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Abstract
Amotor cortex-based brain-computer interface (BCI) creates a novel real world output

directly from cortical activity. Use of a BCI has been demonstrated to be a learned skill that

involves recruitment of neural populations that are directly linked to BCI control as well as

those that are not. The nature of interactions between these populations, however, remains

largely unknown. Here, we employed a data-driven approach to assess the interaction

between both local and remote cortical areas during the use of an electrocorticographic

BCI, a method which allows direct sampling of cortical surface potentials. Comparing the

area controlling the BCI with remote areas, we evaluated relationships between the ampli-

tude envelopes of band limited powers as well as non-linear phase-phase interactions. We

found amplitude-amplitude interactions in the high gamma (HG, 70–150 Hz) range that

were primarily located in the posterior portion of the frontal lobe, near the controlling site,

and non-linear phase-phase interactions involving multiple frequencies (cross-frequency

coupling between 8–11 Hz and 70–90 Hz) taking place over larger cortical distances. Fur-

ther, strength of the amplitude-amplitude interactions decreased with time, whereas the

phase-phase interactions did not. These findings suggest multiple modes of cortical com-

munication taking place during BCI use that are specialized for function and depend on

interaction distance.

Author Summary

The neurons in the human brain are densely interlaced, sharing upwards of 100 trillion
physical connections. It is widely theorized that this tremendous connectivity is one of the
facets of our nervous system that enables human intelligence. In this study, over the course
of a week, human subjects learned to use electrical activity recorded directly from the sur-
face of their brain to control a computer cursor. This provided us an opportunity to inves-
tigate patterns of interactivity that occur in the brain during the development of a new
skill. We demonstrated two fundamentally different forms of interactions, one spanning
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only neighboring populations of neurons and the other covering much longer distances
across the brain. The short-distance interaction type was notably stronger during early
phases of learning, lessening with time, whereas the other was not. These findings point to
evidence of multiple different forms of task-relevant communication taking place between
regions in the human brain, and serve as a building block in our efforts to better under-
stand human intelligence.

Introduction
Direct communication between brain and machine provides a powerful platform for both
the development of clinical therapies and scientific inquiry. By providing the brain with a
completely novel output pathway, experimentalists have an opportunity to observe the ways in
which the brain responds to and develops control over this new output mechanism [1]. A num-
ber of studies have demonstrated that the use of a brain-computer interface (BCI) is a learned
skill [2–6], and that the brain can learn this skill more effectively when the transformation that
maps neural activity to BCI control is consistent [7]. Further, it has been demonstrated that the
nature of the neural signals being used to drive the BCI changes with practice [4,8] and that
there are also changes in neural activity in populations that are not directly linked to BCI con-
trol [both local to the controlling site [9]; and at more remote sites [8]]. The mechanisms
underlying learning of BCI control have many similarities to those for learning motor control
[10]. Repeated BCI training can have lasting effects on motor networks, altering functional
connectivity in cortico-thalamic networks during execution of a finger-tapping task [11]. To
date, there have been no systematic studies of cortico-cortical interaction during BCI use.
Other than a recent study demonstrating the need for corticostriatal interaction during the BCI
learning process in a rodent model [12], we have little understanding of the networks involved
in acquisition of the neuroprosthetic skill.

Electrophysiological signals for BCI control can be derived at a variety of spatial scales, from
single unit recordings to surface electroencephalography [13]. Field potentials contain a num-
ber of features that have been demonstrated to hold neurophysiological relevance to motor
function: mu (8–12 Hz), beta (15–31 Hz), and high gamma (HG, 70–150 Hz). HG activity is
considered a marker of local cortical activity [14] and is positively correlated with motor activ-
ity [15], whereas mu and beta oscillations are negatively correlated with movement onset [16].
Electrocorticography (ECoG) strikes a compromise between broad coverage of multiple corti-
cal areas and resolution of multiple spectral features of interest (sub-millisecond temporal reso-
lution) and is thus well suited for the investigation of distributed cortical interactions.

The brain is a vastly distributed and parallelized system, requiring effective and efficient
communication between both neighboring and distant neural populations [17]. Correspond-
ingly, of equal interest to within-region changes in synchrony of neural activity are changes in
interactivity between regions. Cortical, cortico-subcortical, and cortico-muscular coherence
have all been observed in the mu range (8–12 Hz) during slow movements [18]. Similar obser-
vations have been made regarding long-distance synchrony in the beta range, both in cortico-
cortical interactions between primary motor cortex (M1), primary somatosensory cortex and
posterior parietal cortex during a visual discrimination task [19]. Another form of phase-phase
synchrony, the phase locking value [20] has been used to quantify linear interactions during
execution of a cognitive task [21]. While these examples are restricted to within-frequency
phase-phase interactions, it has been suggested that cross-frequency (i.e. non-linear) interac-
tions could reflect much richer cortical interactivity [22].

