
RESEARCH ARTICLE

Correlations and Functional Connections in a
Population of Grid Cells
Benjamin Dunn1☯, Maria Mørreaunet1☯, Yasser Roudi1,2*

1 Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway,
2Nordita, KTH and Stockholm University, Stockholm, Sweden

☯ These authors contributed equally to this work.
* yasser.roudi@ntnu.no

Abstract
We study the statistics of spike trains of simultaneously recorded grid cells in freely behav-

ing rats. We evaluate pairwise correlations between these cells and, using a maximum en-

tropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even

when we account for the covariations in firing rates due to overlapping fields, both the pair-

wise correlations and functional connections decay as a function of the shortest distance

between the vertices of the spatial firing pattern of pairs of grid cells, i.e. their phase differ-

ence. They take positive values between cells with nearby phases and approach zero or

negative values for larger phase differences. We find similar results also when, in addition

to correlations due to overlapping fields, we account for correlations due to theta oscillations

and head directional inputs. The inferred connections between neurons in the same module

and those from different modules can be both negative and positive, with a mean close to

zero, but with the strongest inferred connections found between cells of the same module.

Taken together, our results suggest that grid cells in the same module do indeed form a

local network of interconnected neurons with a functional connectivity that supports a role

for attractor dynamics in the generation of grid pattern.

Author Summary

The way mammals navigate in space is hypothesized to depend on neural structures in the
temporal lobe including the hippocampus and medial entorhinal cortex (MEC). In partic-
ular, grid cells, neurons whose firing is mostly restricted to regions of space that form a
hexagonal pattern, are believed to be an important part of this circuitry. Despite several
years of work, not much is known about the correlated activity of neurons in the MEC and
how grid cells are functionally coupled to each other. Here, we have taken a statistical ap-
proach to these questions and studied pairwise correlations and functional connections be-
tween simultaneously recorded grid cells. Through careful statistical analysis, we
demonstrate that grid cells with nearby firing vertices tend to have positive effects on elic-
iting responses in each other, while those further apart tend to have inhibitory or no ef-
fects. Cells that respond similarly to manipulations of the environment are considered to
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belong to the same module. Cells belonging to a module have stronger interactions with
each other than those in different modules. These results are consistent with and shed
light on the population-based mechanisms suggested by models for the generation of grid
cell firing.

Introduction
Grid cells are neurons in the medial entorhinal cortex (MEC), one synapse away from the hip-
pocampus, that show a strikingly regular spatial selectivity [1]. Each grid cell has several firing
fields that spread out in a hexagonal pattern, tessellating the environment in which the animal
navigates. The locations of these firing fields are unaffected by the velocity of the animal, and
they persist in the absence of external landmarks, suggesting that they make up an intrinsic
metric for space [1–3]. These cells were first discovered in rodents [1, 2], but have recently also
been reported in bats [4], monkeys [5], and humans [6], supporting the possibility that grid
cells form a part of the neural circuitry underlying the brain’s internal representation of space
in all mammals.

Two main properties of grid cells are their spacing (the shortest distance between two firing
fields) and their orientation relative to an axis of the environment. Anatomically close grid
cells tend to have the same orientation and spacing, with spacing increasing along the dorso-
ventral axis of MEC [1, 3]. This increase is stepwise rather than continuous, such that grid cells
can be clustered with respect to spacing. These clusters also share other properties, such as ori-
entation, and are therefore referred to as modules [7]. A third property of grid cells is their spa-
tial phase, which is defined as the location of the grid pattern relative to a reference point in the
environment. For cells with similar grid pattern, i.e. cells from the same module, one can also
measure the difference in spatial phase by calculating the shortest distance between firing fields
of two cells. No apparent relationship between the anatomical distance and the difference in
spatial phase of pairs of neurons has been observed [1].

Since their discovery, grid cells have been under intense investigation, with studies ranging
from experimental work to theoretical models, in hopes of revealing the underlying network
mechanisms behind their coding; see [8, 9] for recent reviews. In particular, population-wise
response properties [1, 7, 10] support the idea that the formation of grid cells is predominantly
a network phenomenon, and that recurrent connectivity in MEC plays an important role. The
main network model of grid cells, the continuous attractor model, would suggest that the hex-
agonal firing of grid cells emerges due to specific connectivity patterns between the neurons. In
several of these models neurons are considered to be arranged in a two-dimensional network
according to their phase. Cell pairs beyond a certain phase distance inhibit each other, while
those closer to each other are coupled by excitation [11–13], or less inhibition [13, 14], as ideal-
ized by a ‘Mexican hat’ type of connectivity.

