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Abstract

Understanding the structure and dynamics of cortical connectivity is vital to understanding
cortical function. Experimental data strongly suggest that local recurrent connectivity in the
cortex is significantly non-random, exhibiting, for example, above-chance bidirectionality
and an overrepresentation of certain triangular motifs. Additional evidence suggests a sig-
nificant distance dependency to connectivity over a local scale of a few hundred microns,
and particular patterns of synaptic turnover dynamics, including a heavy-tailed distribution
of synaptic efficacies, a power law distribution of synaptic lifetimes, and a tendency for
stronger synapses to be more stable over time. Understanding how many of these non-ran-
dom features simultaneously arise would provide valuable insights into the development
and function of the cortex. While previous work has modeled some of the individual features
of local cortical wiring, there is no model that begins to comprehensively account for all of
them. We present a spiking network model of a rodent Layer 5 cortical slice which, via the
interactions of a few simple biologically motivated intrinsic, synaptic, and structural plasticity
mechanisms, qualitatively reproduces these non-random effects when combined with sim-
ple topological constraints. Our model suggests that mechanisms of self-organization aris-
ing from a small number of plasticity rules provide a parsimonious explanation for numerous
experimentally observed non-random features of recurrent cortical wiring. Interestingly, sim-
ilar mechanisms have been shown to endow recurrent networks with powerful learning abili-
ties, suggesting that these mechanism are central to understanding both structure and
function of cortical synaptic wiring.

Author Summary

The problem of how the brain wires itself up has important implications for the under-
standing of both brain development and cognition. The microscopic structure of the cir-
cuits of the adult neocortex, often considered the seat of our highest cognitive abilities, is
still poorly understood. Recent experiments have provided a first set of findings on the
structural features of these circuits, but it is unknown how these features come about and
how they are maintained. Here we present a neural network model that shows how these
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features might come about. It gives rise to numerous connectivity features, which have
been observed in experiments, but never before simultaneously produced by a single
model. Our model explains the development of these structural features as the result of a
process of self-organization. The results imply that only a few simple mechanisms and
constraints are required to produce, at least to the first approximation, various characteris-
tic features of a typical fragment of brain microcircuitry. In the absence of any of these
mechanisms, simultaneous production of all desired features fails, suggesting a minimal
set of necessary mechanisms for their production.

Introduction

The patterns of synaptic connectivity in our brains are thought to be the neurophysiological
substrate of our memories, and framework upon which our cognitive functions are computed.
Understanding the development of micro-structure in the cortex has significant implications
for the understanding of both developmental and cognitive / computational processes. Such
insight would be invaluable in understanding the root causes of cognitive and developmental
impairments, as well as understanding better the nature of the computations realized by the
cortex. It is believed that a small population of strong synapses forms a relatively stable back-
bone in recurrent cortical networks—perhaps the basis of long-term memories—while a larger
population of weaker connections forms a more dynamic pool with a high rate of turnover [1-
3]. It has been shown that much of the lateral recurrent connectivity of the layers of the cortex
is significantly non-random [4-6], with a focus on layer 5 (L5), as this is more conventionally
examined via slice studies. It is an open question which non-random features are developed as
a result of direct genetic programming, neural plasticity under structured input, and spontane-
ous self-organization. We examine here several noted non-random features of recurrent corti-
cal wiring that we believe can be explained as the result of spontaneous self-organization—
specifically, self-organization driven by the interaction of multiple neural plasticity mecha-
nisms. The features we will examine are the heavy-tailed, log-normal-like distribution of syn-
aptic efficacies or dendritic spine sizes [6-10] and their associated synaptic dynamics, and the
overrepresentation of bidirectional connectivity and certain triangular graph motifs [6].

The interaction of multiple plasticity mechanisms, such as synaptic scaling and Hebbian
plasticity has been studied before [11-14], with results suggesting that the interactions of such
mechanisms are useful for the formation and stability of patterns of representation. However,
we desire a more detailed look at how such self-organization might take place in the cortex.
The predecessor to the model we use to address these issues is the Self-Organizing Recurrent
Neural Network, or SORN [11]. The SORN is a recurrent network model of excitatory and
inhibitory binary neurons which incorporates both Hebbian and homeostatic plasticity mecha-
nisms. Specifically, it incorporates binarized spike timing dependent plasticity (STDP), synap-
tic normalization (SN), and intrinsic homeostatic plasticity (IP). Certain variants also employ
structural plasticity. It has been demonstrated to be computationally powerful and flexible for
unsupervised sequence and pattern learning, presenting apparent approximate Bayesian infer-
ence and sampling-like behavior [15-17]. Additionally, it has been used to reproduce synaptic
weight distributions and growth dynamics observed in the cortex [18].

