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Abstract
The standard architecture of neocortex is a network with excitation and inhibition in closely

maintained balance. These networks respond fast and with high precision to their inputs

and they allow selective amplification of patterned signals. The stability of such networks is

known to depend on balancing the strengths of positive and negative feedback. We here

show that a second condition is required for stability which depends on the relative

strengths and time courses of fast (AMPA) and slow (NMDA) currents in the excitatory pro-

jections. This condition also determines the response time of the network. We show that

networks which respond quickly to an input are necessarily close to an oscillatory instability

which resonates in the delta range. This instability explains the existence of neocortical

delta oscillations and the emergence of absence epilepsy. Although cortical delta oscilla-

tions are a network-level phenomenon, we show that in non-pathological networks, individ-

ual neurons receive sufficient information to keep the network in the fast-response regime

without sliding into the instability.

Author Summary

Many networks in the brain are finely balanced, with equal contributions from excitation
and inhibition. Deviations from this balance, if for instance the total amount of excitation
exceeds that of inhibition, lead to potentially devastating instabilities. Unlike previous
work we consider the interaction between fast and slow excitatory connections.We show
that not only the amount of excitation needs to be controlled to achieve network stability
but also the ratio of slow to fast excitation. Furthermore, optimally fast network perfor-
mance requires that networks approach instability. However, networks very close to this
instability develop oscillations in the delta range (1–4Hz) which potentially cause absence
epilepsy. We show that a normal (non-pathological) network can auto-regulate its activity
to avoid the instability.
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Introduction

It is generally accepted now that the model of the brain operating as a feedforward system is
incorrect. Instead, circuitry in cortex and other brain areas constitutes a finely balanced network
of strongly interacting excitatory and inhibitory neuronal populations [1–3]. These networks can
respond to their input with high temporal precision [4–6], selectively amplify patterned input sig-
nals [7], transmit multiple signals simultaneously betweenneural assemblies embedded in large
networks [8], and maintain activity on a broad range of time constants [9] including those of
short-term memory [10]. However, the existence of positive feedback in these networks requires
careful maintenance of stability. Previous work [11–13] has shown that stability requires a bal-
ance between overall excitatory and inhibitory feedback, see Eq (5) below. Other studies have
examined the impact of N-methyl-D-aspartate, (NMDA) on stability in the context of working
memory [14, 15] and its effect on homeostasis [16]. However, the impact of fast α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid, (AMPA) and slow NMDA glutamatergic cur-
rents on the relative speed of positive and negative feedback has not been previously examined.

Here, we show that the fact that excitatory currents have two main components with vastly
different dynamics requires an additional stability condition, the “temporal balance condition”,
which describes the relative speed of positive and negative feedback, Eq (6) below. Even when
the strengths of excitatory and inhibitory connections are perfectly balanced, violation of the
temporal balance condition makes the network unstable. As we show, deviations from the tem-
poral balance condition by a few percent are sufficient to move the system into a state where it
oscillates in the delta range and, subsequently, becomes unstable. This instability may cause
absence epilepsy (petit mal) seizures [17–19]. Conversely, as the network approaches this insta-
bility it is also able to respond more quickly to changes in input. In fact, we show that near this
instability the addition of slow NMDA receptors can make the network respond more quickly
than when recurrent feedback is modulated by AMPA receptors alone.

To understand stability and response times in networks with AMPA and NMDA projec-
tions, we will study populations with a balance of excitatory and inhibitory input. To gain an
intuitive understanding of such a network, we will beginwith a simplified single population
having both excitatory and inhibitory recurrent connections, Fig 1A, whose basic dynamics are
those of a simple second-order system (dampened spring), Fig 1C. We then examine a network
with both excitatory and inhibitory populations, Fig 2A, and describe how the long time con-
stant NMDA receptors impact network oscillations and response times, Fig 3. Finally, we show
that the describedbehavior is naturally produced in networks with short-term depression
(STD), Fig 4, and that it occurs not only in mean-rate approximations but also in spiking net-
works, Figs 2C and 4D.

Since, as we show, small changes in the AMPA/NMDA ratio can affect both a network’s sta-
bility and its response time, homeostatic mechanisms that maintain the balance of the time
constants of EE and IE projections are required to keep the system stable and, at the same time,
its dynamics in the physiological range. Current theories of homeostasis use as control parame-
ter either the average firing rate of a neuron or the activity history of individual synapses, and
corrections are implemented in terms of spike timing dependent plasticity mechanisms [20].
Neither of these provides the information needed for maintaining the AMPA/NMDA ratio
within the stability range of the temporal balance condition. What is needed is, instead, infor-
mation about the frequency response of the network. We show that individual neurons in a
spiking network have sufficient information about the network frequency response to allow
them to identify, and if necessary counteract, instability in the local network, Fig 5. Failures of
homeostatic control may allow the system to transition through the oscillatory regime into the
instability, leading to absence epilepsy.
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Fig 1. Transient imbalances in the recurrent activity cause the balanced network to act like a damped oscillator. A:

Schematic of a population P receiving excitatory feedback (+), inhibitory feedback (−), and external input I(t). Each recurrent

projection has a mix of fast and slow receptors, and projections have equal strength on average. B: Response of the

recurrent projections in A to an impulse input, I(t) = δ(t). If the mix of fast and slow currents in the excitatory connection is

biased towards the fast receptors relative to the inhibitory connection then excitation is faster than inhibition and the resulting
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Results

Transient Imbalances and the Damped Harmonic Oscillator

A network is considered to be balanced if its excitatory and inhibitory inputs cancel in the long
term, even though transient changes can still have a significant impact. Fig 1A shows a network
with a single population, P. This network has one excitatory and one inhibitory recurrent pro-
jection, each with a combination of fast and slow receptors, and both having exactly the same
strength over the long term. Therefore, if the ratios of fast to slow connections are equal on
both projections, excitatory and inhibitory feedback exactly cancel at all points in time. How-
ever, if the ratio of fast to slow inputs on the excitatory projection is increased compared to the
inhibitory projection, small increases in the firing rate of the population will cause a transient
excess of excitatory feedback followed by a smaller but longer period of inhibition, Fig 1B. On
the other hand, when the ratio of fast to slow inputs on the inhibitory feedback is greater, a
small increase in firing rate will cause a transient inhibitory feedback followed by a smaller but
longer period of excitation. Since the overall strength of the connections are the same, the total

change in R causes a transient increase in input followed by a smaller but longer decrease (blue curve). If inhibition is faster

it causes a transient decrease followed by a smaller but longer increase (red). The peak of each response has been

normalized to unity. Changes in synaptic strength will scale this response but will not change its shape. We set the fast and

slow receptors to be 5 ms and 10 ms in order to allow easy visualization. In all other simulations slow receptors have a time

constant of 100 ms unless otherwise noted. C: Schematics indicating the relationship between viscosity for a damped spring

and the overall response of the network. D: Response of three systems to a unit step input I(t) = [1 for t > 0; 0 for t� 0], as the

effective damping constant increases. Top row: Response of the damped harmonic oscillator derived from panel A. Middle:

Response of the network shown in A. Bottom: Response of the full network, see Fig 2A.

doi:10.1371/journal.pcbi.1005121.g001

Fig 2. Response of the balanced network to changes in NMDA/AMPA ratio. A: Network schematic showing the structure of the

rate model used in simulations. Triangular synapses are excitatory and circular synapses are inhibitory. For LIF networks E and I

represent populations of 3,200 and 800 neurons respectively with probability of connection between neurons of p = 0.2. B:

Simulation of the rate based network for three values of Δq. At the smallest value, delta oscillations appear (blue line). This value is

in the orange range in D, for even smaller values the system is unstable. All rate based networks use k = 1.2, w = 30. C: Same for

the LIF network but with k = 0.65 and w = 5.0. D: Rise time in seconds as a function of Δq for the rate model. Red squares indicate

instabilities, the orange segment represents the values of Δq which generate delta oscillations, and the dashed black line is at the

value of Δq where the rise time is 100 ms. E: Frequency response of the linear system. Delta oscillations start for small negative Δq

(blue) and gamma oscillations (green) appear when Δq approaches the right instability in D.

doi:10.1371/journal.pcbi.1005121.g002

Response Times and Delta Oscillations in Balanced Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005121 September 30, 2016 4 / 22



recurrent excitation and inhibition still ends up balanced. These transient but balanced changes
act mathematically like a first derivative which either slows down or speeds up the network,
similar to the “derivative networks” that have been previously described [10]. For physical sys-
tems the first derivative often acts like a friction term, or viscosity in a fluid. The network in Fig
1A can be approximated by a spring in a viscous fluid with the equation,

d2RðtÞ
dt2

þ 2zo0

dRðtÞ
dt
þ o2

0
RðtÞ ¼ IðtÞ: ð1Þ

where R(t) is the firing rate of the population P, z is a damping coefficient,ω0 is the frequency at
which the spring oscillates when z = 0, and I(t) is some time dependent input. A full derivation
of this representation, showing how it is approximated from the balanced network described in
Eqs (2)–(4) and shown in Fig 2A is given in the Supplement. In the spring approximation,
changes in the relative timing of excitatory and inhibitory feedback change the damping coeffi-
cient, z, effectively acting like changes in the viscosity of a fluid surrounding the spring.

Fig 3. Dependence of stability, delta oscillations and rise time on NMDA receptors. A: Values of Δq for

which the network in Fig 2A is unstable as a function of q and τnmda. The dashed black line indicates the

maximum absolute value of Δq possible for each corresponding value of q. The intersections between the

dashed black line and colored lines indicate the values of q below which each network is stable for all

possible values of Δq. B: The resonant frequency for each oscillatory instability in panel A. C: The fastest

non-oscillatory (critically damped) rise time for each network as a function of q and τnmda. The rise time was

computed at the value of Δq where delta oscillations appear or, when q is too small to allow for the

emergence of delta oscillations, at the most negative possible value of Δq. D: The slope of the rise time in the

overdamped parameter regime for each 0.01 change in Δq, see the slope of the line in Fig 2D where Δq > 0.

The slope was computed from the rise time values for Δq between 0 and 90% of the value of Δq at the

gamma oscillatory instability. All networks used w = 30 and k = 1.2. Black crosses indicate values of q and

τnmda for network in Fig 2B–2E.

doi:10.1371/journal.pcbi.1005121.g003
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The diagrams in Fig 1C depict four different types of dynamical responses that a spring can
exhibit as a function of z. The first type of response is where the fluid has no impact at all. In
this case the spring oscillates with a constant amplitude and at the system’s natural frequency
ω0, about 3.5 Hz for realistic cell and synaptic parameters in the spring approximation where
o0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tet

nmda
p

. We note that the units of ω0 in this formula are rad/s. We define τe as the
membrane time constant and τnmda as the decay time of the NMDA receptors (see Supple-
ment). This behavior, shown in the first column in Fig 1D, is called an undamped response.
The increasing frequency of ω0 that can be observed as the full system is reduced to the har-
monic oscillator, Fig 1D bottom row compared to the top row, is due to a reduction of the
number of time constants in the system. For example, setting the value of τampa = 0 removes
two terms in the denominator of the equation for ω0, compare the analytical solutions in Eqs
(S5) and (S11), causing a commensurate increase in ω0. Although we do not have an analytical
solution for the full network, the addition of τi and τgaba, where GABA is gamma-Aminobu-
tyric acid, could explain the lower value of ω0 for the full network. For even smaller values, i.e.
z< 0, the network is unstable and oscillations will increase in an unboundedmanner. On the
other hand, for increased viscosity a step input generates a transient oscillationwhich decays

Fig 4. Dynamics of the balanced network with STD and different usage rates for NMDA and AMPA in the EE

projections. Positive Δu means higher usage rate for NMDA than AMPA synapses. A: Response of the rate based

network with STD to a square pulse imput, beginning at t = 0 and ending at t = 1 s. Parameters are k = 1.2, w = 50, q = 0.5,

u = 0.2 and τr = 500 ms. B: Rise time of linear networks for the parameters computed from the time dependent synaptic

strengths in panel A using the risetime function from Matlab (The MathWorks, Inc., Natick, MA). For Δu = −0.03, the

system is unstable where the blue trace is not shown. C: Temporal trajectories of the network simulated in A as a function

ofWe ¼ J
ampa
ee þ Jnmdaee ¼ ðJampaie þ Jnmdaie Þ=k and Δq. The green circle indicates the starting point of the trajectories while the

red circles indicate the end points of the trajectories. The parameters were computed from the STD modulated synaptic

strengths at each time point. Shaded areas indicate where the linear system is unstable for the same set of parameters.