Cortico-Cortical Interactions during BCI Use

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004931 August 19, 2016 2 / 20

and does not necessarily represent the official views
of the National Institutes of Health and the National
Science Foundation. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



Interaction between neurons and neural populations encompasses a variety of neural mech-
anisms, including coordinated increases in firing rates, periodic synchrony, and complex feed-
back loops [see 23 for review]. The link between these mechanisms and their corresponding
signatures in population-based physiological signals is incompletely understood. Each of these
mechanisms may manifest differently in population-scale neural recordings as anything from
changes in raw covariances to detectable differences in the complex non-linear coupling of
spectral components. It has been hypothesized that long-distance cortical communication is
mediated by a relatively small number of direct connections, because direct connection of all
communicating cells across these long distances would be biologically infeasible [24,25]. Fur-
ther, Buzsáki and colleagues argued that oscillatory activity is central to the maintenance of
efficient cortical information flow within increasingly large and complex mammalian cortices
[17]. Such a network model would be well served by the use of oscillatory synchrony, or rhyth-
mic interactions, to allow for maximal efficiency in processing [26].

However, there are various ways in which cortical field potentials can be related. Whether
these different relationships play differing roles in cortical processing, or whether they are
indicative of a single underlying network of connectivity, remains an open question. It has
recently been shown that though high-frequency, amplitude-amplitude correlations in cortical
field potentials are predictive of underlying local structural connectivity, this relationship dete-
riorates over longer distances [27]. Coupling this with the theory that oscillatory synchrony is
critical to long-range cortical communication leads to a testable hypothesis of distance-speci-
ficity by interaction type: when observing simultaneous amplitude-amplitude and phase-phase
interactions taking place during a cognitive task such as BCI use, the former will be observed
over shorter distances and the latter over longer ones.

In a previous report [8], we demonstrated frontal and parietal regions that were active dur-
ing the initial use of BCI using ECoG signals from motor cortex. These areas became less active
with repeated use. Here, we examine the interactions between areas outside of the site used for
BCI control with reference to the signal from the controlling electrode. We hypothesized that
there exist task-driven amplitude-amplitude and phase-phase interactions observable in the
ECoG field potential between the site containing the controlling electrode and remote cortical
structures and that these two interaction types are present on differing spatial scales.

Materials and Methods

Subjects
The study presented in this manuscript was a retrospective, exploratory analysis of previously
collected ECoG data. To determine which subjects were eligible for inclusion in this study,
the following criteria were applied: (a) subjects needed to have participated in the one-dimen-
sional, right-justified box task; and (b) subjects needed to perform the task above chance levels
in order to demonstrate intentional control. Of the 11 subjects originally eligible per these
inclusion criteria, one subject was eliminated from this study based on extreme cortical distor-
tion due to a previously resected peri-central cavernous malformation.

The remaining ten human subjects (1 female, mean age 26.9y) were all patients with intrac-
table epilepsy who were implanted with platinum sub-dural ECoG grids (AdTech, Racine, WI)
for the clinical purpose of seizure focus localization and resection. These subjects were moni-
tored for between four and ten days before removal of the arrays and surgical resection of the
seizure focus. During this time the subjects participated in multiple recording sessions, sepa-
rated over one to three days. All procedures were carried out within the University of Washing-
ton Regional Epilepsy Center, either at Harborview Medical Center or Seattle Children’s
Hospital after informed consent was obtained. For children under age 18 parental consent was
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obtained along with consent from the child (age 14 or above) or assent of the child (age 7–13).
The protocol was approved by the Institutional Review Board at both institutes. Individual
patient demographic information can be found in Table 1.

The physical makeup (number and arrangement of electrodes) and implant location of all
grids were based on clinical indication. Arrays were either 8x8, 6x8, 4x8, or 2x8 grids or 1x8,
1x6, or 1x4 strips with 2.4mm diameter exposed recording surface and a 1cm inter-electrode
distance.

ECoG data collection
Experimental recordings were conducted at the patient’s bedside without disruption of the
clinical recordings. Either Synamps2 (Neuroscan, El Paso, TX, USA), or g.USBamps (Guger-
Tec, Graz, Austria) sampled at 1000 Hz or 1200 Hz respectively were used for recording. ECoG
potentials were recorded with respect to a reference electrode placed on the subject’s scalp. All
stimulus presentation, real-time signal processing, and BCI feedback were conducted using the
BCI2000 software suite [28].

Cortical reconstructions and anatomical labeling
Cortical reconstructions were performed using previously published methods [29,30]. In brief,
the reconstructions were generated as follows: Preoperative MRI was coregistered with postop-
erative CT imagery using the Statistical Parametric Mapping software package [31]. Reconstruc-
tions of the pial surface were then generated from the preoperative MRI using Freesurfer (freely
available for download at http://surfer.nmr.mgh.harvard.edu/) and customMatlab (The Math-
works, Natick, MA) code. Electrode positions were then estimated in the postoperative CT and
projected onto the reconstructed pial surface following previously described methods [30].

Cortical surfaces and corresponding electrode locations were normalized to the Talairach
brain using Freesurfer. For subjects with coverage of the left hemisphere, electrode positions
were transposed to the right hemisphere for cross-comparison with other subjects. Anatomical
labels corresponding to cortical regions were estimated using the human motor area template,
a composite atlas based on the meta-analysis of 126 motor-based fMRI studies [32].

Motor screening
Before subjects participated in any BCI trials, they first completed an initial screening task for
the purposes of identification of a single electrode that was to be used for online BCI control.

Table 1. Subjects performing BCI task. Abbreviations: right (R), left (L), frontal (F), parietal (P), temporal (T), occipital (O). Entries in the BCI type column
refer to whether the subject was performing motor imagery of the tongue or hand.

