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Abstract
The brain can learn and detect mixed input signals masked by various types of noise, and

spike-timing-dependent plasticity (STDP) is the candidate synaptic level mechanism. Be-

cause sensory inputs typically have spike correlation, and local circuits have dense feed-

back connections, input spikes cause the propagation of spike correlation in lateral

circuits; however, it is largely unknown how this secondary correlation generated by lateral

circuits influences learning processes through STDP, or whether it is beneficial to achieve

efficient spike-based learning from uncertain stimuli. To explore the answers to these

questions, we construct models of feedforward networks with lateral inhibitory circuits and

study how propagated correlation influences STDP learning, and what kind of learning al-

gorithm such circuits achieve. We derive analytical conditions at which neurons detect

minor signals with STDP, and show that depending on the origin of the noise, different cor-

relation timescales are useful for learning. In particular, we show that non-precise spike

correlation is beneficial for learning in the presence of cross-talk noise. We also show that

by considering excitatory and inhibitory STDP at lateral connections, the circuit can ac-

quire a lateral structure optimal for signal detection. In addition, we demonstrate that the

model performs blind source separation in a manner similar to the sequential sampling ap-

proximation of the Bayesian independent component analysis algorithm. Our results pro-

vide a basic understanding of STDP learning in feedback circuits by integrating analyses

from both dynamical systems and information theory.

Author Summary

In natural environments, although sensory inputs are often highly mixed with one an-
other and obscured by noise, animals can detect and learn discrete signals from this mix-
ture. For example, humans easily detect the mention of their names from across a noisy
room, a phenomenon known as the cocktail party effect. Spike-timing-dependent plas-
ticity (STDP) is a learning mechanism ubiquitously observed in the brain across various
species and is considered to be the neural basis of such learning; however, it is still un-
clear how STDP enables efficient learning from uncertain stimuli and whether spike-
based learning offers benefits beyond those provided by standard machine learning
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methods for signal decomposition. To begin to answer these questions, we conducted an-
alytical and simulation studies examining the propagation of spike correlation in feed-
back neural circuits. We show that non-precise spike correlation is useful for handling
noise during the learning process. Our results also suggest that neural circuits make use
of stochastic membrane dynamics to approximate computationally complex Bayesian
learning algorithms, progressing our understanding of the principles of stochastic com-
putation by the brain.

Introduction
Neurons receive inputs from a large number of other neurons encoding a variety of informa-
tion about various signals. Despite the diversity and variability of input spike trains, neurons
can learn and represent specific information during developmental processes and according to
specific task requirements. Spike-timing-dependent plasticity (STDP) [1,2] is a candidate
mechanism of neural learning. Extensive studies have revealed the type of information that a
single neuron can learn through STDP [3–7]; however, the type of information that a popula-
tion of neurons interacting with each other learns through STDP has not yet been determined.
Understanding this extension from a single neuron to a population of neurons is crucial be-
cause a single neuron learns and represents only a limited amount of information that may be
transmitted to it from thousands of inputs.

Among neural interactions, lateral inhibition is a basic interaction widely observed in vari-
ous regions, such as the olfactory bulb [8], visual cortex [9], somatosensory cortex [10], and
entorhinal cortex [11]. Previous theoretical results showed that neural circuits with lateral inhi-
bition enhance signal detection [12,13] and improve learning performance [14–16]. Several
simulation studies further revealed that neurons acquire receptive field [17–19] or spike pat-
terns [20] through STDP by introducing lateral inhibition; yet, those studies were limited to
simplified cases for which a large population of independent neurons was suggested to be suffi-
cient [5,21,22]. Therefore, it remains unclear whether lateral inhibition plays a crucial role in
STDP learning; in particular, the spike level effects of lateral inhibition remain elusive. More-
over, recent experimental results suggest that animals learn and discriminate mixed olfactory
signals [23–25] or auditory signals masked by noise [26,27], but it is still unknown how feed-
back interactions contribute to such learning.

Here, by considering a simple feedback network model of spiking neurons, we investigated
the algorithm inherent to STDP in neural circuits containing feedback. We analyzed the propa-
gation of spike correlations through inhibitory circuits, and revealed how such secondary
correlations influence STDP learning at both feedforward and feedback connections. We dis-
covered that the timescale of spike correlation preferable for learning depends on whether the
noise is independent from any signal (random noise) or generated from the mixing of signals
(cross-talk noise). We also found that excitatory and inhibitory STDP cooperatively shapes lat-
eral circuit structure, making it suitable for signal detection. We further found a possible link
between stochastic membrane dynamics and sampling process, which is necessary for neural
approximation of learning algorithm of Bayesian independent component analysis (ICA). We
applied our findings by demonstrating that STDP implements a spike-based solution in neural
circuits for the cocktail party problem [26,28,29].

Mixed Signal Learning by Propagation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004227 April 24, 2015 2 / 36

Competing Interests: The authors have declared
that no competing interests exist.



Results

Model
We constructed a network model with three feedforward layers as shown in Fig 1A (see Neural
dynamics in Methods for details). The external source layer represents the external environment
or neural activity at sensory systems. The external layer also provides common inputs to the
input layer and induces correlations in the neurons in the input layer. The input layer shows
rate-modulated Poisson firing based on events at the external layer and external noise, which is
approximated with the constant firing rate {ri

o}. Subsequently, spike activity at the input layer
projects to the output layer, which also receives inhibitory feedback from the lateral layer. Neu-
rons in the lateral layers are excited by inputs from the output layer. We assumed that all neu-
rons in the input layer and the output layer are excitatory, whereas lateral-layer neurons are
assumed to be inhibitory. Although excitatory lateral interactions also exist in the sensory cor-
tex, they are typically sparse [30] and weak [10] compared with inhibitory interactions; thus we
concentrated on the latter. For the analytical treatment, the neurons in the output and lateral
layers were modeled with a linear Poisson model. We first studied synaptic plasticity at the feed-
forward connections (connections from the input layer to the output layer), while fixing lateral
connections (i.e., connections from the output layer to the lateral layer and connections from
the lateral layer to the output layer). For STDP, we used pairwise log-STDP (Fig 1B) [31], which
replicates the experimentally observed long-tailed synaptic weight distribution [32,33].

We considered the case for information encoded in the correlated activity of input neurons
[34,35], and fixed the average firing rate of all input neurons at the constant value υo

X (See
Table 1 and 2 for the list of variables and parameters). If the firing rate of input neuron i is

given as roi þ
Xp

m¼1

qim

ð1
0

�ðt0Þsmðt � t0Þdt0, for external event sμ(t) and the response probability

of the neuron qiμ, then common inputs from the external layer induce a temporal correlation
proportional to

hðt; ytÞ �
ð1
maxðt;0Þ

dt0�ðt0Þ�ðt0 � tÞ: ð1Þ

where φ(t) is a response kernel (see Eqs (14) and (24) in Methods for details). If we use
�ðtÞ ¼ t2e�t=yt=2yt

3, where θt is the parameter that controls the timescale of spike correlations,
then hðt; ytÞ ¼ 1

16yt3
ðt2 þ 3ytjtj þ 3yt

2Þe�jtj=yt (gray line in Fig 1C). For the kernel function, we

Fig 1. Description of the model. (A) Schematic figure of the model. (B) Spike-time dependent synaptic weight change in log- spike-timing-dependent
plasticity (STDP). (C) Normalized temporal cross-correlogram of input neurons receiving common sources (gray line), and kernel functions of plasticity
propagated by feedforward correlation (blue line) and feedback correlation (green line).

doi:10.1371/journal.pcbi.1004227.g001
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used the gamma distribution with shape parameter kg = 3 in order to reproduce broad spike
correlations typically observed in cortical neurons [36,37]. Synaptic weight dynamics by STDP
is written as

dwX
ji

dt
¼ xiðt � dXa

ji Þ
ð1
0

FdðwX
ji ; sÞyjðt � s� dXd

ji Þdsþ yjðt � dXd
ji Þ
ð1
0

FpðwX
ji ; sÞxiðt � s� dXa

ji Þds

for FdðwX
ij ; sÞ ¼ fdðwX

ij Þe�s=t
d , FpðwX

ij ; sÞ ¼ fpðwX
ij Þe�s=tp , where fd(w) and fp(w) are synaptic weight

dependence of LTD/LTP (long-term depression/potentiation), respectively. By taking the aver-
age of above equation over time and ensemble (see Average synaptic weight velocity in Meth-
ods for details), the weight change of the feedforward connectionWX can be approximated as

WX

� � WXðgX1 E � gX2 WZWYÞCt; ð2Þ

Table 1. Definition of variables.

sμ(t) The activity of external source μ sμ(t) = σ[νSo]

xi(t) The spiking activity of input neuron i Eq (14)

uj
E(t) Membrane potential of output neuron j Eq (15)

yj(t) The spiking activity of output neuron j yj(t) = σ[uEj(t)]

uk
I(t) Membrane potential of inhibitory neuron k Eq (16)

zk(t) The spiking activity of inhibitory neuron k zk(t) = σ[uIk(t)]

wji
X The synaptic weight of a feed-forward excitatory connection from i to j Eq (17)

qiμ Response probability of input neuron i to external source μ Eq (14)

Cil Non-normalized correlation between input neuron i and l Cil = Σμqiμqlμ
Cil(s) Cross correlation between input neuron i and l Eq (24)

G1
X(w), G2

X(w) Coefficients of correlation-based synaptic weight change Eq (30)

χ1
X, χ2

X The correlation kernel functions Eqs (3) and (4)

doi:10.1371/journal.pcbi.1004227.t001

Table 2. Parameter settings.

T Simulation time 3000 s (for Figs 5C, 5D, 5E, 6 and 7:
T = 4000 s)

L, M, N Neural population 400, 20, 20 (for Figs 7 and 8: M = N = 40)

La, Ma, Na Neural subpopulation 100, 10, 10

τA
X, τB

X, τA
Y, τB

Y, τA
Z,

τB
Z

EPSP/IPSP time constants 5.0, 1.0, 4.0, 0.8, 2.5, 0.5 ms

wo
X, wo

Y, wo
Z Synaptic weights 2.5, 100.0, 50.0 (for Figs 7 and 8: wo

Z = 80.0)

dXamin, d
Xa

max Axonal delays 2.0, 4.0 ms

dXdmin, d
Xd

max Dendritic delays 0.5, 1.5 ms

dYmin, d
Y
max, d

Z
min,

dZmax

Synaptic (axonal) delays 0.2, 1.2, 0.2, 1.2 ms

θt Correlation timescale 2.0 ms

νo
S, νo

X Firing rates 10, 10 Hz

ηX Learning rate 0.05 wo
X

σsig Noise amplitude of plasticity 0.3

τp, τd STDP time windows 17, 34 ms

α, β Parameters for log-STDP 20.0, 50.0

σW
init Initial variance of synaptic

weights
0.1

γY, γZ LTD/LTP balance 1.4, 0.7

doi:10.1371/journal.pcbi.1004227.t002
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where g1
X and g2

X are scalar coefficients, C is the correlation matrix, and E is the identity ma-
trix (see Eqs (25)–(30) for derivation). The first term describes the synaptic weight change di-
rectly caused by an input spike correlation and can be rewritten into the convolution of the
temporal correlation and correlation kernel function χX1 as

gX1 � GX
1 ðwX

o Þ;GX
1 ðwÞ �

ð1
�1

wX1 ðt;wÞhðtÞdt;

wX1 ðt;wÞ ¼
ð1
�tþ2dXd

dsFðw; sÞ"Xðtþ s� 2dXdÞ; ð3Þ

where F(w,s) = Fd(w,-s) if s<0, else F(w,s) = Fp(w,s), and "X is the EPSP curve of input neurons
(see Eqs (15) and (31) in the Methods). By the deconvolution of G1

X(w), we can separate the ef-
fect of the intrinsic network property χX1 and that of the input correlation h(τ) for STDP-based
learning. Due to causality, LTP/LTD balance, and dendritic delay, wX1 ðt;wÞ typically becomes
LTP-dominant around τ = 0 (blue line in Fig 1C; we set w = wo

X), so that g1
X takes positive val-

ues, which enables coincidence-based learning [4,5,38]. The second term of Eq (2), which is of
particular interest in this model, describes how the input correlation influences STDP learning
at feedforward connections through lateral inhibition:

gX2 � GX
2 ðwX

o Þ;GX
2 ðwÞ �

ð1
�1

wX2 ðt;wÞhðtÞdt;

wX2 ðt;wÞ ¼
ð1
�tþD

dsFðw; sÞ
ðtþs�D

0

dr"ZðrÞ
ðtþs�r�D

0

dq"YðqÞ"Xðtþ s� r � q� DÞ; ð4Þ

where D = 2dXd+dY+dZ, and "Y and "Z are EPSP/IPSP curves of output/inhibitory neurons,
respectively. This term primarily causes LTD as the sign flips through lateral inhibition
(�wX2 ðt;wÞ; shown as the green line in Fig 1C). Previous simulation studies showed lateral inhi-
bition has critical effects on excitatory STDP learning [17–19]; however, it has not yet been
well studied how a secondary correlation generated through the lateral circuits influences
STDP at feedforward connections, and it is still largely unknown how lateral inhibition func-
tions with various stimuli in different neural circuits. For example, the correlation kernel of the
feedback term exhibits a delay as the signal propagates through the inhibitory circuit; yet, we
do not know how much delay is permitted for effective learning or if realistic synaptic delays
satisfy such a condition. Furthermore, it is also unknown what information a circuit can learn
if there are several mixed signals with different amplitudes for which symmetry-breaking learn-
ing [5,39] is not valid. Therefore, using theoretical analysis and simulation, we first investigated
the properties of the inhibitory kernel�wX2 ðt;wÞ in STDP learning.