In this paper, we introduce the LIF-SORN, a leaky integrate-and-fire based SORN-inspired
network model that incorporates a spatial topology with a distance-dependent connection
probability, in addition to more biologically plausible variants of and extensions to the plastic-
ity mechanisms of the SORN. The LIF-SORN models a recurrently connected network of
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excitatory and inhibitory neurons in L5 of the neocortex, or a slice thereof. This new model is
the first to reproduce numerous elements of the synaptic phenomena examined in [10, 19],
and [18] in combination with the sort of non-random graph connectivity phenomena observed
in [6]. The simultaneous reproduction of all these elements with a minimal set of plasticity
mechanisms and constraints represents an unprecedented success in explaining noted features
of the cortical micro-connectome in terms of self-organization.

Materials and Methods

Simulation methods

We randomly populate a 1000 x 1000 ym grid with 400 LIF neurons with intrinsic Ornstein-
Uhlenbeck membrane noise as the excitatory pool, and a similar (though faster refracting) pop-
ulation of 80 noisy LIF neurons as the inhibitory pool. All synapses are inserted into the net-
work with a gaussian distance-dependent connection probability profile with a half-width of
200 ym. This particular profile is chosen as a middle ground between the results of [6], which
finds no distance dependence up to a scale of 80-100 ym, and the results of [5], which finds an
exponential distance dependence at a scale of 200-300 ym. Recurrent excitatory synapses are
not populated, as they will be grown “naturally” with the structural plasticity. Excitatory to
inhibitory and inhibitory to excitatory synapses are populated to a connection fraction of 0.1
and inhibitory recurrent synapses to a connection fraction of 0.5, in approximate accordance
with L5 experimental data [20]. Excitatory to inhibitory, inhibitory to excitatory, and inhibitory
to inhibitory connections are given fixed efficacies and connectivities. Recurrent excitatory
connectivity is begun empty and is to be grown in the course of the simulation. The relevant
parameters are summarized in Tables 1 and 2.

We use the Brian spiking neural network simulator [21]. The neuron model is a leaky inte-
grate-and-fire (LIF) neuron, the behavior of which is defined by:

av. V- n o

dat T VT
where V is the membrane potential, E; is the resting membrane potential, 7 is the membrane
time constant, o is the standard deviation of the intrinsic membrane noise, and £ is the

(1)

Table 1. Basic network parameters.

parameter value

Nexc 400

Ninh 80

sheet size 1000 x 1000 ym
connection probability profile 200 um half-width Gaussian

doi:10.1371/journal.pcbi.1004759.1001

Table 2. Basic connectivity parameters.

parameter EE El IE Il
connection fraction target 0.1* 0.1 0.1 0.5
connection strength at insertion 0.0001 mV* 1.5 mV -1.5mV -1.5mV
conduction delay 1.5ms 0.5ms 1.0 ms 1.0 ms

* indicates growth via plasticity.

doi:10.1371/journal.pcbi.1004759.t002

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004759 February 11,2016 3/21



@' PLOS | SoMputaTioNAL
NZJ : BIOLOGY Self-Organization Accounts for Non-randomness of Cortical Wiring

Table 3. LIF neuron parameters.

parameter value

1= -60 mV

T 20 ms

vee, -70 mV

vinh -60 mV

o VsmV

Vr variable via IP

All parameters are shared between excitatory and inhibitory units unless otherwise denoted by superscripts
“exc” and “inh.”

doi:10.1371/journal.pcbi.1004759.t003

Ornstein-Uhlenbeck process which drives the noise. In our model, the variance of the noise is
5 mV. When V reaches a threshold V7, the neuron spikes, and the membrane potential V'is
returned to V., (which may be lower than E; in order to provide effective refractoriness). The
parameters used are given in Table 3.

A simple transmitting synapse model is used, connecting neuron i to neuron j. When neu-
ron i spikes, the synaptic weight W™ is added to the membrane potential V of neuron j fol-

lowing the conduction delay for the type of connection (as in Table 2). To improve network
activity stability, this synaptic weight is modulated by a short term plasticity (STP) mechanism
[22] implementing a rapid synaptic depression combined with a slightly slower facilitation.
The STP mechanism consists of a two variable system:

dx 1—-x du U-u
a t, dt '

(2)

T
Upon each presynaptic spike, the variables are updated according to the following rules:
x— x(1—u), u— u+ Ul —u) (3)

The synaptic weight is then modulated as W™ = u x x x W,. We select U= 0.04, 7, = 500
ms and 5= 2000 ms as the respective depression and facilitation timescales, corresponding to
approximate experimentally observed values [22, 23]. The presence of the STP adds a signifi-
cant degree of stability to network activity and provides a more robust paramter range for
other mechanisms, reducing the need for parameter tuning.