SID Gender Age BCI type Coverage Focus location

S1 M 29 Tongue R-F/T R posterior T/O

S2 M 27 Tongue R-F/P/T R F

S3 M 14 Tongue L-F/T L F

S4 M 22 Tongue R-F/P/T R mesial T

S5 F 26 Tongue R-F/P/T R F

S6 M 54 Hand L-T L T

S7 M 11 Hand L-F L anterior F

S8 M 29 Hand R-F/P/T R F

S9 M 19 Hand R-T R mesial T

S10 M 38 Tongue R-F/T bilateral—no resection

doi:10.1371/journal.pcbi.1004931.t001
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The task required the subject to perform overt and/or imagined movements in response to a
visual prompt. Depending on each subject’s coverage, they performed gross hand motor move-
ments (of the hand contralateral to the implant site), mouth motor movements, or both. Visual
cues were presented for 3 sec followed by a 3 sec inter-trial interval. This sequence was repeated
between 10 and 30 times. Band-limited power in the high-gamma HG range was estimated
using a 4th-order Butterworth filter and the Hilbert transform. A single HG activation value
was calculated on a per-electrode, per-trial basis by averaging all of the samples within that
trial. The same process was conducted for all of the rest epochs. Electrodes that demonstrated
statistically significant changes in HG activity from the rest period to the activity period for
one of the two movement types were considered candidate electrodes for BCI control. In the
case where there were multiple candidate electrodes, a single electrode was selected based on
effect size, anatomical relevance, and researcher discretion. This electrode was then used in all
subsequent recording sessions for BCI control and will be referred to in the remainder of the
manuscript as CTL.

The BCI task
After initial screening tasks and electrode selection, the subjects were given as many opportuni-
ties as they wished to perform the 1-D, two-target right-justified box task. The task is discussed
in our previous publications [8,29,33,34] and is reviewed in the following paragraphs. See Fig 1
for a depiction of the task.

The BCI task consists of four phases: rest, targeting, feedback, and reward, lasting, 1 second,
2 seconds, 3 seconds, and 1 second respectively.

During execution of the BCI task, the subject is presented with one of two targets, occupying
either the top half or the bottom half of the right-most edge of the screen. After a fixed target-
ing interval of one sec, the cursor appears on the left edge of the monitor and travels to the
right at a fixed horizontal velocity, such that the duration of the feedback period is fixed (3 sec
all subjects but S6, who had a feedback period of 2 sec). The subject controls the vertical veloc-
ity of the cursor by modulating HG activity at the previously selected controlling electrode
(CTL); performance of motor imagery causes the cursor to travel up and remaining at rest
causes the cursor to travel down. Their objective is to complete each trial with the cursor in the
specified target area for that trial. HG activity recorded at CTL is mapped to vertical cursor
velocity using a simple linear decoder that was trained in the first set of trials. Throughout the
remainder of this manuscript, targets occupying the top half and bottom half of the screen are
referred to as “up-targets” and “down-targets,” respectively.

Evaluation of behavioral performance
Subjects’ individual performance levels were calculated as the fraction of completed trials
wherein the subject successfully ended the trial in the target area. Though theoretical chance

Fig 1. BCI task overview.Overview depicts the spatial scale of the ECoG grids, as well as the phases and timing of the BCI task.
Subjects were presented with a target occupying either the upper (up target; depicted) or lower half (down target) of the right-most
edge of the screen and had 3 sec to control the vertical position of the feedback cursor such that it ended the trial in the target area.

doi:10.1371/journal.pcbi.1004931.g001
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performance on this task is 0.5, the behavioral performance necessary to be significantly greater
than chance was dependent on the number of trials performed and thus varied from subject to
subject. Confidence intervals on chance performance were evaluated on an individual basis by
characterizing the distribution of average task performance under the null hypothesis that suc-
cess and failure were equally likely outcomes on any given trial. To synthesize chance perfor-
mance data we drew N random samples from the binomial distribution where N was the
number of trials conducted by each subject; the average of these samples was one sample of
chance performance under the null hypothesis. The distribution of chance performance was
characterized by repeating this process 1000 times.

Data pre-processing
Data were first manually inspected for any channels or time periods that contained obvious
non-physiologic artifact or substantial inter-ictal activity. For each subject, the data were re-ref-
erenced by subtracting the common average among all good channels. Signals were then
notch-filtered to remove line noise using 4th-order Butterworth filters at 60 and 120 Hz. For
the purposes of short time windowed covariance (STWC) analyses, time-variant spectral esti-
mates were extracted by bandpass filtering the signals using 4th-order Butterworth filters and
then taking the magnitude of the Hilbert transform to determine the envelope of spectral activ-
ity. These spectral estimates were derived for the canonical high-gamma range (HG; 70–150
Hz). To reduce high-frequency noise, these spectral estimates were then temporally smoothed
using a 47 msec full width at half maximum Gaussian window (100 msec wide).

Finally, for computational tractability of remaining analyses, signals were then resampled to
400 Hz. Fig 2 gives an overview of the post-hoc analytical workflow.