The AMPA instability corresponds to the left red square in Fig 2D and the NMDA instability to the right red square. Dashed

lines indicate parameters where the linear networks have rise times (RTs) of 0.1 s and 1.0 s. D: Response of the LIF

network with STD to a square pulse beginning at t = 0 and ending at t = 1 s. Parameter values are k = 0.65, w = 10, q = 0.5,

u = 0.2 and τr = 1,000 ms.

doi:10.1371/journal.pcbi.1005121.g004
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over time toward constant steady state activity, second column in Fig 1C and 1D. This is an
underdamped system, 0< z< 1. As the viscosity continues to increase it reaches a point where
oscillations are no longer possible and the system responds with an exponential decay to the
steady state, third column in Fig 1C and 1D. This system is called critically damped, z = 1. A
critically damped response is the fastest possible non-oscillating response for that system. Any
further increases in viscosity continue to slow the exponential approach of the network of its
steady state, fourth column in Fig 1C and 1D. Such networks are called overdamped, z> 1.

So far we have discussed the behavior of the idealized spring system, Eq (1), shown in the
top row of Fig 1D. The middle and bottom rows show, respectively, the equivalent results for

Fig 5. Frequency responses of the LIF network to constant Poisson input. Network parameters are as

in Figs 2C and 4D. A: Average over ten runs of the frequency response for each excitatory neuron in the LIF

network without STD for different values of Δq. B: Same as A but with STD. The independent variable is Δu

rather than Δq. C: Mean of the area under each LIF neuron’s frequency response between 0.5 and 5.5 Hz for

the LIF network without STD (left) and between 3.0 and 8.0 Hz for the LIF network with STD (right). The

mean value of the integral for Δq = 0 and Δu = 0 for each neuron was subtracted for all data points. Error bars

are standard deviations.

doi:10.1371/journal.pcbi.1005121.g005
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the reduced network depicted in Fig 1A, and the full network, Fig 2A. Clearly, the spring model
approximates well the responses of both of these networks. The behavioral repertoire of all
three systems comprises an unstable regime, undamped and damped oscillations (first and sec-
ond column), fast responses to input close to critical damping (third column), and a slower
asymptotic approach to steady state for larger damping (fourth column). For both network
models (Figs 1A and 2A), these different behaviors are obtained by only changing the ratio of
fast and slow inputs on the excitatory-to-excitatory (EE) or excitatory-to-inhibitory (IE) pro-
jections. In the next sectionwe will consider in more detail how this activity comes about in the
full network of Fig 2.

Rise Time and Stability in the Linear Network

We now consider a recurrent rate-based network with AMPA, NMDA and GABA synapses,
shown schematically in Fig 2A and describedby

te
dRe
dt
¼ � Re þ Jampaee Sampaee þ Jnmdaee Snmdaee

� Jgabaei Sgabaei þ IðtÞ
ð2Þ

ti
dRi
dt
¼ � Ri þ J

ampa
ie Sampaie þ Jnmdaie Snmdaie

� Jgabaii Sgabaii

ð3Þ

tlmn
dSlmn
dt
¼ � Slmn þ Rn ð4Þ

Variables Re and Ri represent the firing rates of the excitatory and inhibitory populations, with
intrinsic time constants τe and τi. Jlmn is the synaptic strength of the projection from population
n to populationm of synaptic type l which is GABA for the inhibitory and either AMPA or
NMDA for the excitatory projections. Slmn is the synaptic activation level of the projection from
population n to populationm, with synaptic time constant tlmn. Time varying input to the excit-
atory population is denoted by I(t).

We use two primary concepts to describe the speed at which a network responds to inputs:
network time constant and rise time. We use the term network time constant, τn, to represent
the time constant associated with the dominant eigenvalue, λ, of the network where τn = −1/λ.
However, in many cases dominant eigenvalue approximations are not appropriate. Therefore,
in order to compare across all networks, we also use the term rise time which is the time it
takes the network to go from 10% to 90% of its steady state value. When the dominant eigen-
value approximation is appropriate, consider a system describedby a single decaying exponen-
tial with time constant τn, then the rise time is approximately equal to ln(9) × τn.

Projections from the excitatory population have AMPA and NMDA components, each car-
rying part of the total synaptic strength. The stability conditions and time constants for the lin-
ear network can be derived from its eigenvalues, all of which need to have negative real parts
for the system to be stable. Assuming that the synaptic strength J is large compared to the neu-
ronal leak current and that all projections are O(J), we develop approximate conditions for
both stability and the network time constant, τn by approximating the coefficients of the char-
acteristic polynomial in the highest order of J. Requiring the coefficients of the characteristic
polynomial to be all positive is a necessary condition for stability while the ratio of the first two
coefficients determines τn. This leads to two conditions for the network which are derived in

Response Times and Delta Oscillations in Balanced Networks
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the supplementary material,

JeiðJ
ampa
ie þ Jnmdaie Þ � JiiðJ

ampa
ee þ Jnmdaee Þ > 0 ð5Þ

JeiðJ
ampa
ie tnmdaie þ Jnmdaie t

ampa
ie Þ

� JiiðJampaee tnmdaee þ Jnmdaee tampaee Þ > 0
ð6Þ

For ease of notation, we omit the superscript gaba for the inhibitory connections in this
equation.

In both equations, the first term characterizes negative feedback and the second positive
feedback. Eq (5) is the previously described condition for the balance between strengths of
inhibitory and excitatory connections [10, 21]. When the left-hand side (LHS) of this “balance
condition” equation becomes negative, the network is unstable since recurrent negative feed-
back (the first term) is smaller than recurrent positive feedback (second term). If the LHS is
positive, the network is stable and dominated by inhibition. When Eq (5) is fulfilled, the novel
“temporal balance condition,” Eq (6), describes instabilities due to the relative timing of nega-
tive and positive feedback. If negative feedback weighted by synaptic strength (first term) is too
slow relative to the weighted positive feedback (second term), i.e.when the temporal balance
condition becomes negative, it cannot balance the excitatory feedback, thus making the net-
work unstable. This is true even if total negative feedback (first term in Eq (5)) is stronger than
the total positive feedback (second term in Eq (5)), i.e.when the steady state network is domi-
nated by inhibition. On the other hand, positive and increasing values of the LHS of Eq (6) lead
to increases in τn which can vary over a large range. When the LHS of Eq (6) approaches O(J2),
then τn increases up to the range of several seconds. The network is then similar to the negative
derivative feedback network introduced as a model for working memory [10]. While that study
defined the stability conditions in terms of a single time constant on both excitatory projec-
tions, we focus on the more biophysically realistic implementation in terms of AMPA and
NMDA receptors. Since the proportion of AMPA and NMDA receptors on each projection
controls both the value of τn and the stability of the network there is a direct trade-off between
speed of input response and stability. When the network responds quickly it is close to an
AMPA dominated instability. As the NMDA component increases, the network moves further
from this instability and τn increases.