Lateral inhibition enhances minor source detection by STDP
In Eq (2), if lateral inhibition is negligible (i.e., g2

X/g1
X = 0), all output neurons acquire the prin-

cipal component of the response probability matrix Q, and the other information is neglected
[7,40,41]. On the other hand, if lateral inhibition is effective, different output neurons may ac-
quire various components of the external structure. We first examined that point in a simple
network model with two independent external sources (Fig 2A). In the model, each external
source drives an independent subgroup of input neurons (we defined those input neurons as
A-neurons and B-neurons), which project excitatory inputs to all of the output neurons.
Here, we assume that source A drives input neurons with a higher probability than source
B (qA = 0.6, qB = 0.5), so that input neurons projected by source A show higher correlations

Mixed Signal Learning by Propagation
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(cA = 0.36) than those receiving the output of source B (cB = 0.25). In the matrix form,

Q ¼
qA 0

0 qB

0 0

0
B@

1
CA;C ¼

cA 0 0

0 cB 0

0 0 0

0
B@

1
CA:

Fig 2. Lateral inhibition enables minor source detection by spike-timing-dependent plasticity (STDP) throughmembrane hyperpolarization. (A)
Schematic figure of the simplified model. SA and SB (on the left side) are the sources that project to subsets of input neurons (colored triangles). Gray
triangles are background neurons, black triangles (on the right) are output neurons, and red circles are inhibitory neurons. (B) Development of synaptic
weights. Thick lines are mean synaptic weights from A-neurons (blue), B-neurons (red), and Background-neurons (orange) to each output neuron. Thin lines
are traces of individual synaptic weights. Gray bar shows the timing at which figure C is calculated. (C) Peristimulus time histograms (PSTHs) of membrane
potentials averaged within output neuron groups. T = 0 indicates the timing of events at external layers. The three figures are calculated from the data at
t = 0–1 min, 7–8 min, and 29–30 min. (D) Development of mean cross-correlation and mutual information between external sources and population activity of
output neurons for the simulation depicted in panels B and C. (E) Delay dependence of mean cross-correlation and mutual information. Both values were
calculated from five simulations. (F) Cross-correlation between the output group that detected the minor source and the minor source activity for various
response probabilities qB with a fixed qA (= 0.6). When none of output groups detected the minor source, the larger value calculated for the two output groups
was used. Throughout the study, error bars represent standard deviation calculated from five simulations, unless otherwise indicated.

doi:10.1371/journal.pcbi.1004227.g002
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The third row in Q represents response probabilities of background neurons in the input layer
(gray triangles in Fig 2A; note that C = QQt). We refer to this as the minor source detection
task below. Here, for lateral connections, we assumed that both excitatory-to-inhibitory
(E-to-I) and inhibitory-to-excitatory (I-to-E) connections are well organized such that inhibi-
tion only works mutually between two output neuron groups (Fig 2A; blue lines are E-to-I and
red lines are I-to-E connections. See also Eq (30) in Methods). The origin of these structured
lateral connections is discussed later. When the network is excited by inputs from external
sources, excitatory postsynaptic potential (EPSP) sizes of feedforward connectionsWX change
according to STDP rules. Initially, in all output neurons, synaptic weights from A-neurons
(blue triangles in Fig 2A) become larger because A-neurons are more strongly correlated with
one another than B-neurons are. However, as learning proceeds, one of the output neuron
groups becomes selective for the minor source B (Fig 2B). After 30 min, the network successful-
ly learns both sources. If we focus on the peristimulus time histogram (PSTH) for the average
membrane potential of output neurons aligned to external events, both neuron groups initially
show weak responses to both correlation events, and yet the depolarization is relatively higher
for source A than for source B (Fig 2C left). After 10 min of learning, both neuron groups show
relatively stronger initial responses for source A, but group 1 shows a hyperpolarization soon
after the initial response (Fig 2C middle). As a result, synaptic weights from A-neurons to
group 1 become weaker, and group 1 neurons eventually become selective for the minor source
B (Fig 2C right). The mean cross-correlation (see cross-correlation in Methods for details) be-
tween the external sources and the population activity of output neurons is maximized when
the delay is approximately 10–15 ms (Fig 2E). If we fix the delay at 14 ms, then the cross-
correlation gradually increases as the network learns both sources (Fig 2D). The same argu-
ment holds if mutual information is used for performance evaluation (green lines in Fig 2D
and 2E). Interestingly, the network better detects the minor source when it is learned with a
highly correlated source compared with when it is learned with another minor source (Fig 2F),
because a highly correlated opponent source causes strong lateral inhibition on the output neu-
rons, which enhances minor source learning. Similar results are also obtained for conductance-
based leaky integrate-and-fire (LIF) neurons (S1 Fig).

Lateral inhibition should be strong, fast, and sharp
To investigate how and when the network can acquire multiple sources represented by corre-
lated inputs, we further analyzed the model above (see Mean-field approximation of a two-
source model in Methods for details). Because both output excitatory neurons and lateral
inhibitory neurons are bundled into groups, in the mean-field approximation, we can approxi-
mate M excitatory populations and N inhibitory populations into two representative output
neurons and two inhibitory neurons. Similarly, input neurons can be bundled into three groups
(A-neurons, B-neurons, and Background-neurons). In addition, we assumed that the synaptic
connections from Background-neurons to output neurons are fixed because they showed little
weight change in the simulation (orange lines in Fig 2B). In this approximation, by inserting
Eq (32) into Eq (29), the mean synaptic weight changes of feedforward connections follow

dwX
mn

dt
ffi
XL=La
n0¼1

Law
X
mn0n

S
oG

X
1 ðwX

mnÞ
X
r

qnrqn0r � NawZMawY

XL=La
n0¼1

Law
X
�mn0n

S
oG

X
2 ðwX

mnÞ
X
r

qnrqn0r

þ �FðwX
mnÞ ðnXo Þ2

XL=La
n0¼1

Law
X
mn0 � ðnXo Þ2NawZMawY

XL=La
n0¼1

Law
X
�mn0 þ ðNawZÞ2MawYn

X
o n

Z
m

" #
;

ð5Þ

where μ = 1,2 and �m ¼ 2; 1(m 6¼ �m), and ν = A,B. The first two terms are correlation-based
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learning, and the last term is the homeostatic effect intrinsic to STDP [5]. G1
X and G2

X are coef-
ficients determined by synaptic delays, EPSP/IPSP (Inhibitory postsynaptic potential) shapes,
and correlation structure, as shown in Eqs (3) and (4). By solving the self-consistency condition
(Eq (34) in Methods), the firing rates of inhibitory neurons are approximated as

nZ1 ¼
MawYn

X
o

1�ðMawYNawZÞ2
ðLaw1AþLaw1Bþ2Law

X
o Þ�ðMawYNawZÞðLaw2AþLaw2Bþ2Law

X
o Þ

� �

nZ2 ¼
MawYn

X
o

1�ðMawYNawZÞ2
ðLaw2AþLaw2Bþ2Law

X
o Þ�ðMawYNawZÞðLaw1AþLaw1Bþ2Law

X
o Þ

� �
:

ð6Þ

We estimated the nullclines by calculating the lines that satisfy
_w1mðw1A;w1B;w

�
2Aðw1A;w1BÞ;w�

2Bðw1A;w1BÞÞ¼ 0 for μ = A or B. As a result, we found that when

the mutual inhibition is weak (wI = 10), the system has only one stable point at which w1A is
larger than w1B (Fig 3A left). At this point, w2A is also larger than w2B (w2A = 9.64, w2B = 3.60;
not shown in the figure), which means that both output neuron groups are specialized for the
major source A (we call this state a winner-take-all state or T-state); however, if the inhibition
is moderately strong (wI = 21.5), two new stable fixed points and two unstable fixed points ap-
pear in the system (Fig 3A middle). In the stable point on the left, neuron group 1 picks up
source B while neuron group 2 picks up source A (w2A = 12.52, w2B = 2.87). On the right-hand
side, neuron group 1 selects source A while neuron group 2 selects source B (we denote those
two states as winners-share-all states or S-states below). At the stable point in the middle, both
groups detect source A (w1A = w2A = 9.47, w1B = w2B = 3.61). Note that because of the mutual

Fig 3. Lateral inhibition is strong, fast, and sharp. (A) Nullclines of the average synaptic weight changes at different inhibitory amplitudeswZ = 0.1, 0.215,
0.4. The inset in the middle graph is a magnified view of boxed area. (B) Specialization indiceswSI for various inhibitory weights. PositivewSI indicates the
winner-share-all state, whereas negativewSI indicates the winner-take-all state. Blue lines are analytical estimations and cyan squares are the results of
simulations. Vertical lines correspond to the values at which the nullclines in Figure A are calculated. (C) The same graphs for various synaptic delays. The
average synaptic delay of both lateral excitatory (dYmin+d

Y
max)/2 and inhibitory (dZmin+d

Z
max)/2 connections was changed, while the variability was kept at

dYmax—dYmin = dZmax—dZmin = 1.0 ms. (D) IPSP rise time dependence. The inset shows IPSP curves at {τZA, τ
Z
B} = {0.5, 2.5} (gray line), {1.5, 7.5} (dark gray

line), and {2.5, 12.5} (black line).

doi:10.1371/journal.pcbi.1004227.g003
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inhibition, the synaptic weight from A-neuron is smaller when both groups learn A than it is
when only group 1 learns A. For strong inhibition (wI = 40.0), the stable point in the middle
disappears, and the system is stable only when two neuron groups detect different sources (Fig
3A right). Simulation results confirm this analysis because strong inhibition indeed causes a
winner-share-all state in which multiple neuron groups survive in competition [15], whereas
the network tends to show a winner-take-all learning when the inhibition is weak (Fig 3B). We
measured the degree of winner-share-all/winner-take-all states by defining the specialization
index wSI as

w0
SI ¼ðw1A�w1BÞðw2B�w2AÞ;wSI ¼w0

SI=
ffiffiffiffiffiffiffiffiffiffi
jw0

SIj
p

: ð7Þ

If w’SI = 0, we set wSI = 0. If two output groups are specialized for different sources, wSI becomes
positive, whereas if two groups are specialized for the same source, wSI becomes negative.
When the synaptic delay in the lateral connections is small, only S-states are stable, whereas at
longer delays, both S-states and T-states are stable. In the simulation, the network typically
grows toward the latter state in the bistable strategy (Fig 3C). Moreover, if we change the shape
of the IPSP curve while keeping τZB = 5 τZA, for steep IPSP curves (i.e., both τZA and τZB are
small), only the S-states are stable, whereas T-states also become stable for slower IPSPs (Fig
3D). Therefore, both analytical and simulation studies indicate that lateral inhibition should be
strong, fast and sharp to detect higher correlation structure. Moreover, lateral inhibition does
not need to be pathologically strong because the I/E balance of NawZ=Lw

X
o ffi 20% is sufficient

to cause multistability.