Trial realignment
Because of the potential for trial-to-trial variability in response time to the task, in addition to
performing interaction analyses on trials aligned on cue presentation (cue-locked), we also per-
formed these analyses on trials that were realigned based on initial onset of HG activity at CTL
(response-locked). This allowed us to investigate both cue-driven and response-related interac-
tions. Identification of this onset was performed as follows: First, the HG envelope for each
trial was temporally smoothed using a 470 msec full width at half max (1 second wide) Gauss-
ian window. Then a pre-onset baseline value was defined as the lowest value in the smoothed
HG that occurred in the first second of the feedback period. The time at which this baseline

Fig 2. Post-hoc analysis workflow. Abbreviations: bi-phase locking value (bPLV), and short-time windowed covariance (STWC).

doi:10.1371/journal.pcbi.1004931.g002
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value occurred was also noted. Next, the maximum value that occurred after the pre-onset
baseline and before two seconds into the feedback period was also determined. The HG onset
was defined as the first point after the pre-onset baseline when half the distance between the
baseline and the maximum was crossed. All subsequent interaction analyses were performed
on both cue-locked and response-locked trials.

It is noteworthy that this approach is only suitable when activity at the controlling elec-
trode changes during feedback relative to rest. In previous work we demonstrated that sub-
jects typically only modulate HG above baseline for up-targets [8], thus all interaction
analyses computed on response-locked trials are based solely on activity changes during up-
target trials.

STWC analyses
Several methods exist to test for cross-frequency coupling: phase-amplitude coupling [35–37],
bispectrum- and bicoherence-based measures [38,39] which involve both phase and amplitude,
pure phase-based measures, i.e. the bi-phase locking measure [40] and amplitude-amplitude
coupled measures, e.g. dynamic causal modeling [41] and short-time windowed covariance
(STWC) [42]. While all these methods look for some form of cross-frequency interaction, they
are each sensitive to different mechanisms that produce this cross-frequency coupling. While
phase-amplitude coupling and bi-spectral/coherence have been extensively discussed in the lit-
erature, in this manuscript we focused on pure phase and pure amplitude based measures,
which can be seen as testing for large ensemble to large ensemble interaction (amplitude-
amplitude) and highly synchronized ensemble to highly synchronized ensemble (phase-phase),
where the groups of neurons involved can be small.

We assessed transient temporal amplitude-amplitude correlations in HG activity between
the CTL and remote electrodes using the normalized form of the STWCmeasure [42].

Cðx; y; t; t; dÞ ¼ 1

sx;t;tsy;tþd;t

Xtþt
2

i¼t�t
2

ðxi � �xÞðydþi � �ydÞ
ðtþ 1Þ

Where t 2[1,T] and δ 2[−Δ,Δ] and x and y are the two signals being considered, τ is the win-
dow size over which the correlation is being calculated, t is the time (or sample) within the sig-
nal x, and δ is the lag of the window from y with respect to the window from x. �x and �yd are the
sample means and σx,t,τ and δy,t+δ,τ are the sample standard deviations from the two data win-
dows. This method is specifically suited to teasing out amplitude-amplitude interactions in
neural signals that are not only transient (e.g. event-driven), but also potentially occur at
slightly different points in time in each of the two signals.

Individual STWCmaps were calculated for each trial using a window width of 500 msec
and a maximum lag of 300 msec. Average STWCmaps were then generated separately for cue-
locked and response-locked trials.

To isolate interactions relevant to task execution, we only evaluated interactions occurring
within the first second of the feedback period (cue-locked trials) or ± 500 msec from HG onset
at CTL (response-locked trials).

From each significant interaction, we extracted both a maximal STWC coefficient from
the average STWC map as well as the corresponding lag at which this coefficient occurred.
The former provides information regarding the relative strength of the interaction whereas
the latter provides information as to the relative timing of the activity changes between the
two areas.
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Bi-phase coupling
The bi-phase coupling value (bPLV) is a non-linear measure of cortical interaction. The bPLV
can be computed from the time varying phase of the signal for a pair of frequencies as:

BXYZðt; f1; f2Þ ¼
1

N

XN

j¼1

eið�
j
X
ðt; f1Þþ�

j
Y
ðt; f2Þþ�

j
Z
ðt; f1þf2ÞÞ

�����

�����

Here �j
xðt; f1Þ is the phase of signal X at frequency f1 and time t for the jth trial, �j

yðt; f2Þ is
the phase of signal Y at frequency f2 and �

j
Zðt; f1 þ f2Þ is the phase of the coupled signal Z [40].

The three signals (i.e. the sources X and Y and the target Z) can either be located in different
positions, or in any combination be distributed across one to three electrodes. Here we choose
a configuration, where the source signals, X and Y, reside in one location and the target is
located at a different electrode. This configuration of the bPLV is similar to the one used in our
earlier studies of bi-phase coupling in the motor system [43] and allows for an interpretation of
causal directionality in the Granger sense, as here the phase at the target location is predicted
by the phases of the source location, but not vice versa. Similar to our earlier studies, we com-
pute trial-wise phase coupling, but we limit the source signals X and Y in this study to CTL and
test for interactions to all other electrodes in the montage.

For a single pair of electrodes, we compute a frequency by frequency by time bPLV map, for
interaction frequencies limited to coupling from 7–25 Hz to 70–100 Hz to a resulting target fre-
quency ranging from 77 to 105 Hz. This range is motivated by our earlier studies [43], which
found alpha/beta range coupling to high gamma frequencies during overt movement, as well as
by the fact that this particular frequency range avoids the power line frequency at 60 Hz and its
harmonics.

We use the continuous complex Morlet wavelet to compute a time varying phase for each
frequency pair and the corresponding interaction frequency with a frequency resolution of 1
Hz. The resulting bPLV map per pair thus contains 589 time series, each 2200 samples long,
covering the time from -3 s prior to the beginning of BCI control to approx. 2.5 s post control
onset, when the trial ends. We compute these maps for all subjects across all channels in the
montage over all trials.