As in the original binary SORN, we include multiple plasticity mechanisms. The first is
exponential spike timing dependent plasticity (STDP), which is executed at a biologically real-
istic timescale [24-29]. This defines the weight change to a synapse caused by a pair of pre-
and post-synaptic spikes as in Eqs 4, 5 and 6:

n

Awﬁ—iNZW(tj”—t{) (4)

f=1 n=1
W(x) = A, exp (—x/1,), x>0 (5)
W(x) =A_exp(x/1_), x < 0. (6)

Here, i and j index the synapse via its pre- and postsynaptic neurons respectively, f indexes pre-
synaptic spikes, and # indexes postsynaptic spikes. A, and A_ are the maximal amplitudes of
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the weight changes, and 7, and 7_ are the time constants of the decay windows. Values are set
to approximate experimental data; in particular, round numbers were chosen that roughly
approximate data in [24] and [25], with 7, =15 ms, A, =15mV,7_=30ms,and A_=7.5mV.
We use the “nearest neighbor” approximation in order to efficiently implement this online, in
which only the closest pairs of pre- and post-synaptic spikes are used. This is implemented in
an event-based fashion, using a spike memory buffer with a timestep equal to that of the simu-
lation itself (0.1 ms) and with the full calculation only evaluated upon a spike.

In the brain, several mechanisms appear to regulate the amount of synaptic drive that a neu-
ron is receiving. [30] demonstrated the phenomenon of synaptic normalization during long-
term potentiation (LTP). The overall density of postsynaptic AMPA receptors per micrometer
of dendrite stays roughly constant, but the density at individual synapses increases (for some)
while the total number of synapses per micrometer of dendrite decreases. This suggests that
synaptic efficacies are mainly redistributed over the dendritic tree during the typical time
course of an LTP experiment, but the sum of these efficacies (roughly corresponding to the
sum of the active zone areas) stays approximately constant. Another phenomenon regulating
the synaptic drive a neuron is receiving is homeostatic synaptic scaling [31], which is thought
to regulate synaptic efficacies in a multiplicative fashion on a very slow time scale (on the order
of days) in order to maintain a certain desired level of neural activity. For the sake of simplicity,
we use here only a multiplicative form of normalization that drives the sum of synaptic effica-
cies to a desired target value on a fast time scale:

W,
wW.— W [1+ el 7). 7
i 1< ;/ISN(Z;\IWIJ ()

Here, W; is the vector of incoming weights for any neuron i, W;; are the weights of the individ-
ual synapses, Wi is the target total input for each neuron, and 7gy is a rate variable which,
together with the size of the timestep, determines the timescale of the normalization. Wiy, is
calculated before the simulation run for each of the four types of synapse (Eto E, Eto [, I to E,
and I to I) by multiplying the connection fraction for that type of connection by the mean syn-
apse strength and the size of the incoming neuron population. The timescale we use is on the
order of seconds and therefore accelerated from biology; corresponding to an application of
the process once per second and 7gx = 1.0. We have tested it as well applying the normalization
at every single simulation timestep, and with smaller values for 75y, which, except for very
small values of 77gy;, has no significant effect on any of our observables. The accelerated time-
scale is sufficiently separated from that of the STDP, which operates on the order to tens of mil-
liseconds, to avoid unwanted interactions while decreasing the necessary simulation time.
Neuronal excitability is regulated by various mechanisms and over different time scales in
the brain. On a very fast milliseconds time scale, a neuron’s refractory mechanism prevents it
from exhibiting excessive activity in response to very strong inputs [32]. This is inherently
included in the neuron model we use. At a somewhat slower time scale, spike rate adaptation
reduces many types of neurons’ responses to continuous drive [33]. Given that our model lacks
any strong external drive, we neglect this. At very slow time scales of hours to days, intrinsic
plasticity mechanisms change a neuron’s excitability through the modification of voltage gated
ion channels that can modify its firing threshold and the slope of its frequency-current curve in
a homeostatic fashion. Additional regulation of neuronal activity has been observed over multi-
ple timescales [34, 35]. In order to capture the essence of such mechanisms in a simple fashion,
we adopt a simple regulatory mechanism for the firing threshold, which, in combination with
the previously discussed STP mechanism, phenomenologically captures the majority of these
adaptive behaviors over short and medium timescales. Though relatively stable network
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activity can be achieved without this mechanism, it requires hand tuning of thresholds depen-
dent on other network parameters, which we wish to avoid. The mechanism is implemented at
discrete time steps in the following way:

Vi— Vi+np (Nspikes - hIP) (8)

0. 9)

N, spikes

Here, V1 is the threshold for an individual neuron, np is a learning rate, hp is the target number
of spikes per update interval, and Npiies is the number of times a neuron has spiked since the
last time a homeostatic plasticity step was executed. The right arrow indicates that the counter is
reset after each evaluation of the window. This operation is performed at a biologically acceler-
ated timescale. The desired target rate is chosen to be 3.0 Hz, so hjp = 3.0 Hz x 0.1 ms = 0.0003
and nyp is set to 0.1 mV. In our implementation, the operation is performed at every timestep of
the simulation (0.1 ms), s0 Ngpikes effectively becomes a binary variable and Eq 9 becomes irrele-
vant. In this case, the action of the mechanism is that every spike increases the threshold by a
small amount, and the absence of a spike decreases it by a small amount. Like the SN process,
the accelerated (relative to biology) timescale is sufficiently separated from the timescale of the
STDP to avoid unwanted interactions while decreasing the necessary simulation time.