In order to analyze the stability of this network a change of parameters is useful. Letw be
the base synaptic strength, k the inhibitory to excitatory ratio, q the proportion of synaptic
strength carried by NMDA receptors (on all excitatory projections), and Δq a relative shift in
the proportion of synaptic strength through NMDA and AMPA receptors on the EE projec-
tions only. With q 2 [0, 1] and Δq 2 [−q, 1 − q], we have Jampaee ¼ ð1 � q � DqÞw,
Jnmdaee ¼ ðqþ DqÞw, Jampaie ¼ ð1 � qÞw, Jnmdaie ¼ qw and Jgabaii ¼ Jgabaei ¼ kw. Clearly, k parame-
trizes the impact of inhibitory vs. excitatory synapses and q the relative strength of NMDA vs.
AMPA. Varying Δq represents changes in the temporal balance, note that for this parameteri-
zation Eq (6) is zero when Δq = 0. We chose to modulate the relative difference in time con-
stants between EE and IE projections by adding Δq to EE; subtractingΔq from IE yields the
same network dynamics.

The simulation in Fig 2B shows the response of a linear network with q = 0.3, k = 1.2 and
w = 30 to a step input at t = 0. Instability occurs for relatively small deviations from temporal
balance. Increasing the AMPA contribution by setting Δq = −0.02 makes the network unstable.
The network resonates with a low frequency (in the delta range) as it approaches instability.
S1F and S1G Fig shows the resonant frequency due to the AMPA dominated instability as a
function of w and k. The frequency is fairly robust, varying between 1.4 Hz and 2.8 Hz over a
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large range of parameter values. The network is, however, very sensitive to changes in Δq:
increasing Δq by 0.1 towards NMDA currents increases the rise time of the network to approxi-
mately 5 seconds. For even larger Δq (slightly below 0.15) another instability occurs, to be dis-
cussed below.

A similar set of behaviors occurs for networks of leaky integrate and fire (LIF) neurons. Fig
2C shows the response of a network of 3,200 excitatory and 800 inhibitory neurons to a step
input at t = 0. In our simulations, each LIF neuron has a connection probability of p = 0.2 to all
other neurons. The average synaptic strength from each population onto a downstream neuron
is w = 5.0, and the relative strength of inhibition is k = 0.65. Results are qualitatively similar to
those of the rate model, Fig 2B. However, there is an increase in the (absolute) values of Δq at
which the network approaches either one of the instabilities (compare figure legends). The over-
all behavior is the same as in the rate network, a transition from instability and low frequency
(delta) oscillations for negative Δq to long time constant integration for large and positive Δq.

Fig 2D illustrates the trade-off between a network’s stability and its rise time for a step
input. For the network to respond quickly to an input, it must maintain small negative values
of Δq close to the dashed black line representing a rise time of 100 ms. Any increase in Δq will
cause a large concurrent increase in τn slowing down the network response. Conversely,
decreasingΔq leads to the emergence of a bifurcation with poles in the transfer functionwhich
move away from the real axis (S1H Fig). The right edge of the orange portion of the line in Fig
2D represents this bifurcation. As Δq becomesmore negative, the resulting oscillations in the
delta range (1–4 Hz, blue lines in Fig 2B, 2C and 2E) continue to increase in frequency until the
poles cross the imaginary axis (S1H Fig) and the network becomes unstable, left red square in
Fig 2D. To maintain fast response times, the system has to stay close to this instability. There-
fore, balanced networks with short response times sit on the edge of stability: relatively small
uncompensated changes in AMPA strength on the EE projections yield either an unstable net-
work or a much slower stimulus response, both highly undesirable in sensory cortex.

For large Δq the network rise time increases beyond 5 seconds at which point gamma-range
oscillations appear (Fig 2E, green). Subsequently, the poles of the transfer function cross the
imaginary axis, S1H Fig, and the system becomes unstable, right red square in Fig 2D. Thus,
our model predicts that increasing τn by increasing the proportion of NMDA over AMPA
receptors results in gamma oscillations and eventual instability. This type of gamma oscilla-
tions has been describedpreviously [22]. The rise times spanned in Fig 2D extend all the way
from physiologically realistic responses to sensory stimuli (tens of ms) to persistent activity
suitable for working memory (seconds). These large shifts in the response dynamics of the net-
work occur for a change in Δq less than 0.2.

The emergence of delta oscillations in balanced networks is consistent with the Stargazer
model of absence epilepsy. Stargazer mice lack the stargazin protein which is expressed in
inhibitory interneurons and is involved in AMPA receptor trafficking [17–19]. Animals lacking
this protein are prone to seizures with increased EEG power in the delta and low theta range.
The cause of these seizures has previously been ascribed to a reduction in the strength of inhibi-
tory feedback from the loss of AMPA receptors on inhibitory interneurons [19, 23] but this
does not explain the occurrence of delta oscillations.While decreased inhibitory feedbackmay
also play a role, our model suggests that a relative slowing of the IE projection through a reduc-
tion in the proportion of AMPA receptors breaks the temporal balance condition. Since, as dis-
cussed, stability depends on the relative timing of the EE and IE projections rather than their
absolute values, a reduction of AMPA in the IE projection is equivalent to an increase in
AMPA on the EE projection and will also induce a delta oscillatory instability.

This view is strongly supported by recent work showing a compensatory mechanism which
increases the strength of NMDA currents in stargazin deficient mice [18]. The addition of
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NMDA receptors compensates for the disinhibitory effect caused by the loss of AMPA recep-
tors, allowing the system to fulfill the balance condition, Eq (5). However, the increase of
NMDA also slows the negative feedback which moves the system even closer to the left insta-
bility in Fig 2B, thereby violating the temporal balance condition, Eq (6). This explains the
occurrence of delta oscillations consistently observed in the stargazer model of absence epi-
lepsy. This hypothesis can be tested directly by optogenetic interneuron and pyramidal neuron
activation controlled by closed-loop, real-time recordings of pyramidal cell activity, a technique
that is becomingwell-established [24–27]. The prediction is that relative excess of slow
(NMDA-like) optogenetically generated inward currents into interneurons over fast optogen-
etically generated (AMPA-like) currents into pyramidal neurons will result in delta oscillations
and, when the imbalance is increased further, to seizure-like pathologies. Importantly, the
model predicts that this occurs even though the balance of excitatory to inhibitory strengths is
maintained.