We integrate the bPLV time series for each frequency pair from the onset of BCI control to
1 s post onset to test our hypothesis of a task specific increase in bPLV during execution of BCI
control.

Statistical testing and correction for multiple comparisons
Significance of STWC interactions was evaluated using a randomization approach on surrogate
neural data. Using 100 iterations per channel pair, average STWCmaps were calculated on
trial-shuffled, phase-randomized neural signals. Phase randomization was used to destroy any
temporal interaction between the two channels while preserving the individual power spectral
characteristics of each channel. STWCmaps were calculated as above and for each interaction,
the maximal coefficient from the average maps for all channel pairs was retained to character-
ize the multiple comparison corrected distribution of maximal STWC coefficients one would
expect to see under the null hypothesis of no interaction between electrodes [44]. Only STWC
coefficients greater than 95% of this distribution were considered significant; reported p-values
are the probability of seeing the observed STWC coefficient under the null hypothesis of no
interaction.

Similarly, because of the large number of comparisons being made in the bPLV analysis, it
is necessary to employ rigorous multiple comparison correction. Even after integrating the
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bPLV time series over a time interval, we are left with a large number of potential interactions
and in the absence of a specific hypothesis about which frequencies and channel pairs should
increase during BCI control, we use a statistical threshold to identify significant bPLV changes.
While for individual bPLV values, an analytical expression for the null-distribution exists [40],
we have no such description for the time integrated bPLV and thus must resort to non-
parametric tests. We employed a similar maximum statistic approach as the one applied to
STWC coefficients [44]. We use trial shuffling [20] to generate new samples of the time inte-
grated bPLV, where we randomly shift trials between the controlling electrode and the target
electrode. Here we assume that there exists no coupling on the time scale of full trails (which
last>5s) and thus this method will generate an appropriate null-hypothesis. We generate
10,000 resamples per channel pair, but for each resample, after computing the integrated fre-
quency by frequency map, we only retain the maximum value across all frequencies.

We then compute a p-value by comparing the original time integrated bPLV against the his-
togram of maximum values. This way we avoid having to control for multiple comparisons
across the whole frequency by frequency map, which has a variable resolution, which would in
case of a simple Bonferroni correction lead to a too conservative threshold.

Since channel pairs can be considered independent, we Bonferroni correct the resulting p-
value from the maximum statistic by the total number of pairs examined.

We note that in the bPLV case, we could employ trial shuffling without phase randomiza-
tion because there is no expectation of trial-to-trial consistency in absolute phase. Thus, by
shuffling the trials we can destroy the structure of interactions sufficiently to generate the dis-
tribution of expected bPLV values under the null hypothesis of no interaction. Since STWC
interactions are sensitive to amplitude, not phase, trial shuffling would be insufficient for char-
acterization of the null distribution. Electrodes show a stereotyped amplitude response from
trial to trial, which would remain consistent in spite of trial shuffling. Thus for characterization
of the distribution of STWC interactions under the null hypothesis, we chose to employ both
trial shuffling and phase randomization as the latter preserves the power-spectral nature of the
signal while removing this stereotyped amplitude response.

Results

Behavioral performance
As is necessitated by our study inclusion criteria, all subjects performed above chance levels on
the BCI task (N varies by subject, binomial test, p< 0.05). This is important to subsequent anal-
yses as it serves to demonstrate that subjects had intentional control of the neural signal being
used to control the BCI. S1 Fig shows that performance levels were above 95% chance perfor-
mance confidence intervals for each subject; see S1 Table for additional detailed behavioral
data.

Response-locked STWC Interactions
When performing STWC interactions on response-locked trials, we identified 31 total elec-
trodes, from a total of 9 of the 10 subjects that exhibited significant STWC interactions with
the CTL electrode (p< 0.05; see randomization methods for detail). Exemplar interactions are
shown in Fig 3. Information about all 31 response-locked interactions is given in S2 Table.

We note that though the electrodes considered in the STWC analyses come from a large
number of cortical areas, as is depicted in Fig 4, and that there are a number of areas outside of
traditional motor regions that are task-modulated during BCI, the areas interacting with the
control electrode are almost exclusively contained to the posterior portion of the frontal lobe.
Nine of the 31 electrodes interacting with CTL were found in ventral premotor cortex (PMv),
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meaning that 29% of observed significant interactions occurred within PMv, though less than
5% of all electrodes considered were over that area. Further, the interactions between this
area and CTL showed larger overall STWC coefficients (N1 = 9, N2 = 22, two-sample t-test,
p = 0.0017) and more of a tendency to lead CTL (N1 = 9, N2 = 22, two-sample t-test, p = 0.027)
than interactions involving other regions. We also identified significant interactions between
CTL and M1, primary somatosensory cortex, dorsal premotor cortex, and a small number of
extra-motor areas.

Cue-locked STWC Interactions
Additionally, we performed STWC analyses on cue-locked trials. We identified 23 total elec-
trodes, from a total of 7 of 10 subjects that exhibited significant interactions with the CTL elec-
trode (p< 0.05; see randomization methods for detail). Information for each of these
interactions can be found in S3 Table.