We implement structural plasticity for the recurrent excitatory synapses via simultaneous syn-
aptic pruning and synaptic growth. Synaptic pruning is implemented in a direct fashion in which
synapses whose strength has been driven below a near-zero threshold (0.000001 mV) by the
other plasticity mechanisms are eliminated. At the same time, new synapses are stochastically
added with a strength of 0.0001 mV, according to the distance-dependent per-pair connection
probabilities, at a regular rate. This is done at an accelerated timescale by adding a random num-
ber of synapses (drawn from an appropriately scaled and integer-rounded normal distribution)
once a second. A mean growth rate is hand-tuned to lead to the desired excitatory-excitatory con-
nection fraction. In this case, the mean growth rate is 920 synapses per second (with standard
deviation of 1/920) and the target connection fraction is 0.1 [6, 20]. The synapses are added
according to pre-calculated connection probabilities determined by the gaussian connectivity pro-
file described in the first paragraph of this section. Like the previous two plasticity mechanisms,
the acceleration of the timescale from biology is justified by the principle of separation of time-
scales. At certain points in the Results and Supplementary Material, the results of the simulation
are compared to those of a purely topological network. This is generated simply by performing
the batch structural growth operation, as described, a single time, but adding instead a number of
connections equal to the total number of connections at the target connection fraction.

Results
Network growth and abundance of bidirectional connections

As the fully simulated network runs, new recurrent excitatory synapses are allowed to grow
and, if their strengths are driven close to zero, be pruned. The network first enters a growth
phase, which lasts 100-200 seconds of simulation time, and then a stable phase in which the
growth rate balances the pruning rate. The network is allowed to run for 500 seconds and the
state of the excitatory connectivity and the dynamics of the connection changes during the
final epoch are then examined.

We first examine, alongside the smooth growth of the network, the prevalence of bidirec-
tional connections as compared to chance, a phenomenon noted to be significantly above-
chance in [4] and [6], as shown in Fig 1. We observe for the total connection fraction a reliable
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Fig 1. Evolution of total and bidirectional connection fraction with simulation time. Connection fraction evolution for plastic networks with and without
topology, as well as flat values for topology only. (top) Growth and subsequent stabilization of the connection fraction of the network with simulation time.
(middle) Growth of the bidirectional connection fraction. (bottom) Evolution of the bidirectional connection fraction with time as it relates to chance level (i.e.
compared to the value for an Erdés-Rényi graph with the same number of nodes and edges). Data averaged over ten trials; standard deviation is shaded.

doi:10.1371/journal.pcbi.1004759.g001

value of 0.1, as selected. We observe a stable phase value of 0.018 for the bidirectional connec-
tion fraction, translating to a factor of 1.83 above chance. Our control for chance is the
expected number of bidirectional connections for an Erdds-Rényi graph containing the same
number of nodes and edges as the simulated network. For comparison purposes, a value of
approximately 4 times chance is observed in [6]. We note that an otherwise equivalent non-
topological network, in which the probability of connection between neurons is uniform rather
than distance-dependent, produces a slight underrepresentation of bidirectional connections,
reinforcing the well-known expectation that classical STDP, in the absence of other factors,
favors unidirectional connectivity.

Regarding the growth of the network and the stabilization of its activity, we note one addi-
tional thing. In Fig 2, we observe that the distribution of interspike intervals (ISIs) and their
coefficients of variation (CVs) follow the properties of an approximately Poisson-like spiking
with an effective refractory period, as is observed in cortical circuits. That is to say, the distribu-
tion of ISIs follows an exponential decay with a distortion, induced by the refractory period, at
the low end, and that the CVs of the ISIs tend to be close to one.

We would like to briefly consider how a model using classical STDP, which is known to
drive the formation of unidirectional connections, can still produce such an abundance of bidi-
rectional connections. In this model, the existence of clustering topology strongly drives the
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Fig 2. Distributions of ISIs and CVs thereof during stabilized network activity. (top) Pooled (over all neurons) distribution of I1SIs with exponential fit,
suggesting Poisson-like behavior with a refractory period. Individual neuron distributions have been tested to be similar. (bottom) Distribution of CVs of ISls,
suggesting Poisson-like behavior. Single trial data.

