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Abstract
The laws of physics establish the energetic efficiency of our movements. In some cases,

like locomotion, the mechanics of the body dominate in determining the energetically opti-

mal course of action. In other tasks, such as manipulation, energetic costs depend critically

upon the variable properties of objects in the environment. Can the brain identify and follow

energy-optimal motions when these motions require moving along unfamiliar trajectories?

What feedback information is required for such optimal behavior to occur? To answer these

questions, we asked participants to move their dominant hand between different positions

while holding a virtual mechanical system with complex dynamics (a planar double pendu-

lum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our

findings demonstrate that participants were capable of finding the energy-optimal paths, but

only when provided with veridical visual and haptic information pertaining to the object, lack-

ing which the trajectories were executed along rectilinear paths.

Author Summary

Recent studies have shown that when learning novel dynamics in the context of reaching
movements, people often ignore energetic optimality in favor of Euclidean geometric opti-
mality, preferring rectilinear paths over mechanically optimal trajectories. Although an
explanation could be that sensory-motor coordination ignores energetic cost, another pos-
sibility is that different sensing modalities need to be in agreement before the brain will
optimize energetic cost during motion. We provide evidence for this latter perspective, by
showing that when provided congruency and consistency of visual and haptic feedback,
participants take into account both geometric and mechanical properties of a manipula-
tion task. However, when visual and haptic feedback are inconsistent, participants revert
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to the rectilinear paths seen in previous studies. We conclude from these observations,
that when transporting an external object, sensory agreement between vision and touch
guides the optimization of the kinetic energy exchanged during movement between the
arm and the object.

Introduction
One of the most established findings in planar multi-joint reaching movements is that hand
trajectories tend to be executed along straight paths with a bell-shaped velocity profile [1–3].
Given that there are theoretically infinite paths that the hand could take for reaching from one
point to another, the presence of this consistent feature in reaching movements has been used
to suggest that the nervous system chooses this solution because it is “optimal” in some way.
Mathematical optimization has been considered as an appealing principle to explain observed
biological movements. Optimization requires an objective function, or cost, that includes the
quantities being minimized. The choice of cost has received much attention in the study of
neural information processing, in particular, by the motor system [4–8]. The components of an
objective function generally fall into two main types: kinematic and dynamic. While the former
relates only to the geometry of motion, the latter relates to the forces that cause the motion.
Despite fundamental differences between the two types, objective functions consisting purely
of one or the other have been similarly successful in predicting data obtained from unperturbed
planar reaching movements. Adaptation studies have attempted to distinguish between kine-
matic and dynamic costs by introducing perturbations to these movements. It has been shown
[9, 10] that in the presence of kinematic perturbations, participants chose to move the hand
along curved paths so as to produce visually straight trajectories. Similarly, under the dynamic
perturbation caused by forces depending upon the velocity of the hand, subjects learned to
recover straight hand trajectories through repeated practice of reaching movements [11]. More
recently, to evaluate if mechanical energy costs play a role in motor learning, a custom force
field was designed in a way that the path of minimummechanical energy was substantially dif-
ferent from the straight path [12]. Under this situation, participants returned to straight line
reaches even after they experienced moving along the energy optimal path. These studies
suggest that the tendency to move the hand on a straight line in planar movements is strong
and persistent, arising under a variety of dynamic and kinematic perturbations, and indicate
that the kinematic costs are either necessary [13] or sufficient [14] components of the cost
function.

However, these previous studies were typically focused on unconstrained movements of the
hand in free space and when a force field disturbed these movements. In the majority of earlier
studies a cursor was used as a visual image of the system under control [11, 12, 15]. This repre-
sentation makes all spatial directions visually equivalent and moving the cursor on a straight
line appears to be an economical approach. Moreover, the haptic feedback (i.e. the contact
forces experienced during movements) were predominantly in the form of force fields. In these
experiments, there were no features in the visual scene or in the shape of the cursor that could
be associated with the forces experienced by the subjects. We hypothesized that this dissocia-
tion between sensory modalities elicits a compensatory strategy where movements are chan-
neled to restore the kinematics of the unperturbed hand motion. Conversely, congruence
between feedback modalities, representing the action upon an identifiable external object is
expected to result in energy efficient strategies. In this case, motor learning leads to a progres-
sive optimization of the energetic costs of movements rather than a process towards recovering
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a straight invariant trajectory. Depending on the object's dynamics, the resulting trajectory
may systematically and substantially deviate from the straight line. Therefore to test this pre-
diction, we used an object manipulation task where there is a well-defined relation between the
visual and haptic feedback.