Again these electrodes were primarily located in the posterior portion of the frontal lobe;
the spatial distribution of electrodes identified when applying STWC to unaligned trials is qual-
itatively similar to what was described for response-locked trials (Fig 5). Though slight, the
decreased number of significant interactions on cue-locked trials relative to aligned trials (23
significant interactions as opposed to 31), combined with the fact that on average, significant
STWC peaks calculated on cue-locked trials occurred 478 (± 36 SEM) msec after cue presenta-
tion suggests that the observed amplitude-amplitude interactions are involved more with the
execution of motor imagery than the immediate response to the cue.

Fig 3. Response-locked STWC examples. Exemplar response-locked STWCmaps from four subjects with
significant STWC interactions showing a remote electrode (a) coactivated with, (b) leading, (c) lagging, or (d)
both leading and lagging the CTL electrode. Significant interactions are circled in a white boundary. The solid
black horizontal line depicts a lag of zero and dashed horizontal and vertical lines intersect at the peak STWC
coefficient that was extracted and used in subsequent analyses.

doi:10.1371/journal.pcbi.1004931.g003
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Cue-locked bPLV Interactions
We observed significant cue-locked bPLV interactions in 8 of the 10 subjects. All significant
interactions were ‘outgoing’ from CTL, meaning that the phases of an alpha and HG frequency
at CTL were predictive of the phase at the sum of those two frequencies at a remote site.

Since the bPLV measures are dependent on the number of trials from which they are com-
puted (see [40] for a detailed discussion), measurements in individual subjects cannot be read-
ily compared to each other. In order to form a grand average across subjects, we normalize
individual bPLV timerseries to pseudo-zscores by computing the mean and standard deviation
of the bPLV over the time interval before BCI control. We then subtract this mean from the

Fig 4. Spatial distribution of significant STWC interactions. Subplot (a) depicts the locations of all
electrodes across all subjects whereas (b) shows both the CTL electrodes and the subset of all non-CTL
electrodes that were involved in significant response-locked STWC interactions. Note that the majority of
significant interactions were seen in the posterior portion of the frontal lobe. Subplot (c) shows the frequency
of interactions in various cortical regions as defined by the human motor area template atlas. Subplots (d and
e) show average STWC coefficients and lags (respectively) across those same regions. One star (‘*’)
denotes p < 0.05 and two stars (‘**’) denote p < 0.01. Additional abbreviations: dorsal premotor cortex (PMd),
primary somatosensory cortex (S1).

doi:10.1371/journal.pcbi.1004931.g004

Fig 5. Spatial comparison of response-locked and cue-locked STWC interactions.

doi:10.1371/journal.pcbi.1004931.g005
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bPLV timeseries and divide by the standard deviation. This procedure scales individual bPLV
to a signal-to-noise ratio (SNR), which now can be compared across subjects as a grand aver-
age. This methodology is employed for both Figs 6 and 7.

Results of the grand average of the bPLV for individually significant alpha-HG interactions
based on cue-locked trials are shown in Fig 6. Since bPLV significance for individuals was

Fig 6. Group-average of significant bPLV interactions for up and down targets. bPLV values have been
normalized on an individual subject basis using the bPLV timeseries from -3s < t < 0s; normalized bPLV, and
thus the grand average is not necessarily bounded on the interval [0, 1]. Blue is the average for up-targets,
red for down targets. The shaded areas show the 84% confidence interval (1 standard deviation) of the group
average.

doi:10.1371/journal.pcbi.1004931.g006

Fig 7. Changes in interactions over time. (a) Depicts change in peak response-locked STWC coefficients from early to late trials
across all significant interactions. (b) Demonstrates that there was no significant change in grand-average normalized bPLV from
early to late trials. One star (‘*’) denotes p < 0.05.

doi:10.1371/journal.pcbi.1004931.g007
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computed as an integrated value over a time interval, and the bPLV measures phase synchrony
on a time scale of<10 ms, the individual time series over a scale of more than 5s can appear
noisy and highly variable over time. However, on the group level, a stable trend emerges: an
overall increase in bPLV between 0.5 s and 1 s post task onset, when comparing up vs. down
targets, or up targets vs. baseline.

Response-locked bPLV Interactions
We applied the same analysis (see methods) to response-locked trials, but under these condi-
tions we observed no significant bi-phase coupling. Additionally, we evaluated linear phase-
phase interactions from 1 to 200 Hz using the standard phase-locking value, and observed no
robust trends across subjects in within-frequency coupling.

Changes in interactions across skill acquisition
In order to begin to understand whether either of these interactions are indicative of the skill
acquisition process, or are present during task execution in general, we re-evaluated all signifi-
cant STWC and bPLV interactions using subsets of the trials. Comparing interactions from
early trials (the first half of trials executed by a subject) and late trials (the second half of trials
executed by a subject) we saw no statistical difference in bPLV interactions between remote
electrodes and the CTL electrode (see Fig 7). This is in contrast with STWC interactions where
we saw a significant decrease in median (per subject) interaction strength (paired t-test, N = 9,
p = 0.016) from early to late trials.

One potential criticism of this finding is that though STWC is normalized for differences in
amplitude, like any correlation measure, it is sensitive to changes in signal-to-noise (SNR). As
we observed in our previous report [8], a number of cortical areas exhibit significant changes
in task-driven HG activity that may—assuming a stationary noise floor—impact STWC
strength over the course of skill acquisition. To control for this possibility we calculated SNR
for all electrodes over the early and late trial periods, and repeated the above analyses excluding
all interactions that involved electrodes with a significant decrease in SNR from early to late tri-
als. In this case we still observed a significant decrease in median STWC strength (N = 8,
p = 0.001) from early to late trials.