Model Dependence on NMDA Receptors

The dynamics observed in Figs 1 and 2 depend on the addition of NMDA receptors to the excit-
atory connections. A number of previous studies have considered response times in similar net-
works but without NMDA. They showed that in spiking networks response times on the order
of or faster than the membrane time constant were possible and did not observe a delta oscil-
latory instability [4, 5]. In Fig 3 we show how the dynamics in Fig 2 depend upon the amount of
NMDA on the excitatory projections, q, and the time constant of decay for the NMDA recep-
tors, τnmda. We consider a broad range of values for τnmda as has been previously observed [28–
31] as well as values of q ranging from 0 as in previous computational work that did not consider
NMDA receptors to NMDA/AMPA ratios that have been observed in cortex [31, 32].

Qualitative characteristics of the network dynamics are maintained for almost the entire
range of both q and τnmda. Fig 3A shows that the delta oscillatory instability is maintained for
all parameter values except for a small region near q = 0. For example, when τnmda = 100 ms
the network has no delta oscillatory instability for q 2 [0, 0.01]. This is consistent with the sta-
bility observed in previous work but also shows that even small amounts of NMDA require
consideration of the temporal balance condition. The oscillatory instability is also still in the
delta range across the whole parameter regime, Fig 3B.

Fig 3C shows the rise time for each parameter set when Δq is chosen such that the network
is critically damped which we define as the point just before the poles involved in the delta
oscillations separate from the real line. When the recurrent connections in the network have a
higher percentage of AMPA receptors (smaller q) then the network generally responds more
quickly to changes in input as would be expected from a network with faster synaptic
responses. However, for some non-zero values of q the network actually responds more quickly
than the network with no NMDA receptors, i.e.when q = 0. In these cases, each recurrent pro-
jection is slower then one with only AMPA receptors yet the negative value of Δq at critical
damping drives the system causing an overall reduction in rise time. Interestingly, this driving
of the network for negative Δq produces a counterintuitive interaction between rise time and
τnmda: longer decay times for the NMDA receptors produce a faster rise time in the critically
damped network. In fact, the fastest rise time we observe in our simulations of linear networks,
52.5 ms, occurs when q = 0.004, Δq = −0.003 and τnmda = 400 ms. Rise times on this order have
been previously observed in visual cortex [33]. Faster rise time for all our networks are possible
if shorter membrane time constants and faster τampa and τgaba are used. Observationof an
inverse relationship between rise time and τnmda in cortex would be an important experimental
confirmation of our model.
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Although fast responses are possible for a subset of values of Δq, most of the stable values of
Δq sit in the overdamped, large rise time regime. This regime shows effectively linear increases
in rise time as a function of Δq as can be seen in the portion of the blue line in Fig 2D where
Δq> 0. In Fig 3D we show how the slope of this line depends upon q and τnmda. Contrary to the
critically damped network, in the overdamped network larger τnmda produces longer rise times
for each positive increment in Δq as would be predicted from slower synapses. However, the
value of q has almost no impact. The fact that the value of q does not change the relationship
between rise time and Δq implies that even when q is zero the addition of NMDA receptors on
EE connections can cause increases in the rise time of the network. Therefore, even in networks
which start with no NMDA receptors, small additions of such receptors could still slow the
response of the network significantly, making our analysis important even in such corner cases.

STD and the Effective Network Time Constant

In the previous sectionwe showed that the stability, rise time and oscillatory activity of a bal-
anced network depend on the relative strengths of AMPA and NMDA receptors that form the
EE and IE projections. Our analysis assumed that the synaptic strengths are static. However,
most synapses experience changes in their effective strength through short term plasticity
which, on excitatory projections, is dominated by STD [34, 35]. Since STD has a range of
observedvalues, synapses with different AMPA/NMDA ratios may have STD with different
strengths. Such a combined distribution of STD strength and AMPA/NMDA ratio will cause
the effective value of q on each projection and therefore Δq to change over time. We therefore
study the balanced network model with non-uniform STD on excitatory projections, as
described in Materials and Methods, Eqs (9)–(12).

We consider the evolution of the synaptic strength on excitatory projections due to STD by
parameterizing synaptic dynamics around the base usage rate u = 0.2, defining uampa = u − Δu
and unmda = u + Δu. We also use a recovery time constant of τr = 500 ms. The base STD param-
eters are taken from within distributions found in rat visual cortex (we are not aware of equiva-
lent data in primates) [36]. The parameter Δumodels the same effect as Δq but in a time
dependent manner. As with Δq, Δu = 0 maintains the temporal balance condition while posi-
tive values of Δu increase network damping and negative values yield an underdamped net-
work. Fig 4A shows the behavior of the rate network for three different values of Δu. The
parameters of the network meet both the balance and the temporal balance conditions at t = 0,
and as the network evolves it exhibits dynamics similar to the linear network (without STD)
studied above. Negative Δu causes the temporal balance condition to move towards the AMPA
dominated unstable regime and the network begins to oscillate in the delta range. Positive Δu
yields an effective increase in the proportion of NMDA currents resulting in a greater network
time constant, in which case the network moves further from the AMPA dominated instability.

Parameters of STD vary over a broad range in cortex [36]. Within the range of values of u
and τr observed in that study, the qualitative dynamics of the network are the same as reported
here, viz delta oscillations followed by instability for negative Δu, and long time constant
responses for positive Δu, except for some deviations occurring for very strong STD. When
u> 0.35 and τr> 1.5 s, the STD associated with a large initial spike dampens the subsequent
response, thereby reducing the initial oscillatory activity seen in Fig 4A. However, the slow
response for positive values of Δu remains the same for strong STD. In addition, increasing val-
ues of u and τr require larger values of Δu in order to produce similar dynamics due to weaker
recurrent connections caused by the increasing strength of STD.

Since the strength of the connections between populations are constantly changing due to
STD, the networks in Fig 4A have different response characteristics as a function of time. In
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order to visualize how STD impacts these networks we plotted the rise time and parameters of
linear networks with the same instantaneous synaptic strengths as the nonlinear networks at
each time point, Fig 4B and 4C. We define instantaneous synaptic strength as the values of J in
Eqs (10)–(12). Fig 4B shows how the rise time of the linear networks change over time while
Fig 4C shows how the decreasing synaptic strengths due to STD project onto two parameters
of the linear network, the strength of the EE and the IE projectionsWe (see figure caption) and
Δq. The regions of instability and the rise times plotted in Fig 4C are computed from the linear
system using the synaptic strengths as defined in Materials and Methods. Although the net-
work with STD is nonlinear, the approximate linear systems show qualitatively similar dynam-
ics. When negative Δu yields faster rise time the linear system at each time point also shows
faster rise times, Fig 4B. The same is true for slow responses with positive values of Δu. Addi-
tionally, as the linear networks cross into the delta oscillatory instability the nonlinear networks
begin to oscillate as well, Fig 4A and 4C. This implies that the impact of STD on the network
dynamics can be broadly understood using the temporal balance condition.