Results
Participants executed goal-directed reaching movements in the horizontal plane while holding
the end point of a virtual planar double pendulum in the absence of gravitational effects. The
choice of the double pendulum was motivated by the fact that the energy-optimal trajectories
for moving this object were along curved paths, allowing us to tease apart the relative impor-
tance of kinematic and dynamic costs.

The energy-optimal paths for moving this system were calculated as follows. The total
energy for this system consists only of the kinetic term. The path of least kinetic energy
between any two double pendulum configurations is a solution to a two-point boundary value
problem—leaving the initial and final velocities as free variables- of the unforced system and it
is generally curved in shape (Fig 1). However, this path is a purely geometric quantity and from
a control perspective, it is not an admissible solution because the velocity requirements are not
satisfied. To find an admissible solution we used optimal control theory with the only running
cost of effort, defined as the force being applied to the object. Expectedly, the path of minimum
energy and the effort optimal trajectory had similar shapes (see S1 File). The energy (mechani-
cal work) that is acquired by the object upon point-to-point maneuvers was calculated by

E ¼ R T

0
jFvjdt ð1Þ

where F represents the force applied to the object, v is the velocity of the hand and T is the
movement time. The energy that was required to move along the straight path and the path of
least energy between each pairs of targets is included in Fig 1. These values are obtained from a
minimum jerk trajectory with the movement duration of 1 sec.

Participants were randomly divided in three groups. All received both visual and haptic
feedback. Participants in Group 1 (n = 8) received veridical visual and haptic information of
the double pendulum. For Group 2 (n = 8), only the visual feedback was manipulated. Partici-
pants in this group were presented with a circular cursor representing the moving extremity of
the pendulum. They did not see the linkage but the haptic feedback corresponded to the entire

Fig 1. Experiment design. Straight and least energy paths between each pair of targets in the task space coordinate frame.

doi:10.1371/journal.pcbi.1004861.g001
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mechanism. Participants in Group 3 (n = 8) could see the entire linkage while the haptic infor-
mation was manipulated so as to emulate the isotropic inertia of a point mass. In this scenario,
our hypothesis made an explicit prediction on the trajectory formation: If participants were
provided with full vision of the manipulated object together with a congruent haptic feedback
(Group 1), they would integrate the geometric structure with interaction forces to converge to
the curvilinear paths of minimum energy. In contrast, if participants only received visual feed-
back of the endpoint (Group 2), or haptic feedback corresponding to point-mass dynamics
(Group 3), then movements would be executed along rectilinear paths because of the lack of
consonance between the sensing modalities.

For each trial, movement initiation and termination were identified using 10% of peak
velocity threshold. Participants in all the three groups started the experiment by moving along
straight line trajectories. However, the trajectory divergence between Group 1 and the remain-
ing groups started after the very first few trials. We found that with practice, all participants
that received congruent visual and haptic feedback progressively moved towards producing
curved trajectories that were similar to the path of minimum energy. This gradual adjustment
suggests that the problem of finding the energetically optimal trajectory was solved via gradient
descent beginning from the straight line trajectory typical of the freely moving hand, In con-
trast, all participants that were presented with incongruent feedback continued to move along
rectilinear paths (Fig 2). We quantified the similarity of executed trajectories to both straight

Fig 2. Results. (A) Average trajectories of participants in Group 1 (double pendulum vision / double pendulum haptics) during the last block. (B) Average
trajectories of participants in Group 2 (point mass vision / double pendulum haptics) during the last block. (C) Average trajectories of participants in Group 3
(double pendulum vision / point mass haptics) during the last block. (D) Average discrete Fréchet distance from the straight path. (E) Average discrete
Fréchet distance from the path of least kinetic energy. For Group 3, the straight path and the path of least energy were the same. Error bars and shaded area
represent 95% confidence level.