Optimal correlation timescale changes depend on the noise source
In the previous section, we revealed the effects of network properties for a fixed input correla-
tion structure; however, actual neurons show various timescales for correlations depending on
the brain region [37,42] and characteristics of the stimuli [43,44], and it is largely unknown
how different timescales influence correlation-driven learning. Therefore, we next considered
the effect of correlation timescales, especially on noise tolerance. In our current model, input
neurons respond to external sources with input kernel �ðtÞ ¼ t2e�t=yt=2yt

3 (Fig 4A left), and so
the correlation between input neuron i and l is given as

CilðsÞ ¼ nSo
Xp

m¼1

qimqlmhðsÞ:

By changing the parameter θt, we studied the effect of the correlation timescale on learning.
The correlation is precise when θt is small, whereas it becomes broad at large values of θt (Fig
4A right, Fig 4B). Because STDP causes homeostatic plasticity that does not depend on a corre-
lation, as shown in the third term of Eq (5), in a more precise approximation, Eq (2) should be
written as

WX

� � WXðgX1 E � gX2 WZWYÞCt þ hhomeostatic termi: ð8Þ

We first calculated g1
X and g2

X at various θt. Both g1
X and g2

X become smaller for a larger θt,
but decreases in g2

X are slower than those in g1
X, and, as a result, κ = g2

X/g1
X becomes larger for

a longer correlation timescale (Fig 4C). This means that a longer temporal correlation is more
suitable for the detection of multi-components. This is indeed confirmed in the simulation (Fig
4D). When θt = 0.5 and the minor component is slightly weaker than the major one (cA = 0.36,
cB = 0.25), the minor component is no longer detectable. On the other hand, at θt = 2.0, the
minor component is detectable even if the strength of the induced correlation is less than half
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(cA = 0.36, cB = 0.16). At θt = 4.0, g1
X becomes smaller so that even the major signal is not

fully detectable.
Similar results hold for crosstalk noise. In the model above, the noise is provided through

the spontaneous Poisson firing of input neurons as random noise (Fig 4E top, black dots are
spikes caused by random noise). In reality, however, there would be crosstalk noise among
input spike trains caused by the interference of external sources. We implemented this cross-
talk noise by introducing non-diagonal components in the response probability matrix as

Q ¼
qS qN

qN qS

0 0

0
B@

1
CA;

Fig 4. Optimal correlation timescale changes depending on noise characteristics. (A) Response kernels of input neurons to external events (left) and
cross-correlation among input neurons responding to the same source calculated from simulated data (right) for three different correlation timescale
parameters θt. (B) Raster plots of input neurons for various θt. Only 100 correlated neurons are plotted although there are 400 input neurons in total. (C)
Analytically calculated correlation kernels g1

X, g2
X (left), and their ratio g1

X/g2
X. (D) Specialization indexwSI for various response probabilities qB while fixing

qA = 0.6. Lines representwR at analytically estimated stable points, and dotted squares represent simulation results. (E) Raster plots of two types of noise.
The upper panel shows random noise, whereas the lower panel depicts crosstalk noise. In both panels, the first 100 neurons respond primarily to the cyan
source, and the next 100 neurons respond to the purple source. For random noise, the noise (black dots) is independent from the signals, whereas the
crosstalk noise (purple dots in the lower half, cyan dots in the upper half) is correlated with the signal for the other population. (F, G) The effects of random
noise (F) and crosstalk noise (G) at various correlation timescales.

doi:10.1371/journal.pcbi.1004227.g004
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where qS is the response probability to the preferred signal and qN is that to the non-preferred
signal (Fig 4E bottom). We refer to this as the noisy source detection task below. To make a
clear comparison, in the simulation of random noise, we kept qN = 0 and changed the sponta-
neous firing rate of the input neurons (ri

o) to modify the noise intensity, whereas in simulation
of crosstalk noise we removed random noise (i.e., ri

o = 0) and changed qN. For random noise, a
smaller θt enables better learning because a large g1

X competes with the homeostatic force (Fig
4F). By contrast, for crosstalk noise, the performance is better at θt = 2.0 than at θt = 0.5 because
strong lateral inhibition suppresses crosstalk noise (Fig 4G). Although for small noise regi-
mens, the network performs better at θt = 0.5 than at θt = 2.0, but the difference is almost negli-
gible. Therefore, to cope with crosstalk noise, the spike correlation needs to be broad, whereas
a narrow spike correlation is better for random noise. We note that qualitatively the same argu-
ments as above also hold for the exponential kernel �eðtÞ ¼ e�t=yt=yt (S3D and S3E Fig). How-
ever, the ratio of two coefficients (i.e., κe = ge2

X/ge1
X) is typically smaller for this kernel than for

the kernel we used throughout this study (S3B and S3C Fig vs. Fig 4D) because lateral inhibi-
tion is less effective due to highly peaked spike correlation (S3A Fig).

Excitatory and inhibitory STDP cooperatively shape structured lateral
connections
To this point, we have considered a network already clustered into two assemblies that inhibit
one another (as in Fig 5A left). This means that the network somehow knows a priori that the
number of external sources is two; however, in reality, a randomly connected network should
also learn such information. To test this idea, we introduced STDP-type synaptic plasticity in
lateral excitatory connections and feedback inhibitory connections and investigated how differ-
ent STDP rules cause different structures in the circuit.

We first checked whether structured lateral connections were helpful for learning. For com-
parison, we also considered a model with random lateral connections in which all output neu-
rons and inhibitory neurons are randomly connected with probability 0.5 (Fig 5A middle).
When lateral connections are random, mean-field equations are modified as

dwX
mn

dt
ffi
XL=La
n0¼1

Law
X
mn0n

S
oG

XðwX
mnÞ
X
r

qnrqn0r � NawZMawY

Xp

m0¼1

XL=La
n0¼1

Law
X
m0n0n

S
oG

YðwX
mnÞ
X
r

qnrqn0r

þ�FðwX
mnÞ ðnXo Þ2

XL=La
n0¼1

Law
X
mn0 � ðnXo Þ2NawZMawY

Xp

m0¼1

XL=La
n0¼1

Law
X
m0n0 þ ðNawZÞ2MawYn

X
o n

Z
tot

" #
;

nZtot �
2MawYn

X
o ðLaw1A þ Law1B þ 2Law

X
o Þ

1þ 2MawYNawZ

:

ð9Þ

We separated lateral connections into two groups as in the previous case, but this approxi-
mation is legitimate only when two input sources are symmetrical (i.e., qA = qB). In other cases,
neurons are often organized into two groups with different population sizes. In such cases, for
evaluating performance, we measured average weights from source A on the output neurons
receiving stronger inputs from A-neurons than from B-neurons or Background-neurons. For
randomly connected lateral inhibition, learning performance dropped significantly in noisy
source detection (Fig 5B) and in minor source detection (Fig 5C); thus clustered connectivity is
indeed advantageous for learning.

We next investigated whether such structure can be learned using STDP rules. We first in-
troduced Hebbian STDP for both E-to-I and I-to-E connections. With these learning rules, the
lateral connections successfully learn a mutual inhibition structure (Fig 5D); however, this
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learning is achievable only when the learning of a hidden external structure is possible from
the random lateral connections (magenta lines in Fig 5B and 5C; note that orange points are
hidden by magenta points because they show similar behaviors in noisy cases), which means ei-
ther when crosstalk noise is low or two sources have similar amplitudes. Nevertheless, once a
structure is obtained in easy settings (qN = 0 or qA = qB), that network outperforms the network
with random lateral connections in both noisy source detection (Fig 5E) and minor source de-
tection (Fig 5F). In Fig 5E, we evaluated the performance of noisy source detection by first con-
ducting STDP learning at qN = 0, and then we terminated STDP and performed simulations at
the various noise levels qN. Similarly, in the minor source detection task depicted in Fig 5F, we
first performed STDP learning with qA = qB = 0.6, and then evaluated the performance for a

Fig 5. Lateral connection structuring by excitatory and inhibitory spike-timing-dependent plasticity (STDP). (A) Schematic figures of connections
between the output layer and the lateral layer. In the simulation, each layer consists of 20 neurons. (B) The effect of crosstalk noise on different lateral
structures. Analytical results are shown as bold lines, and the results from simulations are shown as dotted lines. (C) Minor source detection with different
lateral structures. Because the specialization index is not well defined for a network with random lateral connections, the average synaptic weights from
source A to those output neurons that prefer source A were measured instead. (D) Synaptic weight development at three connections. In the left and right
columns, panels show synaptic weights of excitatory/inhibitory synapses projected to the neuron group 1 (top) and group 2 (bottom). In the middle graph,
panels correspond to excitatory synapses projected from the neuron group 1 (top) and group 2 (bottom). In all panels, thin lines indicate the development of
individual synapses, thick lines represent average weights onto output neurons, and colors indicate A-neurons (blue), B-neurons (red), and Background-
neurons (orange). (E, F) Performance of the network with different lateral structures in noisy signal detection (E) and minor signal detection (F). Here (and
only here), a pre-learned network is used to investigate responses for various inputs.

doi:10.1371/journal.pcbi.1004227.g005
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smaller qB. STDP can also generate similar lateral connection structures when the total number
of input sources is larger than two (S2A and S2B Fig). Therefore, STDP at lateral connections
helps signal detection by efficiently organizing the connection structure.

We next studied the analytical conditions for learning of the clustered structure (see Analyt-
ic approach for STDP in lateral and inhibitory connections in Methods for details). The synap-
tic weight dynamics of lateral excitatory and inhibitory connections are approximately given as

WY

� � gY1 WYWXC
tWt

X; g
Y
1 �

ð1
�1

dsFYðsÞ
ð
DX

r

ð
DY

u

ð
DX

r0hðuþ r0 � s� rÞ

WZ

� � gZ1WXCW
t
XW

t
Y ; g

Z
1 �

ð1
�1

dsFZðsÞ
ð
DX

r

ð
DY

u

ð
DX

r0hðr � s� u� r0 � dZ � dYÞ:
ð10Þ

Both equations represent indirect effects of the input correlation propagated into the lateral cir-
cuit. From a linear analysis, we can expect that when gY1 is positive, E-to-I connections tend to
be feature selective (see Eq (35) in Methods). Each inhibitory neuron receives stronger inputs
from one of the output neuron groups and, as a result, shows a higher firing rate for the corre-
sponding external signal. On the other hand, if gZ1 is positive, I-to-E connections are organized
in reciprocal form, where one of the reciprocal connections is enhanced and the other is sup-
pressed (see Eq (36) in Methods). We can evaluate feature selectivity of inhibitory neurons by

φY ¼ 1

N

XN

k¼1

1

jOY
Aj
X
j2OY

A

wY
kj �

1

jOY
B j
X
j2OY

B

wY
kj

0
B@

1
CA= 1

M

XM

j¼1

wY
kj

0
@

1
A; ð11Þ

where OY
A and OY

B are the sets of excitatory neurons responding preferentially to sources A
and B, respectively. Indeed, when the LTD time window is narrow, analytically calculated gY1
tends to take negative values (the green line in Fig 6A), and E-to-I connections organized in the
simulation are not feature selective (the blue points in Fig 6A). By contrast, for a long LTD
time window (i.e., when LTD is weakly spike-timing dependent), gY1 tends to take positive val-
ues, and E-to-I connections become clustered. In the simulation,WZ is also plastic, but as
shown in Eq (10), the effect ofWZ on the plasticity ofWY is negligible in first-
order approximations.

Similarly, for I-to-E connections, we measure the degree of mutual inhibition (non-
reciprocity) with

φZ ¼ 1
N

XN
k¼1

wY
kjXM

j¼1

wY
kj

� wZ
jkXM

j¼1

wZ
jk

����������

����������
: ð12Þ

When LTD is strongly spike-timing dependent, gZ1 is negative and ϕ
Z calculated from the

simulation data tends to be large (Fig 6B), which means that inhibitory connections are orga-
nized such that the inhibition functions as mutual inhibition between excitatory neuron
groups. Note that the organized neuronal wiring patterns are not a pure product of the pre-
post causality of STDP but the effect of spike correlations propagating through lateral inhibito-
ry circuits. If the structural plasticity is merely caused by the pre-post causality, both ϕY and ϕZ

can decrease with increases in the inhibitory population while maintaining the total synaptic
weights because the causal effect becomes weaker as each synaptic weight becomes smaller
[45]; however, in our simulations, the values of both quantities generally increased for larger
inhibitory populations (S2C Fig).
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Hebbian inhibitory STDP at lateral connections is not always beneficial for learning. For ex-
ample, in minor source detection, if we use Hebbian inhibitory STDP, a slightly minor source
is not detectable, whereas for anti-Hebbian STDP, a small number of neurons still detect the
minor source because reciprocal connections from strong-source responsive inhibitory neu-
rons to strong-source responsive output neurons inhibit synaptic weight development for the
stronger source (Fig 6C).

