NKX2-3, IL23R, SMAD3, JAK2, CREM, STAT3, TYK2, REL, CCR6, and

TYK2. Joint analysis using graph-GPA at the same FDR level identified comparable number of

additional IBD-risk associated genes, including IL10, FOSL2, FCGR2A, STAT4, NDFIP1,

ORMDL3, IL2RA, MAP3K8, and CD226. These results indicate that the proposed graph-GPA

model can potentially improve statistical power to identify risk associated genetic variants by

leveraging pleiotropy structure. In order to further validate novel genetic variants identified by

graph-GPA, we compared KEGG pathways enriched for the SNPs identified in separate analy-

ses and those identified only by graph-GPA, using the DAVID functional annotation tool

(https://david.ncifcrf.gov/). As expected, for each of CD, UC, and RA, multiple pathways

related to autoimmune diseases (antigen processing and presentation, allograft rejection, type

I diabetes mellitus, and autoimmune thyroid disease, among others) are enriched for both the

SNPs identified in separate analyses and those identified by graph-GPA. In addition, these

pathways are also enriched for the SNPs associated with both RA and CD, and for the SNP

associated with both RA and UC (regardless of separate or joint analyses). Moreover, cardio-

myopathy pathways are enriched for both the SNPs identified in separate analyses and the

SNPs identified only by graph-GPA for IBD (CD and UC). Various signaling pathways

(GnRH signaling pathway and calcium signaling pathway, among others) are also enriched for

the SNPs identified in separate analyses for CD and the SNPs identified only by graph-GPA

for UC. Finally, we evaluated overall and tissue-specific functional importance of novel SNPs

using the GenoCanyon and GenoSkyline scores for these SNPs. Fig 4 and Figure P in S1 Text

show the results for UC, CD, and RA, and they indicate that overall functional importance of

the SNPs identified by graph-GPA is comparable to the SNPs identified in separate analyses

(GenoCanyon). Moreover, the SNPs associated with each of UC, CD, and RA are enriched for

blood, epithelium, and gastrointestinal tissues in both separate analyses and joint analyses

using graph-GPA (GenoSkyline), which is consistent with the previous findings [41]. These

results indicate that the novel SNPs identified by graph-GPA share similar functions with

those identified in separate analyses for autoimmune diseases, and this implies that these novel

genetic variants identified by graph-GPA are potentially associated with risk of these autoim-

mune diseases.

graph-GPA
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Discussion

Here we first briefly discuss some key assumptions made in the graph-GPA framework. First,

in the current paper, we assumed the standard normal distribution to model probit trans-

formed p-values for background SNPs, which is equivalent to the uniformity assumption of p-

values for background SNPs (i.e., theoretical null distribution assumption). While this assump-

tion is mathematically justified [18] and also works well in practice as shown in its application

to GWAS data for 12 phenotypes, it is still important to confirm that the p-values used as an

input for graph-GPA reasonably satisfy this assumption. For example, the distribution

assumption for background SNPs can be violated and type I errors of graph-GPA can be

inflated if population stratification and cryptic relatedness are not properly taken into account.

Fig 4. GeneCanyon ([overall]) and GeneSkyline scores for various tissues for the SNPs associated with

ulcerative colitis (UC) in separate analysis (a) and in graph-GPA analysis (b), and those associated with

Crohn’s disease (CD) in separate analysis (c) and in graph-GPA analysis (d).

doi:10.1371/journal.pcbi.1005388.g004

graph-GPA
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Hence, these confounding effects should be checked carefully and addressed before applying

graph-GPA to the p-values. Second, in the proposed model, genetic variants were assumed to

be independent. This independence assumption greatly simplifies our model structure and

results in efficient computation, which allows practical use of the graph-GPA framework.

However, in real GWAS data, genetic variants are often correlated due to linkage disequilib-

rium (LD) [43]. In practice, this issue can be addressed by promoting independence among

genetic variants by LD pruning approaches, for example. Third, in the proposed model, it is

assumed that the edge in the phenotype graph is purely due to genetic correlation between

these phenotypes. However, when some subjects are shared between genetic studies, this can

potentially generate artificial correlation among phenotypes. We investigated the impact of

overlapping subjects on the estimation of phenotype graph using simulation data (Section 17

of S1 Text). The results indicate that the phenotype graph estimation of graph-GPA is robust

to substantial sharing of subjects among genetic studies. However, we still recommend to

check this issue carefully when using the proposed graph-GPA approach.

In spite of great successes of the proposed graph-GPA framework, it can be further

improved as follows. First, in this paper, we assumed a uniform distribution over all possible

subgraphs as a prior distribution for the phenotype graph. While this approach already pro-

vided a parsimonious graph that is well supported by the literature, it can be further improved

by utilizing other related information useful to construct a phenotype graph. Second, in our

real data analysis with the GWAS data for 12 phenotypes, we conservatively generated 50,000

MCMC iterations to guarantee the chain’s mixing and convergence. In this setting, our

MCMC algorithm ran in a reasonable time, i.e., about three computation days on a standard

single-core desktop machine. However, in practice, a significantly smaller number of iterations

can be used after checking the chain’s convergence. For example, we re-analyzed our real data

by generating 10,000 MCMC iterations, which took about 16 computation hours, and obtained

inference results that were very similar to those generated from the five-time longer run of the

MCMC chain. However, we note that as the number of phenotypes increases, the computation

time will also increase dramatically. In order to improve the scalability of the proposed

method, we plan to implement parallel computing algorithms for cluster and GPU computing.

Specifically, in our MCMC steps for posterior inference (Section 1 of S1 Text), the update for

et (Step S1), which is the most computationally expensive part, can be easily updated in parallel

across SNPs because the conditional distribution of et given (α, β, G) is independent of that of

et0 when t 6¼ t0 in our model. In addition, more computationally efficient algorithms beyond

standard MCMC can also be considered, including advanced Monte Carlo techniques such as

Hamiltonian MCMC [44] and simulated annealing [45, 46], and approximated calculation

approaches such as pseudo likelihood [47] and variational Bayes [48].

In summary, we proposed graph-GPA, a novel statistical framework to integrate GWAS

datasets for multiple phenotypes using a hidden MRF approach. By effectively sharing infor-

mation across multiple GWAS datasets for genetically related phenotypes, the proposed statis-

tical model improves statistical power to identify risk-associated genetic variants. In addition,

the proposed method provides a parsimonious graph representing genetic relationship among

a large number of phenotypes. Our simulation studies indicate that graph-GPA has potential

to prioritize genetically more related pairs of phenotypes and to improve statistical power to

identify risk-associated genetic variants, compared to both separate analysis and the statistical

method integrating smaller number of GWAS datasets. In our application of graph-GPA to

GWAS datasets for twelve phenotypes, we observed that clinically related phenotypes are

tightly linked in the estimated phenotype graph, while edges across different groups of pheno-

types could also be supported by multiple literature. At the same nominal false discovery rate,

joint analyses of graph-GPA could identify significantly larger number of additional genetic

graph-GPA
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variants associated with each phenotype and those with pleiotropic effects. The pathway analy-

sis and functional analysis of these novel genetic variants indicate that these novel variants

might potentially have functional importance. We expect that graph-GPA would provide a

powerful approach for prioritizing risk-associated genetic variants and elucidating the pleio-

tropic architecture of complex traits, which can contribute to a better understanding of shared

genetic mechanisms and the development of improved diagnosis and therapeutics.

Supporting information

S1 Text. Supporting information for graph-GPA. Details about posterior inference and

additional results.

(PDF)
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