Results transfer to spiking neurons. Fig 4D shows how networks of LIF neurons respond to
similar STD parameters as the rate network in Fig 4A. As in the network without STD, larger
changes in the underlying parameters are required to produce similar dynamics.

We have shown that differences in the distribution of STD across EE and IE projections in a
balanced network can produce significant changes in both network stability and response time
(τn). In addition to maintaining the base distributions of NMDA/AMPA receptors and synap-
tic strength, the network must have homeostatic mechanisms adjusting the joint distribution of
parameters controlling STD and NMDA/AMPA ratios. Concurrentmodulation of synaptic
strength, AMPA/NMDA ratio and short term plasticity parameters has been shown to occur in
cortical networks [37, 38]. Cortical networks have also been shown to carefully control the
NMDA/AMPA ratio both at individual synapses and across cortical areas [31, 32]. In the next
sectionwe address the question of whether the necessary information is available to the net-
work to implement such mechanisms.

Delta Oscillations and Homeostasis

We have shown that many neocorticalnetworks operate close to an oscillatory instability asso-
ciated with the relative ratios of AMPA to NMDA currents in the EE and IE projections. The
ratio is determined by distributions of synaptic variables across the population but individual
neurons cannot have direct access to information about the distributions. However, since each
neuron in a local network receives both a sampling of external inputs and of the recurrent out-
put of the population, it has implicit access to the network state through the frequency
response, defined as its output as a function of its input. As seen from an individual neuron,
the network input is simply the external input, and the network output is the recurrent input to
the neuron from the network. Given a large enough sample of these inputs and outputs, an
individual neuron can thus obtain an approximation of the frequency response of the network.
Since increasing delta oscillations indicate that the network is approaching instability, analysis
of the frequency response allows corrective action to be taken to maintain network stability.

We tested whether individual neurons in a network of randomly connected LIF neurons can
detect local network oscillations as Δq is altered. We used a constant Poisson input to drive the
network. An approximation of the frequency response was then obtained for each excitatory
neuron using the discrete Fourier transform of its recurrent glutamatergic inputs, i.e. the net-
work outputs (note that at this point, our interest is only in the availability of the information,
not detailed biophysical mechanisms). The magnitude of the average frequency response across
ten independent runs shows a clear peak in the delta range as the network approaches instability
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(Fig 5A). The mean area under the transfer function in the delta range [0.5Hz, 5.5Hz] shows a
clear increase as Δq becomesmore negative (Fig 5C). A homeostatic mechanism based on this
information could thus cause neurons to shift Δq towards stability. Similar responses, although
in a slightly higher frequency range, were observedwhen the instabilities were due to changing
synaptic strengths caused by STD (Fig 5B and 5C), allowing regulation of Δu.

Discussion

Networks with balanced excitation and inhibition are ubiquitous in cortex and other brain areas.
It is well-known that the relative strength of excitation and inhibition in these networks needs to
be controlled to keep them stable and to maintain their functionality. We show that in addition to
this constraint on overall synaptic strength, a second condition is required to maintain network
stability. This “temporal balance condition” specifies the relative weight of (fast) AMPA and
(slow) NMDA receptors in the balance of positive and negative feedback. Temporal balance pro-
vides a highly sensitive parameter for setting the response time of the network which can be
adapted over a range from tens of milliseconds to seconds by small adjustments of the AMDA/
NMDA ratio. The range of stability is bracketed by two different oscillatory singularities.Net-
works approaching the NMDA-dominated instability express gamma-range oscillations, of a type
describedpreviously. A novel finding is that AMPA-dominated networks close to instability oscil-
late in the delta range, a possible source of cortical delta waves and a potential cause of absence
epilepsy. Finally, we show that individual neurons in the network have access to information that
allows them to homeostatically tune the set point for temporal balance to the optimal range.

While previous work has shown that neurons in the asynchronous state could be driven to
respond more quickly than their membrane time constant we show that different time con-
stants on excitatory connectionsmay also be able to speed up the network response [4, 5]. In
Fig 3C the network responds more quickly to input when the excitatory connections have a
small amount of long time constant NMDA receptors than if the excitatory connections only
have AMPA receptors. As we note in the main text, this makes the counterintuitive prediction
that longer NMDA decay times may cause cortical networks to respond more quickly.

Although a connection between fast network rise times and low frequency oscillations
seems counterintuitive, recent work has made a connection between fast reaction times and
delta oscillatory phase entrainment [45, 46]. The connection between delta oscillations and fast
reaction times has been explained as increased excitability for neuronal populations when the
phase of delta oscillations and stimulus onset are appropriately aligned [47]. Our work indi-
cates that power in the delta range may also correlate with faster rise times in the underlying
cortical networks. The connection betweendelta oscillations and rise time also implies an inter-
esting trade-off. A network which responds most quickly to a sensory input may also have long
periods of relative quiescence during the trough of each delta oscillation. Therefore, such a
trade-off may only be useful when the timing of the sensory input is predictable [48]. In future
work it would be interesting to examine the interaction between excitability, rise time and delta
phase as a function of AMPA/NMDA ratios.

While the temporal balance condition is important in maintaining the stability of the under-
lying network it also allows for significant changes in the rise time. Previously it has been
shown that, unlike positive feedback networks, the network in Fig 2A can change its gain with-
out significantly altering its rise time [7]. Here we show that the converse is also true, such a
network is able to alter its rise time without changing its gain, Fig 1C. Therefore, it may allow a
network to change the temporal aspect of its neural code independently of its magnitude.

The model we use to examine the impact of STD on the temporal balance condition
assumes that STD impacts AMPA and NMDA receptors differently. This could be viewed as
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having two populations of synapses with either AMPA or NMDA synapses and different values
for STD. Although physiological evidence does not support such a binary model there is evi-
dence to support a spatial distribution of each type of receptor across a neuron and a broad
range of values for STD parameters [36, 50]. Additionally, LTP appears to induce transient
changes in the AMPA/NMDA ratio which could be impacted by a distribution values of STD
parameters [51]. How the AMPA/NMDA ratio is co- distributed with different STD parame-
ters would determine the effect on the temporal balance condition. Future work on this subject
should examine how different distributions of AMPA/NMDA ratios and STD parameters
impact the rise time and stability of cortical networks.