Neural Bayesian ICA and blind source separation
Our results to this point have revealed that correlation-based STDP learning combined with
lateral inhibition can successfully detect signals from mixed inputs masked by noises. To con-
firm this mechanism is indeed effective in realistic tasks, we applied the above method to blind
source separation. We first examined the condition in which the network could capture exter-
nal sources. We extended the previous network to include four independent sources mixed at
the input layer (Fig 7A). In the present application, we used structured lateral connections be-
cause learning for clustered structures is difficult with noisy stimuli, as shown in the preceding
section. The response probability matrix Q and correlation matrix C are given as

Q ¼

qS qN 0 qN

qN qS qN 0

0 qN qS qN

qN 0 qN qS

0
BBBB@

1
CCCCA;C ¼

qS
2 þ 2qN

2 2qSqN 2qN
2 2qSqN

2qSqN qS
2 þ 2qN

2 2qSqN 2qN
2

2qN
2 2qSqN qS

2 þ 2qN
2 2qSqN

2qSqN 2qN
2 2qSqN qS

2 þ 2qN
2

0
BBBB@

1
CCCCA:

Therefore, the principal components of matrix Q (i.e., eigenvectors of C) are {1, 1, 1, 1,}, {-1, 0,
1, 0}, {0, -1, 0, 1}, {-1, 1, -1, 1}. Because the first-order approximation of synaptic weight dy-

namics followsWX

� � gX1 WXC
t , we may expect that synaptic weight vectors converge to the ei-

genvectors of the principal components; however, this was not the case in our simulations,
even if we took into account the non-negativity of synaptic weights (see Fig 7B, where we
renormalized the principal vectors to the region between 0 and 1). Instead, each weight vector
converged to a column of the response probability matrix Q (Fig 7B, the left panel is the projec-
tion to the first two dimensions, and the right panel is the projection to the other two

Fig 6. Correlation propagation shapes lateral connection structure. (A) Comparison between feature selectivity ϕY (blue dots) calculated from simulation
results and analytically calculated correlation kernel function g1

Y (green line) for lateral excitatory connections. Thin green horizontal line represents g1
Y = 0.

(B) Comparison between the degree of mutual inhibition ϕY (blue dots) calculated from the simulation and analytically calculated correlation kernel
g1

Z (green line) for lateral inhibitory connections. Negative g1
Z is correlated with a high degree of mutual inhibition, as expected (see Methods). (C) Ratio of

output neurons tuned for the minor source in a minor source detection task under Hebbian and anti-Hebbian inhibitory spike-timing-dependent plasticity.

doi:10.1371/journal.pcbi.1004227.g006
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dimensions). This result implies that the network can extract independent sources, rather than
principal components, from multiple intermixed inputs.

We next evaluated the performance of hidden external source detection, especially its toler-
ance against crosstalk noise. To this end, we compared the performance of the model with that
of the Bayesian ICA algorithm, in which independence of external sources is treated as a prior
[46,47]. In the algorithm, the learned mixing matrix may converge to its Bayesian optimal
value estimated from a stream of inputs. Although we cannot directly argue the optimality of
cross-correlations, if the mixing matrix is accurately estimated, external activity is also well in-
ferred, and thus we can use the mean cross-correlation as a measure for the optimality of learn-
ing. In terms of discretized input activity X, the external source activity S and prior
information I, we can express the conditional probability of the estimated response probability

matrix ~Q as P½~QjX; I� ¼ P½~QjI�
P½XjI�

ð
P½XjS; ~Q; I�P½SjI�dS (see Bayesian ICA in Methods for de-

tails). This means that even if no prior information is given for ~Q itself (i.e. P½~QjI� ¼ const:),

posterior P½~QjX; I� still depends on a prior given for S. If we introduce a prior that each exter-
nal source follows an independent Bernoulli Process

(i.e.P½SjI� ¼
YT=Dt
k¼1

YL
i¼1

ðrsDtÞs
k
mð1� rsDtÞ1�skm ), then the stochastic gradient descendent of posterior

Fig 7. With lateral inhibition, spike-timing-dependent plasticity (STDP) mimics Bayesian independent component analysis (ICA). (A) Schematic
figure of the model with four sources. (B) Synaptic weight development in input neuron space. Arrows qA to qD are response probability vectors of the four
sources, and PC1 to PC4 are normalized principal components of the correlation matrix C. Lines represent traces of average synaptic weight from each input
group to the output groups that learned corresponding sources during the learning process. (C) Comparison of performance among the ideal observer,
Bayesian ICA learning, and STDP learning. (D) LTP/LTD time window of Bayesian ICA learning. (E) Behaviors of log-membrane potential (color lines) in the
STDPmodel, and estimated log-posterior (black lines) in the Bayesian ICA algorithm for the same stimuli. Vertical lines represent timings of external events.
Log-membrane potentials are normalized to align the mean and the variance to the corresponding log-posteriors.

doi:10.1371/journal.pcbi.1004227.g007
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function is given as,
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We approximated this Bayesian ICA algorithm by a sequential sampling source activity in-
stead of calculating the integral over all possible combinations in the estimation of the log-pos-
terior of the response probability matrix Q. In this approximation, the learning rule of the

estimated response probability matrix ~Q obeys
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where Y is the sampled sequence, and pi
k(Y1:k-1) is the sample based approximation of pi

k in
the previous equation. This rule has spike-timing and weight dependence similar to those seen
in STDP (Fig 7D). Although the performance of STDP is much worse than the ideal case
(when the true Q is given), this performance is similar to that for the sample-based learning al-
gorithm discussed above (Fig 7C). Therefore, the network detects independent sources if cross-
talk noise is not large. We further studied the response of the models for the same inputs and

found that the logarithm of the average membrane potential uE
m ¼

1

jOmj
X
j2Om

uE
j well approxi-

mates the log-posterior estimated in Bayesian ICA, even in the absence of a stimulus (Fig 7E).
This result suggests that in the STDP model, expected external states are naturally sampled
through membrane dynamics that are generated through the interplay of feedforward and
feedback inputs.

We finally performed the blind separation task using the same network as shown in Fig 7A.
We created “sensory” inputs by mixing four artificially created auditory sequences (Fig 8A and
S1 Auditory File). In the auditory cortex, various frequency components of a sound, particular-
ly high-frequency components, are represented by specific neurons typically organized in a
tonotopic map structure [48], whereas low-frequency components are expected to be perceived
as a change in sound pressure. Furthermore, populations of neurons in the primary auditory
cortex are known to synchronize the relative timing of their spikes during auditory stimuli and
provide correlated spike inputs for higher cortical areas in which the auditory scene is fully an-
alyzed and perceived [49,50]. We modeled these features by assuming that input neurons have
a preferred frequency {fi} defined as

fi ¼ exp
i
L
ðlogfmax � logfminÞ þ logfmin

� 	
;

and auditory inputs are provided as time-dependent response probabilities, which follow

qiðtÞ ¼ qo
X
q

aql ðtÞaqhðfiÞ, where aqh(f) is the spectrum of auditory source q (left panel of
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Fig 8C), and aql(t) is the temporal change of the sound pressure (black lines in Fig 8B). In this
representation, each sound source is represented by correlated spikes of neural populations
(right panel of Fig 8C). Even if signals have overlapping frequency components {aqh(f)}q, blind
separation is possible as long as {aql(t)}q are independent and have sharp rising profiles suffi-
cient to cause spike correlations. After learning, four output neuron groups successfully de-
tected changes in the sound pressure of the four original auditory signals (colored lines in Fig
8B) by correctly identifying the input neurons that encoded the signals. Therefore, STDP rules
implemented in a feedforward neural network with lateral inhibition serve as a spike-based so-
lution to the blind source separation or cocktail party effect problem.

Discussion
By analytically investigating the propagation of input correlations through feedback circuits,
we revealed how lateral inhibition influenced plasticity at feedforward connections. We showed
that a population of neurons could learn multiple signals with different strengths or mixed lev-
els. In addition, we found that to perform learning from signals corrupted with random noise,
the timescale of the input correlations needed to be in the range of milliseconds, whereas the
timescale was broader for crosstalk noise, which may explain why the spike correlation of corti-
cal neurons often exhibits a large jitter (approximately 10 ms) [36,37]. We also investigated the
functional roles of STDP at lateral excitatory and inhibitory connections to demonstrate that

Fig 8. Blind source separation by spike-timing-dependent plasticity (STDP). (A) Four original auditory signals (from the top to the fourth set of signals)
and one mixed signal (bottom). (B) Amplitudes of original signals (black lines) and those estimated from output firing rates (colored lines). (C) Spectra of
auditory sources aqh(f) (left). Raster plots of input neuron activity. Colors were probabilistically assigned based on expected sources. All figures were
calculated from the 30’00”–30’10” portion of the auditory signals and simulation.

doi:10.1371/journal.pcbi.1004227.g008
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Hebbian STDP shaped the lateral structure to improve signal detection performance. Our re-
sults also suggested that anti-Hebbian plasticity was helpful for learning from minor sources
and implied that different STDP rules at lateral connections induced different algorithms at
feedforward connections. Furthermore, we derived an STDP-like online learning rule by con-
sidering an approximation of Bayesian ICA with sequence sampling. This result suggested that
lateral inhibition adjusted the membrane potentials of postsynaptic neurons so that their spik-
ing processes accurately performed sequence sampling. We also demonstrated that this mecha-
nism was applicable to blind source separation of auditory signals.

Noise characteristics and correlation timescales
Simultaneously recorded neurons in close proximity often show correlated spiking, yet the pre-
cision of these correlations varies across brain regions. Neurons in the lateral geniculate nucle-
us show strong spike correlations [42,51], while correlations in V1 [36,52] or higher visual
areas [37] are less precise. Our results indicate the interesting possibility that these differences
may reflect the different characteristics of the noise with which the various cortical areas need
to contend. At an early stage of sensory processing, the major noise component may be en-
vironmentally produced background noise from various sources; thus precise spike correlation
is beneficial at this stage for noise reduction during signal detection and learning (Fig 4G). By
contrast, in higher sensory cortices, crosstalk noise accumulated through signal propagation in
circuits may form the primary noise source, so less precise spike correlation is preferable (Fig
4H). It would be intriguing to examine whether lower and higher cortical areas similarly
change the strength of spike correlations for other sensory modalities.

STDP in E-to-I and I-to-E connections
It is known that both glutaminergic synapses on inhibitory neurons [53,54] and GABAergic
synapses on excitatory neurons [55,56] show STDP, and it is also known that STDP at E-to-I
connections plays an important role in developmental plasticity [57]; however, detailed proper-
ties of these plasticities are still largely disputable [58,59] and, reportedly, highly dependent on
inhibitory cell type [60], neuromodulator [61], and region [58]. We showed that in a feedback
circuit, Hebbian inhibitory STDP preferred winner-take-all while anti-Hebbian inhibitory
STDP tended to cause winner-share-all (see Fukai and Tanaka 1997 for winner-share-all) at ex-
citatory neurons (Fig 6D). This result indicates that different inhibitory STDP imposes differ-
ent functions for excitatory STDP, which suggests that a neural circuit may select optimal
inhibitory STDP for a specific purpose or strategy of learning, and this may differ across re-
gions and be modified by neuromodulators. A recent study showed that inhibitory plasticity
even directly influences the plasticity at excitatory synapses of the postsynaptic neuron [62]. In
such cases, algorithm selection would play a more important role than it did for the standard
STDP implemented in our model.