doi:10.1371/journal.pcbi.1004861.g002
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line and least energy paths using discrete Fréchet distance (DFD) [16]. The Fréchet distance
between two curves is the minimum cord-length that is sufficient to join two points traversing
each curve with arbitrary speeds without backtracking. Intuitively, imagine a dog walking
along one curve and the dog’s owner walking along the other curve and they are connected by
a leash. Both can change the speed and even stop at arbitrary positions with arbitrary durations
but neither are allowed to move backwards. The Fréchet distance between the two curves is
the length of the shortest leash that connects the man to the dog at all time. One-way ANOVAs
on DFD from the straight path and DFD from the least energy path during the last block
revealed a significant group effect on both distances. Dunnett’s post-hoc tests showed that
Group 1 was significantly further from the straight path than the two other groups (p<0.01).
Similarly Group 1 was significantly closer to the path of minimum energy compared to Group
2 (p<0.01).

One feature in the result is that although the participants in Group 1 show greater curvature,
they did not completely converge to the energy efficient path. We speculate that this may be
due to the fact that participants in Group 1 did not have any explicit knowledge about the
mechanical properties of the object and the geometric shapes of the effort optimal trajectories.
They derived these trajectories solely based on the sensory information. Therefore, considering
noise and model uncertainties in sensory transduction and neural computation, they were
expected to move at larger distances from the paths of minimum energy and exhibit greater
variability in their movements in comparison with participants in the remaining groups who
moved along straight paths and had explicit kinematic plan for executing their movements.

Discussion
Our results suggest that when learning novel dynamics, if the visual representation is a cursor
or a shape that is indicative of isotropic dynamical structure, this impoverished representation
provides a strong bias towards Euclidean representations of the configuration space, where all
directions are equivalent and straight lines are the natural geometrical paths for joining two
points. In this situation, participants experience a mismatch between expected and sensed
forces under the assumption that they are moving the arm in free space. This mismatch
between sensory information triggers a compensatory strategy where subjects fight the force
field to recover the straight unperturbed trajectory. However, if subjects are provided with any
visual information suggestive of an external object being manipulated, with non-Euclidean
dynamical structure to begin with (because of the non-isotropic, position dependent inertia
tensor at the contact point), then they attribute the haptic feedback to the visual image and
with practice try to develop a representation of the object’s configuration space. This harmony
between sensing modalities promotes a control policy that requires less effort to perform the
task. Work on remapping finger movements has highlighted that when subjects learn a novel
task of manipulating a kinematic chain by continues finger motions, movement trajectories are
formed along the geodesics (i.e., paths of minimum length) corresponding to the geometrical
structure of that object [17]. Subjects in Group 1 and 3 were both provided with the same visual
feedback but at the end of the experiment they moved along different paths, each correspond-
ing to the path of minimum energy of the object that they were manipulating (double pendu-
lum haptics vs point mass haptics). This result confirms that curved trajectories observed in
Group 1 is not a solution to the kinematic problem but it is a progressive optimization of the
energy exchanged with the object. Here, effort was defined as the force that subjects applied to
the system to move it between target positions. Although we did not measure the metabolic
effort (i.e. the physiological energy cost), a recent study found that indeed the metabolic effort
is reduced during force field adaptation [18].
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The conclusions of previous studies on energy optimization in human motor control are
mixed. Some studies suggest that the motor system is capable of minimizing the energetic costs
of free limb movements both in arm reaching movements [19] as well as locomotion [20],
while other studies of learning novel dynamics suggest that the motor system does not take
into account the energy when executing movements [12, 14]. When moving a limb or manipu-
lating an object the energy optimal solution depends on the mechanical properties rather than
the visual representation. However, there is considerable amount of evidence that the move-
ment control policy and consequently trajectory formation both in free reaching movements
and in object manipulation depends remarkably on the visual feedback.