Maintenance of such a network requires homeostatic mechanisms which ensure that both
balance conditions are met. Much of the current work on homeostatic mechanisms in cortex
has focused on global synaptic scaling which has been shown to maintain the balance between
excitatory and inhibitory projections [52]. These global mechanisms are exactly what would be
required for maintenance of the balance condition in derivative feedback networks. Some
experimental paradigms have also shown that the strength of AMPA and NMDA currents
scale proportionately or are co-regulated during scaling [32, 53, 54]. Such mechanisms may be
able to act quickly to regulate individual synapses [55]. Other experimental work has shown
that STD and the ratio of AMPA to NMDA receptors are concurrently regulated during LTP
through both pre-synaptic and post-synaptic processes [56, 57]. These experiments show that
at least in principle the mechanisms required for network level modulation of synaptic
strength, STD and AMPA/NMDA ratio exist in neocortical synapses.

Although we use the frequency response to examine the stability of our network, a full Fou-
rier transform is not necessary. Knowledge of the change in amplitude across a set of relevant
frequencies is sufficient, Fig 5C. Such a homeostatic mechanism would only require appropri-
ate bandpass filtering of the incoming signal. Many studies have shown that frequency selective
calcium signalling is important in intracellular homeostasis and control [39–41]. Since, the
oscillatory activity in our model is in part driven by calcium permeableNMDA receptors simi-
lar frequency selectivemechanisms could be used to drive the homeostatic response. Addition-
ally, frequency selectivity is a relatively general characteristic of chemical systems implying that
other signalling pathways are also possible [42].

The scaling of AMPA/NMDA ratios implied by our mechanism is determined by the
parameters of the network as a whole rather than of the individual neuron. Therefore, the
homeostatic mechanism should operate on the synapses associated with independent subnet-
works to which the neuron is connected rather then scaling across all synaptic connections for
the neuron. For example, local recurrent connections within a cortical column could be one
appropriate subnetwork. If that network shifts towards instability then only synapses con-
nected to other neurons in that network should be impacted. If an individual neuron is con-
nected to multiple networks then the stability of each network should be approached
separately. Although an examination of homeostatic mechanisms as a function of network con-
nectivity is not available, synapse specific homeostatic scaling has been observed in previous
work [43]. Additionally, target-specific short-term plasticity has been shown to exist in cortex
implying that information about network level connectivitymay be available to individual neu-
rons [44].

It is generally assumed that synaptic strengths form an essential part of long-term memory.
It therefore is natural to ask how the homeostatic mechanisms describedhere interact with the
potential storage of memory contents. If, as is usually assumed, the information contained in
each synapse is primarily related to its steady-state strength, then our mechanism should have
minimal impact on memory contents and coding efficacy. The proposed frequency-based
homeostatic mechanism while altering the AMPA/NMDA ratio does not alter the steady state
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value of each synapse for a given input. It only changes the transient activity of the synapse on
the time scale of the NMDA receptors. Therefore, learning rules, read-out mechanisms etc., as
long as they are defined in terms of steady-state synaptic strengths, will be unaffected by the
homeostatic adjustments.

In this work, our model of NMDA does not include voltage dependence. A rate based
approximation to voltage dependence has been developed and would provide a more physio-
logically plausible model [49]. However, when there are different amounts of NMDA on the
EE and IE connections, the rate dependence of NMDA receptors tends to have a greater impact
on the balance between excitation and inhibition than the relative timing of the feedback.
Although maintaining such a balance must be an ubiquitous requirement in cortex and is not
unique to our model, studying the excitatory/inhibitory balance condition was not the focus of
our work. The implications of this additional nonlinearity would be an interesting topic for a
future study.

Materials and Methods

Reduced Rate-Based Network

The reduced rate-based network depicted in Fig 1A is defined by five ordinary differential
equations, a simplified version of the full network defined by Eqs (2)–(4):

te
dR
dt
¼ � R þwðð1 � q � DqÞSampaþ þ ðqþ DqÞSnmda

þ
Þ

� wðð1 � qÞSampa
�
þ qSnmda

�
Þ þ IðtÞ

ð7Þ

tlm
dSlm
dt
¼ � Slm þ R ð8Þ

where R represents the firing rate of the population, with intrinsic time constants τe. There are
two recurrent projections, one excitatory and one inhibitory, each with a total synaptic weight
w. Slm represents the synaptic activation of these two projections.m is the projection type, + for
excitatory and − for inhibitory, and l is the synapse type, either AMPA or NMDA. In the dia-
gram in Fig 1A, fast and slow are respectively equivalent to AMPA and NMDA in this formula-
tion of the model. The parameter q is the proportion of each projection that is carried by the
NMDA receptors. Δq represents a change in the ratio of AMPA and NMDA receptors on the
excitatory projection relative to the inhibitory projection. Time varying input to the neuronal
population is denoted by I(t). In the simulations in Fig 1C, middle row, we usew = 30, q = 0.3,
τe = 20 ms, τampa = 5 ms and τnmda = 100 ms. For the plots from left to right Δq is −0.0425,
−0.0340, −0.0095 and 0.125. The value of Δq for the undamped oscillator was computed analyt-
ically from the characteristic polynomial, see Supplement. Parameters for critical damping
were found by looking for the emergence of two complex roots near the point of instability.
The values for the underdamped and overdamped systems were chosen to make the dynamics
similar to the simulations from the spring approximation.

Full Rate-Based Network

The dynamics of the network are described by eight ordinary differential equations, Eqs (2)–
(4). We consider time varying input to the excitatory population I(t) given by a step input of
amplitude 5 Hz for the linear network and 10 Hz for the network with STD filtered by a 100ms
Gaussian kernel. The time constants are: τe = 20 ms, τi = 10 ms, τampa = 5 ms, τnmda = 100 ms
and τgaba = 10 ms. The values of the firing rate variables, Re and Ri, are constrained to always be
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positive except in Fig 1. The synaptic strengths are redefined in terms of w, k, q and Δq (see sec-
tion on Rise Time and Stability in the Linear Network) to reduce the dimensionality of the
parameter space and to automatically enforce the balance conditions. For all networks without
STD we set q = 0.3. In the simulations in Fig 1C bottom row we usew = 30, k = 1.5 and from
left to right Δq is −0.0226, −0.0196, −0.0068 and 0.05. The value of Δq for the undamped oscil-
lator was found by searching for a root with zero real part as a function of Δq. Values for criti-
cal, overdamped and underdamped systems were found as for the reduced networks, see
section on the ReducedRate-BasedNetwork.