Recently, inhibitory neurons in the rodent hippocampus CA1 were shown to display con-
text-dependent activity rate changes during a spatial learning task, in association with the activ-
ity rate changes in excitatory cells [63]. In addition, the authors suggested the candidate
mechanism for this change in activity is STDP at E-to-I synapses. Our results examining E-to-I
STDP confirmed this configuration of inhibitory cells modulated by plasticity at feedforward
excitatory connections (Fig 5D, S2A and S2B Fig). In our model, although inhibitory neurons
are not directly projected from input sources, as excitatory neurons learn a specific input
source (Fig 5D, left panel), inhibitory neurons acquire feature selectivity through Hebbian
STDP at synaptic connections from those excitatory neurons (Fig 5D, middle panel). Further-
more, our results indicate an important function of these feature-selective inhibitory neurons.
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Once an adequate circuit structure is learned and inhibitory connections are organized into a
feature-selective pattern, even if the input to the network becomes noisy or faint, the network
can still robustly detect signals (Fig 5E and 5F). This robustness would be useful for spatial
learning, as contextual information is often uncertain.

STDP and Bayesian ICA
Our results indicated that STDP in a lateral inhibition circuit mimicked Bayesian ICA [46,47].
First, output neurons were able to detect hidden external sources, without capturing principal
components (Fig 7B). Previous results suggest that for a single output neuron, an additional
homeostatic competition mechanism is necessary to detect an independent component [7,22].
In addition, when information is coded by firing rate, homeostatic plasticity is critically impor-
tant, because STDP itself does not mimic Bienenstock-Cooper-Munro learning [18]. However
in our model, information was encoded by correlation, and mutual inhibition naturally in-
duced intercellular competition so that intracellular competition through homeostatic plastici-
ty was unnecessary. Moreover, our analytical results suggested the reason that independent
sources are detected. To perform a principal components analysis using neural units, the syn-
aptic weight change needs to follow

WX

� ¼ WXC � LT½WXCW
t
X�WX ;

where LT[] means lower triangle matrix [64,65]. This LT transformation protects principal
components caused by the lateral modification from higher order components; however in our
model, because all output neurons receive the same number of inhibitory inputs Eq (2), all neu-
rons are decorrelated with one another and develop into independent components.

Recently, it was shown that STDP can perform Bayesian optimal learning [66,67]. In the
model used by those authors, the synaptic weight matrix is treated as a hyper parameter and es-
timated by considering the maximum likelihood estimation of input spike trains. By contrast,
in the Bayesian ICA framework, the mixing matrix (corresponding to synaptic weight matrix)
is treated as a probabilistic variable. Using this framework, we needed to calculate an integral
over all possible source activities in the past to derive stochastic gradient descendent; however,
as shown in Fig 7C, the stochastic learning was well performed by employing an approximation
with sequential sampling. Moreover, we naturally derived an adequate LTP time window from
the response kernel of input neurons to external events (Fig 7D). We also found that STDP
self-organized a lateral circuit structure that performed better than a random global inhibition
(Fig 5E and 5F). Mathematically, to perform sampling from a probabilistic distribution, we
first needed to calculate the occurrence probability of each state; however, in a neural model,
membrane potentials of output neurons approximately represent the occurrence probability
through membrane dynamics. In machine learning methods, integration over possible source
activities is often approximated using Markov chain Monte Carlo (MCMC) sampling [68]. In-
terestingly, a recent study showed that a recurrent network performed MCMC sampling
[69,70], suggesting that our network may perform a more accurate sampling in the presence of
recurrent excitatory connections.

Suboptimality of STDP
Previous theoretical results suggest that STDP can modulate synaptic weights in a way that op-
timizes information transmission between pre- and postsynaptic neurons [71,72]. In the Bayes-
ian ICA framework, blind source separation can be formulized as an optimization problem,
but, in this case, the problem itself is ill-defined because optimality does not guarantee the true
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solution. In addition, local minima are often unavoidable for online learning rules. Neverthe-
less, the problems faced by the brain are often ill-defined, and suboptimality is inevitable [73].
Because we performed both nonlinear dynamics-based and machine learning-based analyses,
we can offer some insights regarding the origins of local minima in stochastic gradient descen-
dent learning. In the initial state, synaptic weights are typically homogeneously distributed,
and this state is often locally stable. As a result, the homogeneous stable point is more likely to
be selected in learning (Fig 2C and 2D) than the non-homogenous, more desirable, points;
however, introducing additional noise may change this situation. Indeed, in Fig 4B and Fig 7C,
the performance of the model was improved by adding a small amount of noise to input activi-
ties, although the improvement was not significant; however, because a large amount of noise
is harmful for computations and stable learning, the benefit of noise addition is highly limited,
and the brain may recruit other mechanisms for near optimal learning.

Neural mechanism of blind source separation
Humans and nonhuman animals can detect a specific auditory sequence from a mixed, noisy
auditory stimulus, a phenomenon often called the cocktail party effect. The mechanism under-
lying the cocktail party effect remains elusive [26,28,29], although several solutions have been
proposed [74,75]. An effective solution for this problem is ICA [76–78], and the neural imple-
mentation of the algorithm has been studied by several authors [14,18,79,80]. Our study ex-
tended these results through a rigorous analytical treatment on biologically plausible STDP
learning of spiking neurons, and our analyses enabled us to discover interesting functions of
correlation coding. Moreover, by explicitly modeling inhibitory neurons, we found that STDP
at E-to-I and I-to-E connections cooperatively organized a lateral structure suitable for blind
source separation. In addition, we successfully extended a previous model for the formation of
static visual receptive fields [18,19] to a more dynamic model in an auditory blind source sepa-
ration task. In realistic auditory scene analysis, the frequency spectrum of acoustic signals is
first analyzed in the cochlea, where each frequency component is the mixture of sound compo-
nents from independent sources. Components belonging to the same source may be separated
and integrated by downstream auditory neurons for the perception of the original signal. These
frequency components can be considered a mixed signal in the ICA problem [81]; thus even if
signals are mixed in frequency space, if the amplitudes of the signals are temporally indepen-
dent, blind separation is still achievable. In the neural implementation of the problem, if two
frequencies are commonly activated in the same signal, neurons representing those frequencies
show spike correlation under the presence of the signal; thus the learning process is naturally
achieved by STDP learning. These results indicate an active role of spike correlation and STDP
in efficient biological learning.

Methods

Model
Neural dynamics. Based on the previous study [7], we constructed a network model with

one external layer and three layers of neurons (Fig 1A). The first layer is the external layer that
corresponds to external stimuli or the sensory system’s response to these stimuli. For simplici-
ty, we approximated the activity of external sources using a Poisson process with the constant
rate νSo. If we define the Poisson process with rate r as ŝðrÞ, the activity of the external source μ
at time t is written as smðtÞ ¼ ŝðnSoÞ (see Table 1 for the list of variables). Neurons in the input

layer fire spikes in response to activity in the external layer. By assuming a rate-modulated
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Poisson process, the spiking activity of the input neuron i follows

xiðtÞ ¼ ŝ roi þ
Xp

m¼1

qim

ð1
0

�ðt0Þsmðt � t0Þdt0
" #

; ð14Þ

where ri
o is the instantaneous firing rate defined with roi ¼ nXo �

Xp

m¼1

qimn
S
o, qiμ is the response

probability for the hidden external source μ, and �ðtÞ ¼ t2e�t=yt=2yt
3 is the response kernel for

each external event. In most theoretical studies, cross-correlations give an exponential decay or
a delta function [5,38], but here we used a response kernel that produces broader correlations
(Fig 4A right), because the actual correlations observed in the cortex are usually not sharply
peaked [36,37]. For instance, for the exponential kernel �eðtÞ ¼ e�t=yt=yt , correlations show a
peaked distribution even if the timescale parameter θt is several milliseconds (S3A Fig). Because
of the common inputs from the external layer, input neurons show highly correlated activity,
which enables population coding of the hidden structure. Although here we explicitly assumed
the presence of the external layer, these analytical results can also be applied for arbitrary reali-
zation of a spatiotemporal correlation.

Output neurons are modeled with the Poisson neuron model [5,38,45] in which the mem-
brane potential of neuron j at time t is described as

uE
j ðtÞ ¼

XM
i¼1

wX
ji

ð1
0

"XðrÞxiðt � r � dX
ji Þdr �

XN
k¼1

wZ
jk

ð1
0

"ZðrÞzkðt � r � dZ
jkÞdr; ð15Þ

where wji
X and wjk

Z are the EPSPs/IPSPs of input currents from input neuron xi and lateral

neuron zk, respectively, convolution functions are defined as "XðrÞ ¼
e�r=tXA � e�r=tXB

tXA � tXB
and

"ZðrÞ ¼
e�r=tZA � e�r=tZB

tZA � tZB
, and synaptic delays in the feedforward excitatory and feedback inhibi-

tory connections are dij
X and djk

Z. For feedforward excitatory connections, the synaptic delay
dij

X is given by the sum of the axonal delay dij
a and dendritic delay dij

d, whereas for inhibitory
connections, we assume for simplicity that the delay is purely axonal. The response of the out-
put neuron follows yjðtÞ ¼ ŝ½gEðuE

j Þ�. Similarly, inhibitory neurons in the lateral layer show

Poisson firing based on the membrane potential {uIk}k = 1,. . .,N which is defined as

uI
kðtÞ ¼

XM
j¼1

wY
kj

ð1
0

"YðrÞyjðt � r � dY
kjÞdr; ð16Þ

for EPSPs of a lateral connection wY
kj, convolution function "YðrÞ ¼

e�r=tYA � e�r=tYB

tYA � tYB
, and synap-

tic delay of the lateral connection dYkj. The synaptic delay of the excitatory lateral connection is
also approximated as the axonal delay. The spiking activity of the inhibitory neurons is given
with zkðtÞ ¼ ŝ½gIðuI

kÞ�. For analytical tractability, we use a linear response curve gE(u) = u and
gI(u) = u.

Synaptic plasticity. For most of this study, we focused on synaptic plasticity in the feedfor-
ward connectionWX, with fixed lateral synaptic weightsWY andWZ. When the timing of the
spikes at the cell bodies of pre- and postsynaptic neurons is tpre and tpost, spike timings at the
synaptic sites are tspre ¼ tpre þ da

ji and t
s
post ¼ tpost þ dd

ji with axonal and dendritic delays of daji
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and ddji. For every pair of t
s
pre and t

s
post, synaptic weight change is given with

DwX
ji ¼

ZXfpðwX
ji Þexp½�ðtspost � tspreÞ=tp� ðif tspost > tspreÞ

ZXfdðwX
ji Þexp½�ðtspre � tspostÞ=td� ðif tspost < tspreÞ

: ð17Þ
(

For the synaptic weight dependence of STDP, we considered a pairwise log-STDP [31] in
which LTP/LTD follows

fpðwÞ ¼ Cpð1þ sstdpxÞe�w=ðbwoÞ; fdðwÞ ¼ �Cdð1þ sstdpxÞ
logð1þ aw=woÞ

logð1þ aÞ ; ð18Þ

where ξ is a Gaussian random variable. The log-weight dependence well replicates experimen-
tally observed synaptic weight distributions [32,33] and is suggested to have an important func-
tion in memory modulation [82]. Analytical treatment below is applicable to other types of
synaptic weight dependence, yet in the additive STDP (i.e. fp(w) = Cp and fd(w) = Cd), the
mean-field equation typically does not have any stable fixed point. In addition, under the mul-
tiplicative STDP in which LTD has a linear rather than a logarithmic dependence on synaptic
weight, strong correlation is often necessary to induce salient LTP [31]. The coefficients Cp = 1
and Cd ¼ Cpt

X
p =t

X
d are chosen so that total LTP and LTD are balanced around the referential

synaptic weight.
The STDP at E-to-I connections and I-to-E connections is similarly defined. For simplicity,

we assume that synaptic delays are solely axonal (i.e., dY
k;j ¼ dY;a

k;j ,d
Z
k;j ¼ dZ;a

k;j ), and the change in

synaptic weight does not depend on the synaptic weight. To maintain the balance between LTP
and LTD, coefficients are chosen as CY

p ¼ 1,CY
d ¼ gYCY

p t
Y
p =t

Y
d ,Z

Y ¼ 0:3ZwY
o =w

X
o . Similarly, for

I-to-E connections, CZ
p ¼ 1,CZ

d ¼ gZCZ
p t

Z
p=t

Z
d ,Z

Z ¼ 0:3ZwZ
o=w

X
o . We also modify constant (ini-

tial) synaptic weights to wo
Y = 50.0 and wo

Z = 25.0, and bounded synaptic weights with wY
max

= 100.0 and wZ
max = 50.0. In this normalization, the total lateral inhibition takes the same

value as that in the non-plastic model at the initial state. Time windows are defined as τp
Y = τd