Comparison of spatial distribution of STWC and bPLV interactions
A number of electrophysiological studies suggest that the very nature of amplitude-amplitude
and phase-phase interactions are different [26,45]. Though both may be indicative of informa-
tion flow between cortical areas, the spatial and/or temporal scales over which these interac-
tions take place may be quite distinct. With respect to spatial extent, we found this to be the
case. Though we considered interactions from all cortical areas with electrode coverage, we pri-
marily found significant STWC interactions close to primary motor cortex, often in PMv, or
other nearby cortical regions. bPLV interactions, on the other hand, were much more spatially
distributed, extending to dorsal premotor cortex, the superior temporal gyrus and prefrontal
cortex. Considering the median STWC-to-CTL distance for each subject as a single observation
to adjust for repeated measures within subjects, we found that the distance covered by STWC
interactions was, on average, 23.22 mm, whereas the mean distance spanned by bPLV interac-
tions was 38.35 mm, and that the distributions of these distances were significantly different
(two-sample t-test, N1 = 8, N2 = 8, p = 0.04). Fig 8 provides additional detail as to the spatial dis-
tributions of these two interaction types.
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Discussion
In this manuscript we have demonstrated the presence of both HG amplitude-amplitude
(STWC) and cross-frequency phase-phase (bPLV) interactions between cortical areas during
BCI use. Coupling this with the fact that a number of cortical and subcortical regions have
been shown to be active during the BCI task, execution of the neuroprosthetic skill is a coordi-
nated effort involving multiple cortical areas. Additionally, we have demonstrated that cross-
frequency phase-phase and within-frequency amplitude-amplitude interactions occur simulta-
neously during a cognitive task, but exhibit distinctly different spatial scales, which is indicative
of at least two different modes of trans-cortical communication during BCI use. Lastly, we
have demonstrated that the nature of these amplitude-amplitude interactions changes over
the course of skill acquisition for a sub-group of the communicating regions. Our findings sug-
gest multiple mechanisms of cortico-cortical communication that play differing roles in task
execution.

Fig 8. Comparison of spatial distribution of significant STWC and bPLV interactions. (a) Shows all
electrodes involved in significant STWC or bPLV interactions across all subjects. Note the spatial localization
of electrodes participating in STWC interactions to the posterior portion of the frontal lobe, and the slightly
broader distribution of bPLV electrodes. (b) Provides quantification of this effect, comparing median
STWC-CTL distances (per subject) with bPLV distances. One star (‘*’) denotes p < 0.05.

doi:10.1371/journal.pcbi.1004931.g008

Cortico-Cortical Interactions during BCI Use

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004931 August 19, 2016 14 / 20



Though our analyses included every implanted electrode for each subject, we found that the
vast majority of significant STWC interactions occurred in or near the posterior portion of the
frontal lobe and cover relatively short cortical distances (~2 cm). This not only implicates these
regions in successful execution of a BCI driven by M1-derived control signals, but speaks to the
relative temporal consistency of interactions between these areas and the controlling area and
the possibility that these regions are responsible for similar facets of task execution. Given the
tendency of neural circuits to optimize with BCI training [46], this may in part explain the
observed decrease in STWC over the course of skill acquisition. As all subjects tended to
develop proficiency with the task over time, it is difficult to interpret whether such decrease in
interaction strength necessarily accompanies the learning process or is simply an artifact of
repeated task execution. This remains an open question for future study, likely using more
invasive approaches or active interventions to perturb the learning process. Along those same
lines, it is interesting to note the relative absence of significant STWC interactions between
CTL and cortical areas further upstream in the action portion of the perception-action cycle
[47]. It is noteworthy that the pre-frontal cortex, which we have previously demonstrated to be
active during BCI task execution [8], participated in relatively few significant STWC interac-
tions with CTL. There are a few potential explanations for this: because there are few direct pre-
frontal-to-M1 connections [48], there may be a lack of temporal consistency in interactions
between these areas that would render them statistically insignificant in our model-free analyti-
cal approach. Additionally, it is very likely that the task-relevant information represented in
prefrontal cortex is more related to goal-direction [49,50] and working memory [51–53] than
direct BCI control, thus we would not necessarily expect to observe tight temporal correlations
between prefrontal cortical areas and M1.

The question remains of what function STWC interactions are playing to assist in BCI task
execution. The fact that we observed temporal structure in STWC interactions that both fol-
lowed and that preceded activity in the control electrode speaks to a potential feedback role
for these regions. Signals that followed the control electrode activity could carry information
about just-completed task performance whereas activity that precedes control electrode perfor-
mance could carry information about motor planning that might result in improved task per-
formance, though these mechanistic interpretations remain speculative.

Of particular interest is our observation that these high-frequency STWC interactions gen-
erally covered shorter cortical distances than bPLV interactions. This is in agreement with
recent findings that inter-area correlations in the low-pass filtered HG envelope are more pre-
dictive of local than distant structural connectivity [27] and consistent with previous hypothe-
ses regarding phase-phase interactions as an appropriate means for long-distance information
transfer [26,43].