Networks with Short Term Depression

We use the STD mechanism described in ref. [58] for excitatory synapses (there is no STD on
inhibitory projections):

dxl

dt
¼

1 � xl

tlr
� ulxlRðtÞ ð9Þ

where xl(t) 2 [0, 1] represents the depressed synaptic efficacy due to STD, tlr is the recovery
rate of the synapse. The instantaneous rate of the input to the synapse is R(t) and ul is the usage
rate which is a constant in our formulation. l is either AMPA or NMDA. Therefore, we have
one Eq (9) for xl = xampa and another for xl = xnmda. We redefine the synaptic strengths of excit-
atory connections in Eqs (2) and (3) to include STD,

Jampaee ¼
1

2
xampaw ð10Þ

Jnmdaee ¼
1

2
xnmdaw ð11Þ

Jampaie ¼ Jnmdaie ¼
xampa þ xnmdað Þ

4
w ð12Þ

Evolution of xampa and xnmda is determined by Eq (9) with parameters uampa, tampar , unmda and
tnmdar . We define Δu = (unmda − uampa)/2. Since we are predominantly interested in the effect of
STD on the temporal balance condition, we set STD on the IE projections to exactly balance
the EE projections without changing the effective time constant. The balance condition is
always met if q = 0.5 and STD on the IE projections is the average of xampa and xnmda, Eqs
(10)–(12). This also ensures that q remains constant and changes in the parameters of xampa

and xnmda only change Δq.

LIF Networks

All our LIF networks have Ne = 3,200 excitatory and Ni = 800 inhibitory neurons. Each neuron
is represented by the standard LIF equation and synapses have exponentially decaying activa-
tion,

t
dVm
dt
¼ � ðVm � ElÞ þ

X

n;l

J lmnS
l
mn þ IðtÞ þ ZðtÞ ð13Þ

tlmn
dSlmn
dt
¼ � Slmn þ

X

n;k

dðt � tamnÞ ð14Þ
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where τ is the membrane time constant and takes the values τe for excitatory and τi for inhibi-
tory neurons as before. El = −60 mV is the reversal potential,Vm is the membrane voltage for
neuronm with firing threshold −40 mV and a reset potential after firing of −52 mV. Jlmn is the
strength of the synapse from neuron n to neuronm on receptor type l, taking the value w/(Nep)
for excitatory synapses and w/(Nip) for inhibitory synapses. The probability of making a con-
nection from any neuron to any other is p = 0.2 and the proportion of AMPA and NMDA
receptors is redefined by q and Δq as in the rate model. Slmn is the synaptic activation, tamn is the
time of the α-th incoming action potential at synapsemn and tlmn is the decay time for type l of
synapse where τgaba = 10 ms and τnmda = 100 ms as before. τampa was increased to 10 ms to
improve the stability of the network. For the simulations in Fig 2, each neuron receives Pois-
son-distributed background input η(t) from 1,000 neurons with event strength 0.2 mV. The
background input to excitatory neurons has firing rate 1.05 Hz and to inhibitory neurons 1.0
Hz; these values were chosen to maintain the same baseline firing rate for both populations. In
addition, at t = 0 s the voltage of the excitatory population receives a step input of I(t) = 3 mV
filtered by a 100 ms Gaussian kernel. All spiking simulations were run using the Brian spiking
neural network simulator [59].

For LIF neurons with STD, R(t) in Eq (9) is replaced by
P

n;kdðt � t
k
mnÞ. The p = 0.2 connec-

tion probability is evenly split between an AMPA and an NMDA projection, effectively giving
q = 0.5. The usage rates, uampa and unmda on the EE projections differ by Δu as in the rate
model. On the IE projections, the sign of Δu is reversed such that, Δuie = −Δu. For the simula-
tions in Fig 4, neurons receive the same background stimulation as for the LIF network without
STD. At t = 0 the voltage of the excitatory population receives a step input of I(t) = 6 mV fil-
tered by a 100 ms Gaussian kernel ending at t = 1 s.

The frequency response in the LIF network with and without STD is computed from a 4 sec-
ond window of spiking activity in both networks. Each neuron receives the same background
activity as in previous simulations. The network without STD receives a 2 mV step input and
runs for 4 seconds prior to the window. The network with STD receives a 12 mV step input
and runs for 1.5 seconds prior to the window.

Supporting Information

S1 Fig. Stability, rise time and oscillatory activity of the rate based model as a function of
the network parameters.All networks use q = 0.30 unless otherwise noted. The white crosses
on A-F represent the values of k and w used for the rate based network without STD in the
main text. A: Change in q on the EE projection required to reach the AMPA dominated insta-
bility. The colorbar refers to negative values of Δq. B: Change in q on the EE projection required
to reach the bifurcation yielding delta oscillations. The colorbar refers to negative values of Δq.
C: The rise time in seconds at which the network begins to produce delta oscillations. D:
Change in q on the EE projection required to reach the NMDA dominated instability. E: Rise
time of the network for a constant value of Δq. Shows the slope of the rise time as a function of
k and w. Δq = 0.075 was chosen to ensure that all instantiations of the network were stable and
had minimal oscillations. F: Location of the peak in the frequency response as the network
approaches the AMPA dominated instability. G: Location of the peak in the frequency
response as the network approaches the AMPA dominated instability. Network parameters
were k = 1.2 and w = 30. q is the proportion of synaptic strength through NMDA receptors. fτ

is a reduction in the membrane time constant of the excitatory and inhibitory neurons such
that tnewe ¼ ftte and tnewi ¼ ftti. H: Poles of the rate based network without STD plotted as a
function of Δq. The imaginary axis is in units of Hz. The right panel is an expansion of the
box in the left panel (black rectangle around the origin). Poles cross the imaginary axis for
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large positive Δq at about 60 Hz, corresponding to an oscillatory instability in the gamma range
(blue circles, left panel), and for small negative Δq at about 2 Hz, corresponding to an oscil-
latory instability in the delta range (red circles, right panel).
(TIF)

S1 Text. Contains all of the supplementary modelling associated with the main text includ-
ing a discussion of the supplementary figure.
(PDF)
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