Y

= τp
Z = τd

Z = 20.0 ms.
In Fig 6C, anti-Hebbian STDP was calculated by

DwQ ¼
�ZQexp½�ðtspost � tspreÞ=tQd � ðif tspost > tspreÞ
ZQgQðtQd =tQp Þexp½�ðtspre � tspostÞ=tQp � ðif tspost < tspreÞ

(

for Q = Y or Z. Similarly, the correlation detector type of STDP in S2 Fig was defined as

DwQ ¼
ZQðexp½�ðtspost � tspreÞ=tQp � � ðtQp =tQd Þexp½�ðtspost � tspreÞ=tQd �Þ ðif tspost > tspreÞ
ZQgQðexp½�ðtspost � tspreÞ=tQp � � ðtQp =tQd Þexp½�ðtspost � tspreÞ=tQd �Þ ðif tspost < tspreÞ

(

The anti-correlation detector was calculated by changing the sign of above equations.
Leaky Integrate-and-Fire (LIF) model. In the main text, we performed all simulations

with a linear Poisson model for analytical purposes, although we also confirmed those results
with a conductance-based LIF model (S1 Fig). In the LIF model, the membrane potentials of
excitatory neurons follow

dvEj
dt

¼ � 1

tEm
ðvEj � VLÞ � gEEj ðvEj � VEÞ � gEIj ðvEj � VIÞ;

dgEEj
dt

¼ � gEEj
tEEs

þ
XL

i¼1

wX
ji

X
ts
i

dðt � tsi Þ; and
dgEIj
dt

¼ � gEIj
tEIs

þ
XN

k¼1

wZ
jk

X
ts
k

dðt � tskÞ;
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where gj
EE and gj

EI are excitatory and inhibitory conductances, respectively, and ti
s and tk

s are
the spike timings of input neuron i and lateral neuron k. Similarly, for inhibitory neurons in
the lateral layer,

dvIk
dt

¼ � 1

tIm
ðvIk � VLÞ � gIEk ðvIk � VEÞ � gIIk ðvIk � VIÞ;

dgIEk
dt

¼ � gIEk
tIEs

þ
XM

j¼1

wY
kj

X
tsj

dðt � tsj Þ; and
dgIIk
dt

¼ � gIIk
tIIs

þ wII

X
tsr

dðt � tsrÞ:

In addition to the excitatory inputs from the output layer, we added random inhibitory in-
puts as Poisson processes with a fixed firing rate ro

II for inhibitory neurons. A neuron fires if
the membrane potential exceeds the threshold Vth, and immediately goes into a refractory peri-
od in which the membrane potential stays at Vref for 1 ms after spiking. Plasticity was imple-
mented for wji

X in the same manner as that for the Poisson model. Parameters were chosen as
VL = -70.0, VE = 0.0, VI = -80.0, Vref = -60.0, Vth = -50.0 mV, tm

E = 20.0, tm
I = 10.0, tsEE = 5.0,

ts
EI = 2.5, ts

IE = 4.0, ts
II = 5.0 ms, wo

X = 0.001, wo
I = 0.008, wo

L = 1.0, ro
II = 1000.0 Hz, wII

o =
0.005, Cd = 1.8Cpτp

X/τd
X, and α = 50.0. All other parameters were the same as those used in the

Poisson model (Table 2).
In the LIF model, synaptic weights develop in a manner similar to that for the linear Poisson

model, although change occurs more rapidly (Fig 1B, S1A Fig). Both cross-correlation and mu-
tual information behave as they do in the Poisson model, but the performance is slightly better,
possibly because the dynamics are deterministic (Fig 1D and 1E, S1B and S1C Fig); however,
membrane potentials show different responses for correlation events (S1D Fig) because output
neurons are constantly in high-conductance states, so that correlation events immediately
cause spikes. As a result, membrane potentials drop to the Vref, and the average potential goes
down. Interestingly, after neuron groups detect different signals, a preferred signal initially
causes hyperpolarization due to firing, but, subsequently, a non-preferred signal causes hyper-
polarization due to lateral inhibition (Fig 1D right). The PSTH of firing shows that the behavior
of the membrane potential in the Poisson model is similar (Fig 1C and S1E Fig). This is natural,
because in the linear Poisson model, the firing rate has linear relationship with the membrane
potential, whereas in LIF model relationship between the average membrane potential and fir-
ing rate is highly non-linear.

Bayesian ICA. If discretized with Δt, the time series of the external source activity is writ-

ten as S ¼ fsmkgk¼1;:::;T=Dt

m¼1;:::;p
, and input activity becomes X ¼ fxikgk¼1;:::;T=Dt

i¼1;::;L . Therefore, for prior in-

formation I, the joint probability of sources S and the estimated response probability matrix
Q is

P½S; ~QjX; I� ¼ P½XjS; ~Q; I�P½S; ~QjI�=P½XjI�:

Therefore, by considering marginal probability,

P½~QjX; I� ¼ P½~QjI�
P½XjI�

ð
P½XjS; ~Q; I�P½SjI�dS: ð19Þ

By considering maximum likelihood estimation for a given prior P[S|I], Q can be optimally
estimated [46,47]. In our problem setting, by assuming that external signals are independent,
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and input neurons respond to signals with a Bernoulli process,

P½XjS; ~Q; I� ¼
YT=Dt
k¼1

YL
i¼1

½xki pki þ ð1� xki Þð1� pki Þ�; P½SjI� ¼
YT=Dt
k¼1

YL
i¼1

ðrsDtÞs
k
mð1� rsDtÞ1�skm ;

where

pki ¼ 1� ð1� roi DtÞ
Yp
m¼1

1� ~qim

X1
k0¼0

�k0s
k�k0
m

" #
; �k ¼

1

2yt3
½ðkþ 1=2ÞDt�2exp½�ðkþ 1=2ÞDt=yt�:

Therefore, log-likelihood becomes

logP½~QjX; I� ¼ log
ð
dS
YT=Dt
k¼1

YL
i¼1

ðxki pki þð1� xki Þð1� pki ÞÞ	
Yp
m¼1

ðrsDtÞs
k
mð1� rsDtÞ1�skm

" # !
: ð20Þ

By taking gradient descendent,

@

@~qim

logP½~QjX; I� ¼ 1

Zp

XT=Dt
k¼1

ð
P½S;Xj~Q; I� 2xki � 1

xki p
k
i =ð1� pki Þþ ð1� xki Þ

X1
k0¼0

�k0s
k�k0
m

1� ~qim

X1
k0¼0

�k0s
k�k0
m

dS:

Therefore, we need to calculate the integral over all possible combinations of sources in the
past to obtain stochastic gradient descendent; however, such a calculation is computationally
difficult and incompatible with neural computation. Instead, we used sequential sampling of

Y ¼ fymkgk¼1;:::;T=Dt

m¼1;:::;p
, which is randomly sampled from

P½yk ¼ sk� / P½sk;xkjY1:k�1; ~Q; I�

¼
YL
i¼1

ðxki pki ðsk;Y1:k�1Þþ ð1� xki Þð1� pki ðsk;Y1:k�1ÞÞÞ	
Yp
m¼1

ðrsDtÞy
k
mð1� rsDtÞ1�ykm ;

ð21Þ

where

pki ðyk;Y1:k�1Þ ¼ 1�ð1� roi DtÞ
Yp
m¼1

1� ~qim

X1
k0¼0

�k0y
k�k0
m

" #
:

Note in the above equations, xk is given as a fixed value and not a random variable. Under this
sample-based approximation, the stochastic gradient descendent follows

D~qk
im /

2xki � 1

xki p
k
i ðyk;Y1:k�1Þ=ð1� pki ðyk;Y1:k�1ÞÞþ ð1� xki Þ

	
X1

k0¼0
�k0y

k�k0
m

1� ~qim

X1
k0¼0

�k0y
k�k0
m

: ð22Þ

For Fig 7C, we discretized the activity of hidden sources and input neurons with 5 ms bins,
and performed learning with a learning rate ηSGD = 0.001. Cross-correlation was evaluated
using the sample sequence Y. For the ideal case, we performed sequential sampling from the
true response probability Q.

If yk-k’μ = 1 and yk-k”μ = 0 for all other nearby k” ( 6¼k’), and if qiν = 0 for all ν ( 6¼μ), then LTP
at the connection qiμ caused by an output spike yk-k’μ = 1 for xi

k = 1 is written as

Dqk;k
0;LTP

im ¼ ð1� ½rXo � rSo~qim�Þð1� ~qim�k0 Þ
1� ð1� ½rXo � rSo~qim�Þð1� ~qim�k0 Þ

	 �k0

1� ~qim�k0
: ð23Þ

In the absence of the input spike (xi
k = 0), an output spike yk-k’μ = 1 causes LTD in total
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DqLTDim ¼ �
X1
k0¼0

�k0

1� ~qim�k0
. Therefore, this learning rule has weight dependence and temporal

dependence similar to those in STDP. In Fig 7D, we plotted Dqk;k
0 ;LTP

im and DqLTDim for different ~qim

(~qim= 0.1, 0.3, 0.5).

Blind source separation. In the blind source separation task, we created the original
source by calculating high-frequency and low-frequency components separately. First, the
spectrum of the signal q at a high frequency was defined as

aqhðf Þ ¼
X

i

X
k

aqh;ib
q
h;kffiffiffiffiffiffi

2p
p

shf

exp �ðf � kf qh;iÞ2=ð2shf
2Þ

h i
;

where fqh,i is a characteristic frequency of signal q, and kf
q
h,i are the harmonics of that frequen-

cy. The standard deviation was defined as sh;f ¼ kso
h;f for s

o
h;f ¼ 20Hz. Low-frequency compo-

nents were directly given as an exponential oscillation as below.

aql ðtÞ ¼
1

Zl

exp bl

X
i

aql;icosð2pf ql;iðt � dq
l;iÞÞ

" #
;

fql,i is a characteristic frequency, and δ
q
l,i is the delay. By combining these two components, the

amplitude of a mixed sound is given as

aðtÞ ¼
X
q

aql ðtÞ
X

i

aqhðfiÞcosð2pfiðt � dqf ÞÞ:

Summation over frequency f is performed using 400 representative values that correspond
to the tuned frequency of each input neuron:

fi ¼ exp
i
L
ðlogfmax � logfminÞ þ logfmin

� 	
:

In neural implementation, input neurons were stimulated with the response probability

qiðtÞ ¼ qo
X
q

aql ðtÞaqhðfiÞ where qo = 0.05.

In the simulated example, for high-frequency components, we defined fqh,I = {{523.3,784.0},
{587.4,880.0}, {650.0,830.6}, {698.5,932.4}}, aqh,I = {{0.6,0.4}, {0.3,0.7}, {0.5,0.5}, {0.9,0.3}}, bqh,k
= {{1.0,0.5,0.2,0.1}, {1.0,0.5,0.3,0.2}, {1.0,0.1,1.0,0.8}, {1.0,0.8,0.1,0.1}}, and σoh,f = 20 Hz. Each
column represents four different sources. Similarly for low-frequency components, we used fql,I
= {{0.4,5.0,10.0,40.0,88.0}, {0.6,6.0,8.0,42.0,86.0}, {0.2,4.0,7.5,44.0,84.0}, {0.3,6.0,7.0,46.0,82.0}},
aql,I = {{0.3,0.4,0.2,0.5,0.5}, {0.25,0.5,0.2,0.5,0.5}, {0.24,0.3,0.4,0.5,0.5}, {0.61,0.2,0.2,0.5,0.5}}, δql,I
= {{1.0,0.25,0.65,0.17,0.01}, {3.0,0.12,0.32,0.13,0.02}, {7.8,0.55,0.40,0.11,0.03},
{4.5,0.22,0.71,0.07,0.05}}, βl = 5.0, and Zl = 27.24. We chose fmin = 500 Hz, fmin = 4,500 Hz, and
δqf was randomly selected from 0 to 1/fmin. Fig 8A was generated by performing Fourier trans-
formations with 25 ms sliding bins at every 2.5 ms.