doi:10.1371/journal.pcbi.1004759.9002

initial overrepresentation of bidirectional connections (as well as likely seeding higher order
clustering effects, which are then selected and tuned via the plasticity mechanisms, and will be
examined later). A simple mathematical argument will serve to demonstrate this (and, in fact,
that any inhomogeneity in unidirectional connection probability will lead to an overrepresen-
tation of bidirectional connections). Consider a single neuron in the center of a two dimen-
sional sheet (this generalizes to volumes as well) which is populated with additional neurons at
a uniform density. Assume that the central neuron has formed distance-dependent but other-
wise random connections to the other neurons as follows: There is a local neighborhood con-
taining a fraction f of all the neurons in the sampled area which have been connected with a
high probability p;,, while the remaining area contains the fraction 1 — f of all neurons, which
connect with a lower probability p;. We can then treat the connection probability as a random
variable P which takes the value p;, with probability fand p; with probability 1 — f (this general-
izes as well to additional neighborhoods, and, as the number of neighborhoods goes to infinity,
to a continuous density of connection probability). The average overall connection probability
of the neuron is then given by E[P] = p;, f + p)(1 — f). We now want to consider the average
probability of finding a bidirectional connection. We assume that all neurons share the same
distance-dependent connection probability, and therefore, the probability that a neuron within
the local neighborhood has formed a connection to the central neuron is the same pj, with
which the central neuron is likely to form a connection to the neuron in the local
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neighborhood. Thus, the probability of a bidirectional connection in the local neighborhood is
;> and by the same reasoning, the probability of forming a bidirectional connection with a
neuron outside the local neighborhood is p;. Then, the average overall bidirectional connection
probability of the neuron is given by E[P?| = pif + p;(1 — f). Since the squaring operation is
convex, Jensen’s inequality applies, stating that for any convex function g(P) of a random vari-
able P, g(E[P]) < E[g(P)]. It then follows that with g(P) = P?, E[P?] > E[P]%. Thus, bidirectional
connections can occur more frequently than would be expected from the average unidirec-
tional connection probability. Equality holds if and only if P is constant. It follows then that
any inhomogeneity in unidirectional connection probability will lead to an overrepresentation
of bidirectional connections. In the case of our model, the inhomogeneity is the distance-
dependent connection probability, though any number of other factors could come into play.
For the above argument to apply to a structurally dynamic model such as ours, all that need
be true is that bidirectional connections are added at a sufficiently high rate compared to their
rate of removal due to STDP and pruning. The high number of bidirectional connections in the
purely topological network, the low values for the purely plastic network, and the intermediate
number of bidirectional connections for the full network model in Fig 1 serve to demonstrate
the competition between the distance-dependent structural plasticity, which tends to boost bidi-
rectional connectivity, and STDP and pruning, which tend to reduce bidirectional connectivity.

Markov model of bidirectional overrepresentation

Furthermore, this competition can be captured and described by a simple Markov model in
which each bidirectional connection pair develops independently of all the others. The model
considers a pair of excitatory neurons and has three states {U, S, D} representing that the pair
of neurons is either unconnected, singly connected, or doubly connected, respectively. We define
transition probabilities denoting the probability of transitioning from one state to another dur-
ing a fixed time interval. For example, pys is the probability for transitioning from the uncon-
nected state U to the singly connected state S. The transition matrix is the matrix formed by all
transition probabilites and is given by:

Pw Pus O
T=1|psy Pss Psp )
0 pos Pop

given the assumption that transitions from the unconnected state U to the doubly connected
state D and vice versa are sufficiently unlikely to be considered negligible. Since the sum of the
elements in each row of T has to equal one, T can be rewritten as:

1 — Pus Pus 0
T = Psu 1= psy = Psp Psp )
0 Pps 1 — Pps

which depends on the four parameters pys, psu» Psp» and pps. If all of them are greater than
zero, then the Markov Chain is regular and we can find its stationary distribution by finding
the left Eigenvector of T:

1 — Pus Pus 0
(usd) Psu 1 =Py — Pso Psp = (usd)
0 Pps 1 — Pps
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with u + s + d = 1. The resulting system of linear equations can be written as:

u =1—-s—4d

s :@uzuu
pSU

d :@szﬁSZaﬁu,
Pos

where we have defined a = pys/psy and 8 = psp/pps. Thus, the behavior of the system depends
only on the two transition probability ratios & and . We can express u as a function of ¢ and
to arrive at the final solution:

1
LTI A1 p)
N = ou
d =oafu.

We can now consider the conditions under which the model leads to an overrepresentation of
bidirectional connections. The overall connection probability in the Markov model is p = s/2 + d.
For a random graph, we then expect:

U andom = (1 - P)Z
Standom = 2p(1 - p)
d

— 12
random _p .

We consider an overrepresentation of bidirectional connections to be in comparison to a random
graph. Therefore, using the previously defined transition ratios and a bit of algebra, we arrive at
the following expression for the overrepresentation A:

d  p+oap(l+p)

A = =
drandom % + O(ﬁ(l + ﬁ)

We can then empirically check this Markov model against our simulation. Counting and averag-
ing connections and transitions over the last 100 seconds of a standard 500 second run of our
model, we obtain o = 0.194 and 8 = 0.105. This leads the Markov model to predict an overrepre-
sentation of A = 0.180, which is, in fact, the also measured value for the average overrepresenta-
tion over the observed time period.