Oscillatory cortical activity has been studied extensively at multiple spatial scales [26], and,
as a field, we have resounding evidence demonstrating that specific cortical oscillations respond
reliably during sensorimotor and cognitive events [54] and relate to underlying neuronal firing
patterns [55]. One prevalent hypothesis about inter-area oscillatory coupling is that it facilitates
communication between two regions [56,57]; however, when such coupling is expressly linear
(e.g., classical PLV), it comes at the expense of independent computation occurring in those
two regions at those frequencies; this may be problematic for distant cortical areas performing
different functions. Biphase coupling, on the other hand, is a proposed mechanism for infor-
mation transfer between separated regions.

Bi-phase coupling measures the interaction of arbitrary phases at two frequencies (i.e., f1
and f2) of a source site as it manifests at a target site. Since there are no constraints on the
source site phases, information can be transferred from the source to the target by phase
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modulation of f1 by f2 at the source, resulting in a related phase of f1+f2 at the target. Examples
of similar coupling motifs can be seen in phase-modulated radio transmission [58].

It is worth noting that bPLV, in the context of ECoG studies, is being used to characterize
the oscillatory interactions in relatively large networks. No hypothetical structural network has
yet been described that models these interactions. They are being used solely as a means to
characterize the nature of oscillatory interactivity between cortical regions

When evaluating multi-site interactions in any type of population-scale neural recording, it
is important to consider the possibility that observed interactions may be in part due to effects
of volume conduction. In the case of observed bPLV interactions, because of the expressly non-
linear nature of this interaction measure, and the linear nature of volume conduction, it is
extremely unlikely that observed effects could be explained by volume conduction between
recording sites [40]. With respect to STWC, because the analyses were constructed to seek
HG-HG interactions, it is possible that the effect is explained in part by volume conduction. In
this case, interactions would have occurred only at zero lag relative to each other, which did
not occur.

Cortical hubs proposed by Buzsáki et al. [22] and evidenced by Keller et al. [27] are intrinsi-
cally tasked with selectively processing information that comes from multiple streams simulta-
neously, attending to relevant information and muting the rest. Low-frequency oscillatory
synchrony is one proposed mechanism for this gating [57,59,60]. However, if two streams of
information are being integrated that occur on intrinsically different timescales (e.g., response
to a visual stimulus and internal motor imagery state) the mechanism of linear phase-phase
coupling may be insufficient and cross-frequency coupling may be a viable alternative.

Another possibility is that the role of information generated in one region may be different
from its role in a distant region. If narrow-band HG changes are representative of selective
activation of a subnetwork within an area [45] then biphase coupling presents one potential
mechanism for transferring information from one such network to another, either within or
between cortical regions. This is conceptually similar to the hypothesized role of phase-ampli-
tude coupling: that it serves to transfer information across spatial and temporal scales, from
distributed low-frequency oscillatory networks to local high-frequency ones [45].

As was described above, bPLV can readily be interpreted as a measure of effective (i.e.
directed) functional connectivity. This is because the phases of the two multiplicative frequen-
cies are predictive of the phase at the sum of their frequencies, but not vice versa. Whether
STWC can be interpreted as a measure of functional (i.e. undirected) or effective connectivity
depends, in part, on the lag at which correlative relationships occur. Though the potential exis-
tence of a hidden third source, exerting influence over the two visible nodes means that any
conclusions as to causal influence of one of the visible nodes on the other must be tempered,
at the very least, significant STWC coefficients at non-zero lags are indicative of information
flow of some kind. Our finding of significant STWC lag relationships indicates that we are not
merely observing non-specific co-activation of neighboring neural populations. The fact that
we observed PMv typically leading CTL in significant PMv-to-CTL interactions makes sense
considering traditional models of pre-motor influence on M1, but we note that this finding was
based on extraction of a single lag value from each interaction. In reality we expect that there is
likely bi-directional information flow between these and other cortical regions during BCI task
execution.

The presence of bPLV synchronization exclusively during cue-locked trials is potentially
indicative of the role that this synchrony may play in distributed processing of the task
demands and subsequent execution planning. It may be that cortical synchrony is necessary to
develop attentional focus or to create the appropriate state associated with task execution. The
precise timing of task performance does not appear to impact bPLV measures: when the data
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were realigned to response times, the effects of bPLV change with the task largely vanished.
The increase in bPLV lasted only over the initial portion of the task, meaning that bPLV
changes had largely returned to baseline by the time the task was completed. This further sup-
ports that the cortical synchronization indicated by bPLV changes represents coordinated
information flow related to the anticipation and state related to task performance rather than
execution of the task itself.

Though there is evidence for cross-frequency coupling in both cortical [35,37] and cor-
tico-subcortical networks [61], we have only limited data relating these oscillatory phenom-
ena to activity changes in underlying neuronal networks [62]. Regardless of whether or not
the observed macro-scale synchronization is directly related to neuronal computation or sim-
ply an epiphenomenon, through a better understanding of the behavioral mechanisms that
generate them we will be able to extend our interpretations of these interactions when they
are observed.

Structural interconnectivity and functional interactivity between populations of cortical
neurons are at the core of human cognition. These interactions are dynamic and render in
various ways in population-level cortical signals. Thus, although we have simultaneously dem-
onstrated two different interactions in the ECoG surface potential, studies such as this will
benefit greatly from an increased understanding of the anatomical mechanisms and network
architectures that underlie the various forms of interactions observed in electrophysiological
recordings.
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