Details of the simulation. Simulations were calculated using the Runge-Kutta method,
with a 0.05 ms time step. Initial synaptic weights were randomly chosen with wQ

ij ¼ wQ
o ð1þ

sinit
W zÞ for Q = X, Y, Z and a random Gaussian variable ξ. Similarly, synaptic delays were decid-

ed as dQ
ij ¼ dQ

min þ ðdQ
min � dQ

maxÞx for a random variable ξ uniformly chosen from [0,1].
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Analytical consideration of synaptic weight dynamics
Correlation among input neurons. Because input neurons receive common inputs from

external sources, we define cross-correlation among input neurons as Cil(s)� hxi(t)xl(t-s)i-
hxi(t)ihxl(t)i, and cross-correlation among input neurons satisfies

CilðsÞ ¼ hŝ roi þ
Xp

m¼1

qim

ð1
0

�ðt0Þsmðt � t0Þdt0
" #

	 ŝ rol þ
Xp

m¼1

qlm

ð1
0

�ðt@Þsmðt � s� t@Þdt@
" #i� ðnXo Þ2

ffi nSo
Xp

m¼1

qimqlm

ð1
0

dt0
ð1
0

dt@�ðt0Þ�ðt@Þdðt0 � t@ � sÞ ¼ nSo
Xp

m¼1

qimqlm

ð1
maxð0;sÞ

dt0�ðt0Þ�ðt0 � sÞ:
ð24Þ

When �ðtÞ ¼ t2e�t=yt=2yt
3, Cil(s) becomes

CilðsÞ ¼ nSo
Xp

m¼1

qimqlm
1

16yt3
ðs2 þ 3ytjsj þ 3yt

2Þe�jsj=yt ¼ nSo
Xp

m¼1

qimqlmhðsÞ;

where hðsÞ � 1
16yt 3

ðs2 þ 3ytjsj þ 3yt
2Þe�jsj=yt :

Average synaptic weight velocity. The synaptic weight dynamics defined above can be re-
written as

dwX
ji

dt
¼ xiðt � dXa

ji Þ
ð1
0

FdðwX
ji ; sÞyjðt�s� dXd

ji Þdsþ yjðt � dXd
ji Þ
ð1
0

FpðwX
ji ; sÞxiðt � s�dXa

ji Þds ð25Þ

for FdðwX
ij ; sÞ ¼ fdðwX

ij Þe�s=t
d ,FpðwX

ij ; sÞ ¼ fpðwX
ij Þe�s=tp . By taking an average over a short period

of time and also using a stochastic Poisson process, synaptic weight change follows

dwX
ji

dt


 �
¼ xiðt � dXa

ji Þ
ð1
0

FdðwX
ji ; sÞyjðt � s� dXd

ji Þds

 �

þ yjðt � dXd
ji Þ
ð1
0

FpðwX
ji ; sÞxiðt � s� dXa

ji Þds

 �

¼ xiðt � dXa
ji Þ
ð0
�1

FdðwX
ji ;�s0Þyjðt þ s0 � dXd

ji Þds0

 �

þ yjðt � dXd
ji Þ
ð1
0

FpðwX
ji ; sÞxiðt � s� dXa

ji Þds

 �

¼
ð0
�1

FdðwX
ji ;�s0Þxiðt0 � s0 � dXa

ji Þyjðt0 � dXd
ji Þds0


 �
þ

ð1
0

FpðwX
ji ; sÞxiðt � s� dXa

ji Þyjðt � dXd
ji Þds


 �

ffi
ð1
�1

FðwX
ji ; sÞ xiðt � s� dXa

ji Þyjðt � dXd
ji Þ

D E
ds

where Fðw; sÞ � Fpðw; sÞ ifð s 
 0 Þ
Fdðw;�sÞ ifð s < 0 Þ :

(

Therefore, by calculating the cross-correlation between pre-spikes xi and post-spikes yj, syn-
aptic weight dynamics can be analytically estimated. Because the spike probability linearly de-
pends on the membrane potential in our model, cross-correlation follows

hxiðt � s� dXa
ji Þyjðt � dXd

ji Þi ffi hxiðt � s� dXa
ji ÞuE

j ðt � dXd
ji Þi

ffi
XL
l¼1

wX
jl

ð1
0

dr"XðrÞhxiðt � s� dXa
ji Þxlðt � dXd

ji � r � dX
ji Þi �

XN
k¼1

wZ
jk

ð1
0

dr"ZðrÞhxiðt � s� dXa
ji Þzkðt � dXd

ji � r � dZ
jkÞi:

Since we define cross-correlation among input neurons as

CilðsÞ � hxiðtÞxlðt � sÞi � hxiðtÞihxlðtÞi;
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the first term is written as

XL
l¼1

wX
jl

ð1
0

dr"XðrÞhxiðt � s� dXa
ji Þxlðt � dXd

ji � r � dX
ji Þi

ffi
XL
l¼1

wX
jl ½ðnXo Þ2 þ

ð1
0

dr"XðrÞCilðr � sþ 2dXdÞ�: ð26Þ

This result is consistent with that in previous studies [5,38,45]. The analysis can be extended
to the cross-correlation between an input neuron and a lateral inhibitory neuron as

hxiðt � s� dXa
ji Þzkðt � dXd

ji � r � dZ
jkÞi ffi hxiðt � s� dXa

ji ÞuI
kðt � dXd

ji � r � dZ
jkÞi

ffi
XM
m¼1

wY
km

ð1
0

dq"YðqÞhxiðt � s� dXa
ji Þymðt � dXd

ji � r � dZ
jk � q� dY

kmÞi

ffi
XM
m¼1

wY
km

XL
l¼1

wX
ml

ð1
0

dq"YðqÞ
ð1
0

dr0"Xðr0Þ

hxiðt � s� dXa
ji Þxlðt � dXd

ji � r � dZ
jk � q� dY

km � r0 � dX
mlÞi

�
XM
m¼1

wY
km

XN
n¼1

wZ
mn

ð1
0

dq"YðqÞ
ð1
0

dr0"Zðr0Þ

hxiðt � s� dXa
ji Þznðt � dXd

ji � r � dZ
jk � q� dY

km � r0 � dZ
mnÞi

ffi
XM
m¼1

wY
km

XL
l¼1

wX
ml½ðnXo Þ2 þ

ð1
0

dq"YðqÞ
ð1
0

dr0"Xðr0ÞCilðr þ qþ r0 � sþ 2dXd þ dZ þ dYÞ�

�
XM
m¼1

wY
km

XN
n¼1

wZ
mnnon

Z
n :

ð27Þ

Theoretically, expansion over a lateral connection should be performed infinite times to ob-
tain the exact solution, but at each expansion, the delay caused by synaptic delay dZ+dY and
EPSP/IPSP rise times is accumulated so that the effect on correlation rapidly becomes small, es-
pecially when the original input cross-correlation C(t) is narrow; however, even if C(t) is
broad, the effect for learning is bounded by the STDP time window. Therefore, higher order
terms practically influence weight dynamics only through firing rates, so that by applying the
approximation

ð1
0

dq"YðqÞ
ð1
0

dr0"Zðr0Þhxiðt � s� dXa
ji Þznðt � dXd

ji � r � dZ
jk � q� dY

km � r0 � dZ
mnÞi ffi nXo n

Z
n ;

the last term can be obtained. In general, νn
Z is not analytically calculable, but by considering
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the balanced condition, it can be estimated. Therefore, the second term is given as

XN
k¼1

wZ
jk

ð1
0

dr"ZðrÞhxiðt � s� dXa
ji Þzkðt � dXd

ji � r � dZ
jkÞi

ffi
XN
k¼1

wZ
jk

XM
m¼1

wY
km

XL
l¼1

wX
ml

ðnXo Þ2 þ
ð1
0

dr"ZðrÞ
ð1
0

dq"YðqÞ
ð1
0

dr0"Xðr0ÞCilðr þ qþ r0 � sþ 2dXd þ dZ þ dYÞ
� 	

�
XN
k¼1

wZ
jk

XM
m¼1

wY
km

XN
n¼1

wZ
mnn

X
o n

Z
n

Therefore, if we denote

GX1
il ðwX

ji Þ �
ð1
�1

dsFðwX
ji ; sÞ

ð1
0

dr"XðrÞCilðr � sþ 2dXdÞ

GX2
il ðwX

ji Þ �
ð1
�1

dsFðwX
ji ; sÞ

ð1
0

dr"ZðrÞ
ð1
0

dq"YðqÞ
ð1
0

dr0"Xðr0Þ

Cilðr þ qþ r0 � sþ 2dXd þ dZ þ dYÞ
�FðwX

ji Þ �
ð1
�1

FðwX
ji ; sÞds;

ð28Þ

average synaptic weight dynamics satisfy

hdw
X
ji

dt
i ffi

XL
l¼1

wX
jlG

X1
il ðwX

ji Þ �
XN
k¼1

wZ
jk

XM
m¼1

wY
km

XL
l¼1

wX
mlG

X2
il ðwX

ji Þ

þ �FðwX
ji Þ½
XL
l¼1

wX
jl ðnXo Þ2 �

XN
k¼1

wZ
jk

XM
m¼1

wY
km

XL
l¼1

wX
mlðnXo Þ2 þ

XN
k¼1

wZ
jk

XM
m¼1

wY
km

XN
n¼1

wX
mnn

X
o n

Z
n �:

ð29Þ

The first two terms are Hebbian terms that depend on correlation by ΓX1 and ΓX2, whereas the
remainders are homeostatic terms. In all terms, synaptic weight dependence is primarily caused
by wX

ji and not by other synapses.
By inserting the explicit representation of correlation into the equation above, ΓX1 and ΓX2

can be rewritten as

GX1
il ðwX

ji Þ ¼ nSoG
X
1 ðwX

ji Þ
Xp

m¼1

qimqlm;G
X2
il ðwX

ji Þ ¼ nSoG
X
2 ðwX

ji Þ
Xp

m¼1

qimqlm;

GX
1 ðwX

ji Þ �
ð1
�1

dsFðwX
ji ; sÞ

ð1
0

dr"XðrÞ
ð1
maxð0;r�sþ2dXdÞ

dt0�ðt0Þ�ðt0 � ðr � sþ 2dXdÞÞ;

GX
2 ðwX

ji Þ �
ð1
�1

dsFðwX
ji ; sÞ

ð1
0

dr"ZðrÞ
ð1
0

dq"YðqÞ
ð1
0

dr0"Xðr0Þð1
maxð0;t@Þ

dt0�ðt0Þ�ðt0 � ðr þ qþ r0 � sþ 2dXd þ dZ þ dYÞÞ

ð30Þ

where t@ = r+q+r0-s+2dxd+dz+dY. Note that G1
X and G2

X do not depend on any indexes of the
neurons, except for synaptic weight dependency, and so the two values are considered basic
constants that decide how correlation shapes learning.
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If we ignore the homeostatic term, then the synaptic weight dynamic is written in the matrix

form asWX

� � ðWXC
tÞ:GX

1 � ðWXWZWYC
tÞ:GX

2 , where the dot product is defined as (A.B)ij =
AijBij. Especially if we approximate G1

X and G2
X with g1

X � G1
X(wo

X) and g2
X � G2

X(wo
X) (or

if weight dependence is negligible as in additive-STDP),WX

� � WXðgX1 E � gX2 WZWYÞCt .
The correlation kernel χ1

X was derived from

GX
1 ðwX

ji Þ ¼
ð1
�1

dsFðwX
ji ; sÞ

ð1
0

dr"XðrÞ
ð1
maxð0;r�sþ2dXdÞ

dt0
ð1
�1

dt�ðt0Þ�ðt0 � ðr � sþ 2dXdÞÞ

dðt� ðr � sþ 2dXdÞÞ

¼
ð1
�1

dt
ð1
�tþ2dXd

dsFðwX
ji ; sÞ"Xðs� 2dXdÞ

ð1
maxð0;tÞ

dt0�ðt0Þ�ðt0 � tÞ

¼
ð1
�1

wX
1 ðt;wX

ji ÞhðtÞdt

ð31Þ

where wX
1 ðt;wÞ ¼

ð1
�tþ2dXd

dsFðw; sÞ"Xðtþ s� 2dXdÞ, and hðt; ytÞ �
ð1
maxðt;0Þ

dt0�ðt0Þ�ðt0 � tÞ.
The second correlation kernel χ2

X was calculated in a similar way.
Mean-field approximation of a two-source model. If the correlation structure C(s) is

simply organized, further analytical consideration is possible. In the two-source model shown
in Fig 2A, lateral connections are structured non-reciprocally, and EPSP/IPSP sizes are con-
stants. The synaptic weight matrices are written as