Statistics and fluctuations of synaptic efficacies

During the growth phase of the simulation, we note the reproduction of some of the results of
[19], specifically that during network growth there is a tendency for larger synaptic weights to
be more likely to shrink than smaller synaptic weights, as seen in Fig 3.

Once the stable phase is reached, we observe the distribution of synaptic weights via histo-
gramming, as previously stated, in Fig 4. This is in qualitative agreement with the heavy-tailed,
log-normal-like shape typically observed in experimental data [6-10]. Several theoretical expla-
nations for this distribution have been proposed, including a self-scaling rich-get-richer
dynamic [18] and a confluence of additive and multiplicative processes [36, 37], both of which
are consistent with our model. We note that the topology of the network seems to have a mini-
mal effect on this result, as would be expected from the results of [18].

We observe next the synaptic change dynamics in the stable phase of the network. We fol-
low the format used in [10], comparing initial synaptic weight during a test epoch to both
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absolute and relative changes in synaptic weight, and demonstrate in Fig 5 that strong synaptic
weights exhibit relatively smaller fluctuations over time, as experimentally observed [10]. Addi-
tionally, this serves to reinforce the earlier success of [18] in modeling such synaptic dynamics
as the result of self-organization, and demonstrates that such results carry over into a biologi-
cally more realistic model.

We examine, as well, the distribution of synaptic lifetimes (see Fig 6). It has been predicted
that the lifetimes of fluctuating synapses may follow a power law distribution [18]; our model
makes this prediction as well. Recent experimental evidence supports this prediction [38]. We
expand upon previous predictions with two interesting observations. In its current form, our
model produces a slope of approximately 5/3 in the stable phase (for comparison, the experi-
mentally observed slope is approximately 1.38). This decreases slightly in the growth phase.
Secondly, we have observed as well that the slope can be modified by adjusting the balance of
potentiation and depression in the STDP rule, varying between values between 1 and greater
than 2, depending on the chosen parameters. For example, doubling the amplitude of the
depression term in the STDP rule leads to a slope of approximately 5/2, while halving it leads
to a slope of approximately 5/4. This is, in retrospect, an intuitive phenomenon. A preponder-
ance of potentiation will lead to synapses being depressed to a value below the pruning thresh-
old less frequently, thereby decreasing the slope of the power law. Similarly, in a depression-
dominated scenario, synapses will be driven below the pruning threshold more frequently,
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leading to a higher power law slope. Returning to the slight decrease in slope during the growth
phase, this makes sense, as a reduction in the effective pruning rate is necessary for the network
to continue to grow. We believe that with a more extensive investigation of the effects of other
model parameters on the power law, the slope of this distribution could be used as a meaning-
ful measure of the potentiation-depression balance in a recurrent cortical network.

Motif properties

We subsequently examine the prevalence of triadic motifs in the graph of the simulated net-
work. An overrepresentation of certain motifs was noted in [6]. We used a script written for
the NetworkX Python module [39, 40] to acquire a motif count for the graph of the simulated
network. As the overrepresentation of bidirectional connections will trivially lead to an over-
representation of graph motifs containing bidirectional edges, the control for chance is, in this
case, a modified Erdds-Rényi graph with the same number of nodes, same number of unidirec-
tional edges, and same number of bidirectional edges as the graph of the simulated network,
with the unidirectional and bidirectional edges being independently populated. A similar con-
trol is used in [6]. We observe a similar pattern of “closed loop” triadic motifs being overrepre-
sented in Fig 7, as experimentally observed in [6]. We note that the results for a non-
topological plastic network with classical STDP, in the absence of additional factors, does not,
relatively speaking, strongly select for any particular family of motifs. We similarly note that
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while distance-dependent topology does select for the observed family of motifs, it does not do
so at the experimentally observed level. It is only the combination of topology and plasticity
that strongly selected for the desired family of motifs while simultaneously producing all other
noted effects. Approximate experimental data for comparison was extracted from [6] using
GraphClick [41].

Discussion

The problem of how the non-random micro-connectivity of the cortex arises is a nontrivial
one with significant implications for the understanding of both cognition and development.
We attempt, in this paper, to provide insight into this problem by presenting a plausible model
by which such non-random connectivity arises as the self-organized result of the interaction of
multiple plasticity mechanisms under physiological constraints. Some models attempt to
describe elements of the graph structure of the micro-connectome in purely physiological and
topological terms [42]. However, such models necessarily lack an active network, and are thus
unable to simultaneously account for synaptic dynamics, as our model does. Our model is, of
course, a simple model, but the degree to which it accounts for observed non-random features
of the typical cortical microcircuit without detailed structural features, metabolic factors, or
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structured input to drive the plasticity in a particular fashion is highly suggestive in terms of
what is necessary at a bare minimum to drive the development and maintenance of the com-
plex microstructure of the brain.