Straight line trajectories are found typically in studies of free arm movements when the
sight of the arm is obstructed and the subjects are presented with a cursor. However, it has
been shown that trajectories of the free reaching movements of congenitally blind and even
blind folded individuals to haptic targets are more curved than movements made by subjects to
the same target positions under visual guidance [21, 22]. Similarly, subjects performed curved
motions when they were instructed to reach to physical targets with their arm rather than
reaching with a cursor to a virtual target [19]. These studies suggest that in free limb move-
ments, humans can flexibly alter movement behavior between geometric and energetic opti-
mally depending on the feedback. In contrast to free movements, moving in a force field
provides an additional challenge to the nervous system because in this case, the effort optimal
trajectory not only depends on the mechanics of the body, but also on the dynamical properties
of the field. It has been demonstrated that the representation of the dynamics of a manipulated
object also depends on the visual representation [23] and that only specific and meaningful
visual cues can promote proficient switching between different mechanical tasks [24]. Recent
studies on learning novel dynamics reported that the motor system ignores energetic costs in
favor of geometric optimality. However subjects in these studies were exposed to a force field
with the representation of a cursor [12] or with no visual feedback [13]. In the latter study the
visual feedback (cursor) was provided only at the beginning and at the end of each trial. Here,
we showed that in object manipulation, the visual motion of the object resulting from an
applied force is a critical piece of information for the brain to represent the dynamics. Given
our finding that subjects learned to minimize the energy transfer with an object having aniso-
tropic position-dependent inertial properties, we observe that the most common objects being
transported by our hands have isotropic position-independent translational inertias. They are
therefore characterized by straight-line kinetic energy geodesics when moving on the horizon-
tal plane. Thus, we speculate that the tendency to perform straight-line planar movements of
the hand may be a baseline behavior emerging from the experience of transporting such objects
while optimizing the energy exchanged with them. It has been shown [19] that the arm trajec-
tory in a 3D pointing movement is along the geodesic path that is obtained through the mini-
mization of the kinetic energy on the configuration space of the arm. The Euler- Lagrange
equations are equivalent to the equations of geodesic motion on a Riemannian manifold. We
extended the computational model in [19] to learning novel dynamics, we showed that trajec-
tory formation hinges on the consistency between feedbacks representing the system under
control, and how feedback variations can lead to remarkably different behaviors. The demon-
strated results provide insights into studies on adaptation, effort minimization and object
manipulation by the human motor system.

Materials and Methods
Twenty four right-handed volunteers (12 female) participated in the experiment. All partici-
pants were neurologically intact and had no prior knowledge of the experimental procedure.
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The study protocol was approved by Northwestern University’s Institutional Review Board
and all the participants signed an informed consent form. Participants were positioned in front
of a horizontal mirror and held the handle of a planar, two degree of freedom robotic manipu-
landum with their right hand. The mirror prevented the participant’s view of their hand and
the robot. A LED monitor was positioned above the mirror with the same vertical distance as
the distance between the robot and the mirror. This setup caused the visual information to
appear at the same height as the hand. The display was calibrated so that the visual feedback of
the hand was overlaid on its true position.

Participants performed goal-directed reaching movements to three targets (diameter = 3
cm). Targets were presented in a block structure, with randomized order within each block.
After reaching to each target, participants maintained the position for 500 ms before the next
target appeared. The experiment consisted of 10 blocks and in each block participants per-
formed 48 reaching movement (16 reaches per target). Participants could rest between blocks.
During all these reaching movements, the manipulandum was either connected to the endpoint
of a virtual double pendulum with the mechanical properties that are listed in Table 1 or a vir-
tual 15 kg point mass, by means of a virtual spring-damper (K = 2200 N/m, B = 65 N.s/m).
Position and velocity of the manipulandum handle were computed from instrumented encod-
ers at the frequency of 1 kHz to provide haptic feedback of the forces resulting from moving
the double pendulum or the point mass. The manipulandum was equipped with electric
motors with the peak torque of 82 Nm. However, the maximum torque that the robot was
asked to generate in the fastest recorded trial in this experiment was about 15 Nm. Data were
recorded at the rate of 100 Hz. Participants were randomly divided into three groups of equal
size (n = 8 per group): Group 1, where participants received both the visual and haptic feedback
of the double pendulum. Group 2, where participants received the visual feedback of the mov-
ing extremity of the pendulum that was held in their hand, in form of a circle (diameter = 1.5
cm) and the haptic feedback of the double pendulum. Group 3, where participants received the
visual feedback of the double pendulum with haptic feedback of the point mass. One of the par-
ticipants in Group 3 revealed that he was familiar with the purpose of the study and was
replaced by another participant.

Supporting Information
S1 File. Comparison between path of minimum kinetic energy and effort-optimal trajec-
tory.
(PDF)

S1 Data. All experimental data used in this work.
(ZIP)
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