WY
km ¼ wY ðif bk=Nac¼bm=MacÞ

0 ðotherwiseÞ ;WZ
jk ¼

wZ ðif bj=Mac 6¼ bk=NacÞ

0 ðotherwiseÞ
: ð32Þ

((

Therefore, the original L × M differential equations can be reduced into 2 × 2 equations of
representative neurons as

dwX
mn

dt
ffi
XL=La
n0¼1

Law
X
mn0n

S
oG

XðwX
nn0 Þ
X
r

qnrqn0r � NawZMawY

XL=La
n0¼1

Law
X
�mn0n

S
oG

YðwX
nn0 Þ
X
r

qnrqn0r

þ �FðwX
mnÞ ðnXo Þ2

XL=La
n0¼1

Law
X
mn0 � ðnXo Þ2NawZMawY

XL=La
n0¼1

Law
X
�mn0 þ ðNawZÞ2MawYn

X
o n

Z
m

" #
:

ð33Þ

The firing rates of inhibitory neurons can be approximated as

nZm ffi 1

Na

X
k2OZ

m

uI
k ffi MawYn

Y
m ffi MawYððLawmA þ LawmB þ 2Law

X
o ÞnXo � Nawzn

Z
�mÞ: ð34Þ

Therefore, by solving the simultaneous equations for ν1
Z and ν2

Z,

nZ1 ¼ MawYn
X
o

1� ðMawYNawZÞ2
½ðLaw1A þ Law1B þ 2Law

X
o Þ � ðMawYNawZÞðLaw2A þ Law2B þ 2Law

X
o Þ�

nZ2 ¼ MawYn
X
o

1� ðMawYNawZÞ2
½ðLaw2A þ Law2B þ 2Law

X
o Þ � ðMawYNawZÞðLaw1A þ Law1B þ 2Law

X
o Þ�

This analytical approach is applicable only when the synaptic weight change is sufficiently
slow relative to the neural dynamics. Also, because we ignored the variance in the synaptic
weights, numerically the accuracy is limited.
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Analytic approach for STDP in lateral and inhibitory connections. Using a similar cal-
culation as above, synaptic weight development of the lateral connections is given as

WY

� � gY1 WYWXC
tWt

X � gY2 WYWXC
tWt

XW
t
YW

t
z � gY3 WYWZWYWXC

tWt
X ; ð35Þ

where

gY1 �
ð1
�1

dsFYðsÞ
ð
DX

r

ð
DY

u

ð
DX

r0hðuþ r0 � s� rÞ

gY2 �
ð1
�1

dsFYðsÞ
ð
DX

r

ð
DY

u

ð
DZ

q

ð
DY

u0

ð
DX

r0hðu0 þ r0 � s� q� u� r � dY � dZÞ

gY3 �
ð1
�1

dsFYðsÞ
ð
DX

r

ð
DY

u

ð
DZ

q

ð
DY

u0

ð
DX

r0hðuþ qþ u0 þ r0 þ dY þ dZ � s� rÞ;

where
ð
DX

r �
ð1
0

dr"XðrÞ. The meaning of these equations is made clear by summarizing the

correlation propagation in the diagrams (S2D i–iii Fig). In the diagram, blue wavy lines repre-
sent intrinsic correlation, and arrows are synaptic connections. To estimate how a blue correla-
tion influences STDP at a red arrow, we need to determine all the major trajectories in which
the correlation reaches pre- and postsynaptic neurons. In the linear Poisson framework, for a
given trajectory, the propagation of a correlation is calculated by simply using integrals as
above. From this diagram, we can safely assume that gY2 and g

Y
3 are negligibly smaller than

gY1, because trajectories (ii) and (iii) are secondary correlations and also contain synaptic de-
lays. In this approximation, we additionally assume that

C ¼ cs 0

0 cs

 !
;WX ¼

wX
s wX

w

wX
w wX

s

 !
:

Then,

d
dt

wY
11

wY
12

wY
21

wY
22

0
BBBBBBB@

1
CCCCCCCA

�

AL BL 0 0

BL AL 0 0

0 0 AL BL

0 0 BL AL

0
BBBBBBB@

1
CCCCCCCA

wY
11

wY
12

wY
21

wY
22

0
BBBBBBB@

1
CCCCCCCA

AL � cSg
Y
1 ððwX

s Þ2 þ ðwX
wÞ2Þ;BL � 2csg

Y
1 w

X
s w

X
w

Therefore, ðwY
11;w

Y
12;w

Y
21;w

Y
22Þ / ðþ1;�1;�1;þ1Þ is a eigenvector of the transition matrix,

and the eigenvalue is csg
Y
1 ðwX

s � wX
wÞ2. Because the eigenvector develops by

exp½csgY1 ðwX
s � wX

wÞ2t�, when gY1 is positive, the E-to-I connections are more likely to be struc-
tured in a way that the inhibitory neurons become feature selective. On the other hand, if that
value is negative, such structure may not be obtained. Note that (1, -1, -1, 1) is not the principal
eigenvector in this simple analysis, because the eigensystem of the matrix is {{AL+BL, AL+BL,
AL-BL, AL-BL}; {1, 1, 0, 0}, {0, 0, 1, 1}, {1, -1, 0, 0}, {0, 0, 1, -1}}.
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Similarly, for inhibitory connections

WZ

�
� gZ1WXCW

t
XW

t
Y � gZ2WZWYWXCW

t
XW

t
Y

gZ1 �
ð1
�1

FZðsÞ
ð
DX

r

ð
DY

u

ð
DX

r0hðr � s� u� r0 � dZ � dYÞ

gZ2 �
ð1
�1

FZðsÞ
ð
DZ

q

ð
DY

u

ð
DX

r

ð
DY

u0

ð
DX

r0hðr þ uþ q� s� u0 � r0Þ:

ð36Þ

We approximated with only two terms because the third term is negligible (S2D iv–vi Fig).

If we assumeWY ¼
wY

d wY
r

wY
r wY

d

 !
; and g2

Z = 0, then the synaptic weight change follows

DwZ
11 � DwZ

12 ¼ DwZ
22 � DwZ

21 ¼ cSg
Z
1 ðwX

s � wX
s Þ2ðwY

d � wY
r Þ. This means that if g1

Z is positive,
reciprocal connections are enhanced (or inhibitory connections to the neurons coding a similar
feature are enhanced), whereas for negative g1

I, inhibitory connections develop non-reciprocal-
ly (i.e., lateral connections function as mutual inhibition between output excitatory neuron
groups).

We have restricted our consideration to Hebbian STDP, but the properties of STDP on E-to-
I and I-to-E connections are still debatable [58,59]. Although it is difficult to study all combina-
tions of STDPs, we still provide analytical insights by investigating the behaviors of g1

Y and g1
Z.

S2E Fig shows the behaviors of four different types of STDP. This indicates that the anti-correla-
tion detector type of E-to-I STDP [53] tends to cause non-feature-selective lateral connections.
In addition, under the anti-coincidence detector type of I-to-E STDP [55], mutual inhibition
structures would be preferred; however, the implication of our analytical method is limited, and
further study will be necessary to fully understand the functions of the various types of STDP.

Evaluation of the performance
Cross-correlation. We evaluated the performance by measuring the mean cross-correla-

tion between the external sources and population activity of the output neurons. For time bin

Δt = 10 ms, the activity of source μ is defined as skm ¼ 1
Dt

ððkþ1ÞDt

kDt

smðtÞdt, and, similarly, the popu-

lation activity of the output neuron group ν is yknðtDÞ ¼
X
j2OY

n

1

Dt

ððkþ1ÞDt

kDt

yjðt þ tDÞdt, where Oν
Y

is a set of output neurons coding a source ν. For these, cross-correlation is defined as

cmnðtDÞ �
1

ss
ms

y
n

XTc=Dt
k¼1

ðskm � �smÞðykn � �ynÞ;

where �sm � 1
Tc

ðToþTc

To

smðtÞdt, �yn � 1
Tc

ðToþTc

To

ynðtÞdt,ss
m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXTc=Dt
k¼1

ðskm � �smÞ2
vuut , and

sy
n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXTc=Dt
k¼1

ðykn � �ynÞ2
vuut . We used Tc = 10 ms for the analysis. Correspondence between

sources and output groups are arbitrary, and so the learned correlation should be given

as cðtDÞ � max
c

1
p

Xp

m¼1

cmcðmÞðtDÞ for all the p! number of combinations with functionC

between sources and output groups. For example, when
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p = 2,cðtDÞ ¼ max 1
2
½cA1ðtDÞ þ cB2ðtDÞ�; 12 ½cA2ðtDÞ þ cB1ðtDÞ�

� 

. Although, in reality, supervised

or reinforcement learning is necessary to perform this readout, for simplicity we did not imple-
ment readout neurons explicitly. In Fig 2F, we plotted max

n
cBnðtDÞ for the minor source B.

For the models with randomly connected lateral inhibition and (e+i) STDP, we defined out-
put neuron j as belonging to Oμ

Y if

1

jOX
m j
X
i2OX

m

wX
jm > ath max

n6¼m

1

jOX
n j
X
i2OX

n

wX
jn

8<
:

9=
;

for αth = 1.5, and the cross-correlation was calculated based on Oμ
Y.

Mutual information. Based on the discretized hidden external source/output neuron ac-
tivity sμ

k, yν
k, we defined the binary variables

ŝkm � f 1 ðif skm>�s
k
m þ ss

mÞ
0 ðotherwiseÞ

; ŷk
n �

1 ðif ykn>�yk
n þ sy

nÞ

0 ðotherwiseÞ

8<
:

Based on these variables, the states at time k can be defined as ŝk � ð̂sk1; :::; ŝkpÞ,ŷk � ðŷk
1; :::; ŷ

k
pÞ.

Therefore, the probability that the external state takes one particular state is

psðŝ ¼ ŝ 0Þ � 1
Tc=Dt

XTc=Dt
k¼1

½̂sk ¼ ŝ0�tof , where [X]tof takes 1 if X is true, otherwise it takes 0, for the

statement X. Therefore, mutual information can be defined as

MI �
X
ŝ 0

X
ŷ 0

psyðŝ ¼ ŝ0; ŷ ¼ ŷ 0Þ log2
psyðŝ ¼ ŝ 0; ŷ ¼ ŷ 0Þ
psð̂s ¼ ŝ 0Þpyðŷ ¼ ŷ 0Þ

 !
:

Supporting Information
S1 Fig. Simulations with the leaky integrate-and-fire model. (A) Synaptic weight develop-
ments at the feedforward connection. (B) Cross-correlation and mutual information calculated
for various delays. Both values were calculated by averaging five independent simulation re-
sults. (C) Development of two values for the simulation shown in (A). (D) PSTH of the mem-
brane potential calculated for gray areas in (A). (E) Peristimulus time histogram (PSTH) of the
firing probability for the same simulation.
(EPS)

S2 Fig. Spike-timing-dependent plasticity (STDP) at lateral connections shapes network
structure. (A, B) Synaptic weight development when the number of external inputs is three
(A) and four (B). Thick lines represent averages over all synapses, and thin lines represent indi-
vidual synaptic weights. Colors represent detected sources for output neurons (left) and inhibi-
tory neurons (middle right). (C) Relationship between the number of inhibitory neurons and
the lateral structure. (D) Propagation of structure. i to iii correspond to lateral excitatory con-
nections, and iv to vi correspond to feedback inhibitory connections. (E) Analytic results for
various types of STDP.
(EPS)

S3 Fig. The effects of noise in the model with exponential correlation kernel. (A) Cross-
correlations among input neurons responding to the same source calculated from simulated
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data for three different correlation timescale parameters θt. Note that in Fig 3, we used θt = 0.5,
2.0, 4.0 ms, while here we used θt = 1.0, 3.0, 5.0ms. (B, C) The correlation kernels ge1

X, ge2
X (B)

and their ratio ge1
X/ge2

X (C) are shown for the kernels ge1
X and ge2

X that were calculated from
Eq (30) with �eðtÞ ¼ e�t=yt=yt. (D,E) The effects of random noise (D) and crosstalk noise (E) at
various correlation timescales.
(EPS)

S1 Auditory File. Demonstration of blind source separation. 0’00”–0’43”: Independent audi-
tory signals (10 s each); 0’44”–0’54”: Mixed auditory signal; 0’55”–1’38”: Decoded
independent signals.
(MP3)
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