As mentioned in the introduction, it is hypothesized that a small backbone of strong synapses
may form the basis of stable long-term memory. The fact that in our model, strong weights
remain stable in the presence of ongoing plasticity and despite significant fluctuations of smaller
weights (which has been modeled as a stochastic Kesten process [37]), and the naturalness with
which such a dynamic arises out of the interactions of known plasticity mechanisms, is both
suggestive and supportive of this theory. On a related note, the heavy-tailed distribution of syn-
aptic efficacies (often described as log-normal or log-normal-like) is an experimentally observed
phenomenon seemingly fitting this narrative [6-10]. A theoretical explanation connecting log-
normal firing rates with a log-normal synaptic efficacy distribution was one of the first proposed
[43]. However, further studies have suggested that such a firing rate distribution is not necessary
to create a heavy-tailed distribution of synaptic efficacies, using either a self-scaling rich-get-
richer dynamic [18] or a combination of additive and multiplicative dynamics [36, 37].

An additional noted non-random feature of cortical recordings that has been passed over in
this model is the observed log-normal distribution of cortical firing rates (touched upon in the
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previous paragraph). Our intrinsic plasticity mechanism necessarily negates this feature, which
may be self-organized via mechanisms not included in our model, such as diffusive homeosta-
sis [44, 45]. In order to maximize simplicity, a single target firing rate is chosen for all neurons.
Additional testing in which the target firing rate is drawn from a log-normal distribution pro-
duces minimal qualitative effects on the observed features (except, trivially, the ISI distribution,
see S1 Fig). Another issue is that as things stand, the exact statistics of the micro-connectome
are difficult to discern—though strong inferences can be made in the right direction—due to
inherent sampling biases in paired patch-clamp reconstructions of limited size [46]. It is our
hope and belief that advances in fluorescence imaging, automated electron microscopy recon-
struction [47, 48], and massive multi-unit array recordings will help to alleviate these biases.
One might imagine that additional biases may be caused by the relatively small model size of
400 excitatory neurons, when realistic cortical densities would result in thousands of neurons
in such an equivalent volume. We have tested the network at much larger sizes of up to 2000
neurons and found no notable qualitative change to our observed results (S2 Fig; all other fea-
tures remain the same as well), so we maintained a relatively small network size to increase
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computational ease. It should be noted that except for this check, all supplementary checks,
tests, and additional analyses were performed with the standard 400 + 80 neuron network size.

We have described the formation of the overrepresentation of bidirectional connections in
terms of the competition between structural growth and structural pruning in the presence of a
topological inhomogeneity. Other possibilities for increasing the prevalence of bidirectional
connections include an STDP window with an integral greater than zero (i.e. biased toward
potentiation), or one in which the asymmetries are finely tuned so that, given the target
homeostatic target firing rate, connections are, on the whole, more likely to potentiate (making
the STDP window fully symmetrical has, in our model, only a minimal effect). Additionally,
more complicated STDP models [50, 51] are known to produce overrepresentation of bidirec-
tional connections in high-frequency firing regimes.

One other computational study has reproduced similar motif overrepresentations, however,
this model was significantly more complex and required specific structured input [49]. Some
might view the fact that, in this model, the primary driver behind the overrepresentation of
bidirectional connections is topology, as a shortcoming. We do not view this as a problem;
after all, topology exists in the cortex and the rest of the study’s results suggest it is an impor-
tant factor in the self-organization of cortical circuits. There are the previously mentioned
mechanisms utilizing non-classical STDP, such as the so-called triplet and voltage rules [50,
51], which, in the presence of high-frequency activity, are capable of producing and maintain-
ing bidirectional connections. Introducing such mechanisms into a similar model would be a
welcome and interesting future study, and could potentially lead to an even stronger and more
precise motif selectivity. To further explain the importance of the various mechanisms we have
introduced in self-organization, we have included a brief analysis of the behavior of the net-
work in the absence of individual mechanisms (see Table 4 below and S3 and 54 Figs). Essen-
tially, removal of the topology leaves the synaptic dynamics mostly unchanged, but
significantly alters the connectivity structure. Removal of structural plasticity trivially leads to
failure of the network to form, or, in the case of the removal of pruning only, divergent network
growth. Similarly, removal of STDP leads to divergent network growth because LTD is neces-
sary to trigger pruning. Removal of the STP leads to “epileptic” behavior, resulting in dynamic
and structural disruptions. Removal of SN leads to a small subset of synapses experiencing run-
away growth, with the others shrinking to near zero and being pruned. Finally, removal of the
IP leads to small changes to the structural properties, but requires fine tuning of the thresholds

Table 4. Results of plasticity mechanism removal. See S3 and S4 Figs for additional illustration.

mechanism result
removed
synaptic growth no network formation
synaptic pruning divergent network growth
topological loss of bidirectional overrepresentation
constraints significant reduction in motif overrepresentation
see Figs 1 and 7
STP “epileptic” behavior leading to structural breakdown
STDP uncontrolled network growth: without depression, synapses are not pruned
SN highly modified motif clustering

strongly unimodal weight distribution at synaptic maximum (same as what would be
normalization target): would be bimodal, but pole at zero absorbed by pruning

IP modified motif clustering
reduced connection fraction
requires fine tuning of threshold for stable activity

doi:10.1371/journal.pcbi.1004759.t004
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to run in this regime. Failure to tune the thresholds in this case leads to either silent or “epilep-
tic” networks.

Additionally, with the aim of understanding the relationship between the activity correla-
tion, the synaptic weights, and the intersomatic separation, a Spearman’s rank correlation anal-
ysis was performed on such data from an example trial (results in S1 Table). In summary, a
strong and highly significant positive correlation was found between the spike correlation and
the synaptic weight. However, only a weak (negative) correlation was found between the spike
correlation and the intersomatic separation, and no significant correlation was found between
the intersomatic separation and synaptic weight.

As a concluding point, often, models of cortical microcircuits are described as random
graphs, such as the classical random balanced network [52]. However, experiments have dem-
onstrated that the structure of cortical microcircuitry is significantly non-random [5, 6], sug-
gesting that random networks may be insufficient for modeling cortical development and
activity. Lacking in structural plasticity or topology, such random graph based balanced net-
works are incapable of producing the sort of results we have observed. Having provided a
mechanism with which one may generate a cortex-like non-random structure, it would be
enlightening to determine if said structure provides any significant computational or metabolic
advantage as compared to a random graph. Similarly, limitations in online plasticity capabili-
ties significantly hinder the use of such random networks and their relatives in reservoir com-
puting [53] for unsupervised learning and inference tasks (though progress has recently been
made in this direction [54]), while earlier studies with the original SORN model [11, 15] sug-
gest that the particular combination of plasticity mechanisms in our model can endow net-
works with impressive learning and inference capabilities. A logical next step is therefore to
study the learning and inference capabilities of LIF-SORN networks and relate them to neuro-
physiological experiments. Our rapidly developing ability to manipulate neural circuits in vivo
suggests this as an exciting direction for future research. It is our belief that the future of model-
ing cortical computation and related biological processes lies in the incorporation of multiple
plasticity and homeostatic mechanisms under simple sets of constraints and biases.

Supporting Information

S1 Fig. Triadic motif counts as a multiple of chance for lognormal firing rates, corrected
for bidirectional overrepresentation. Triadic motif counts (in the same order as [6]) for a
simulated network as a multiple of chance value. The counts have been corrected for the
observed overrepresentation of bidirectional connections. Results are shown for a complete
network with IP target rates drawn from a log-normal distribution (mean of 3.0, standard devi-
ation of 1.0 Hz) instead of a single value and approximate experimental data. Other parameters
remain the same, aside from scaling of growth rate to obtain stable phase connection fraction
of 0.1. Error bars are standard deviation. Horizontal axis has been jittered slightly to increase
readability.

(TTF)

S2 Fig. Triadic motif counts as a multiple of chance for a larger (2000 neuron) network,
corrected for bidirectional overrepresentation. Triadic motif counts (in the same order as
[6]) for a simulated network as a multiple of chance value. The counts have been corrected for
the observed overrepresentation of bidirectional connections. Results are shown for a complete
network of 2000 neurons and approximate experimental data. Other parameters remain the
same, aside from scaling of growth rate to obtain stable phase connection fraction of 0.1. Error
bars are standard deviation. Horizontal axis has been jittered slightly to increase readability.
(TTF)
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S3 Fig. Triadic motif counts as a multiple of chance for networks with plasticity mecha-
nisms removed, corrected for bidirectional overrepresentation. Triadic motif counts (in the
same order as [6]) for a simulated network as a multiple of chance value. The counts have been
corrected for the observed overrepresentation of bidirectional connections. Results are shown
for a network with all plasticity mechanisms, a network without IP, a network without SN, and
approximate experimental data. Error bars are standard deviation. Horizontal axis has been jit-
tered slightly to increase readability. Upper and lower plot show the same data with a different
scaling of the y-axis.

(TTF)

$4 Fig. Log distribution of synaptic weights for networks with plasticity mechanisms
removed. The distribution of the base ten logarithm of synaptic weights for a network all plas-
ticity mechanisms (ten trials), a single network without IP, and a single network without SN.
Error bars are standard deviation. Upper and lower plot show the same data with a different
scaling of the y-axis.

(TIF)

S1 Table. Spearman’s rank correlation and associated P-value between intersomatic separa-
tion, synaptic weight, and pairwise spike correlation. Representative single trial example
data. Spike correlation was taken from 50 s activity with 50 ms bins [55].

(PDF)
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