Although connectivity plays important roles in network models of grid cells and in shaping
neuronal correlations, little has been done to study the correlation structure and functional
connectivity in the MEC in vivo, as well as how they change with properties of grid cells, e.g.
phase separation and theta modulations. In other words, statistical analyses of multi-neuronal
spike trains of the type routinely performed on data recorded from other parts of the nervous
system [15–17], is still lacking. Such analyses can shed light on how grid cells encode informa-
tion at the population level and how they interact with each other, providing substance for un-
derstanding the network mechanisms behind the formation of grid cells.
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In this paper we aimed at studying the statistical properties of grid cells’multi-neuronal
spike trains by analyzing recordings from two rats while they foraged freely in two-dimensional
environments. We therefore first measured the correlations between these cells, beyond what is
expected from space dependent rate variations, using the same approach as [18]: we averaged
the Pearson correlation coefficients between firing rates of pairs of neurons during multiple
passes through spatial bins covering the environment. With spatial bins small enough the effect
of possible correlations due to rate covariations between two cells is removed. These correla-
tions are referred to as noise correlations. We found that these correlations decay as the phase
difference between cell pairs increases. This is consistent with previous analyses of pairs of grid
cells recorded on a linear track [18]. Second, we fit a statistical model that assumes a pairwise
maximum entropy distribution over the spikes generated in a time bin, given the spike pattern
in the previous time bin and external covariates also referred to in the text as external fields.
This model is known in the statistical physics community as the kinetic Ising model and be-
longs to the class of generalized linear models (GLMs) [19] with short time memory kernels.
We considered an extensive list of external covariates known to modulate the firing of grid
cells to explain the covariations in firing rates of neurons, ranging from spatially and temporal-
ly constant input, to spatial fields formed as the sum of Gaussian basis functions, as well as
fields for speed, theta oscillations, and head and running directions. We evaluated the explana-
tory power of these models by comparing their likelihood values and found that speed, head di-
rection and running direction had little power in explaining the data, while theta oscillation
phase and pairwise couplings had more explanatory power. Although there were variations in
terms of the relative strength of the couplings depending on the assumptions about the external
fields, we consistently found that the inferred connections maintained a pattern that supports
the attractor network hypothesis: cells with nearby phases tend to excite each other while those
further apart inhibit each other. We also found that the strongest connections were among
cells within the same module, that the connections were both negative and positive, and that
none of our conclusions were sensitive to data limitations.

Results
We analyzed two data sets with simultaneously recorded grid cells, one with a total of 65 cells,
of which 27 were grid cells (referred to as data set 1), the other with 8 grid cells (data set 2). As
mentioned, grid cells are known to cluster according to the spacing and orientation of their
spatial fields, with cells with similar spacing making distinct functional modules that react in
unison to external manipulations of the environment as quasi-independent populations [7]. In
data set 1, all but 5 of the grid cells were easily identified into three distinct modules (see Mate-
rial and Methods). In data set 2, all 8 cells belonged to the same module.

Noise correlations
To calculate correlations between pairs of grid cells, beyond what is expected from spatial rate
covariations, we binned the spike data into 1 ms intervals and smoothed the firing rates with a
20 ms Gaussian filter. The trajectory of the animal was then binned spatially by dividing the en-
vironment into a number of N × N square boxes, using different values of N = 2, 3, 4, 5, 10, 15,
20, 40, 75. Noise correlations, Cij, between cells i and j were then determined as the mean of the
Pearson correlation coefficients, r, calculated over the trajectories through each spatial bin (see
Material and Methods). As shown in Fig. 1, in the case of dividing the environment into 20 ×
20 spatial bins, we found noise correlation values close to zero, or slightly negative, for cells
with non-overlapping spatial fields. On the other hand, cell pairs close in phase distance
showed positive noise correlation values that increased for cells closer to each other in phase;
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see Fig. 1A and B. The slope (b̂) and intercept (â) of a linear regression line (not shown) are

b̂ ¼ � 0:22 and â ¼ 0:09 for data set 1, and b̂ ¼ � 0:25 and â ¼ 0:11 for data set 2, all sig-
nificantly different from 0 (t-test, P< 0.001).

Since data set 1 included neurons from 3 separate modules, we also studied the dependence
of the noise correlations on the phase difference between cells for each three modules separate-
ly. Except for the module with the largest field spacing (Fig. 1E), where the phase dependence
was weak (intercept and slope of linear regression not significantly different from 0 (t-test,
P> 0.7)), the modules showed a significant pattern similar to that of all modules pooled to-
gether shown in Fig. 1A (intercept and slope of linear regression significantly different from 0
(t-test, P< 0.001)). Similar results were found when other spatial bin sizes were used. This ex-
tends the results of [18] to two dimensions and also shows the variations in the phase depen-
dence of the correlations to the module size.

Good empirical estimates of the noise correlations, as defined above, require that the rat
makes enough passes through each spatial bin during the recording session. This means that
the bins cannot be too small, otherwise there would be very few visits to most of the bins, and
some of the bins may never be visited at all. On the other hand, if the bins were too big, the var-
iations in rate from one pass through the bin to another would be be too large and, therefore,
Cij would not exclude the rate covariations. We, therefore, looked at how consistent our esti-
mates of the correlations were as a function of the spatial bin size by calculating the Pearson

Figure 1. Noise correlations versus phase distance. (A) shows all three modules of data set 1 combined, while (B) shows the one module of data set 2.
For the smaller modules of data set 1 (C, D) the noise correlations are positive for small phase differences while they approach zero for larger phase
separations. No significant pattern can be observed for the cells from the largest module of data set 1 (E). The distance in phase was normalized by the
average spacing of the spatial fields in each module. In each plot, the circles represent the inferred values using the full data length. The noise correlations
were calculated by binning the environment into 7.5 × 7.5 cm spatial bins. The black lines show the average values of the correlations calculated from 20
random partitions (see Material and Methods) of the data. The error bars are the standard deviation of the mean values over these 20 random partitions. Note
that the normalized maximal phase distance occurs at the minimum overlap between the two commonly oriented hexagonal patterns and is 0.5/cos(30)� 0.6.

doi:10.1371/journal.pcbi.1004052.g001
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correlation coefficient between the correlations measured, using a random half of the visits to
each spatial bin with those measured from the other half (see Material and Methods). The
most stable estimate was with 20 bins per side of the box (or 7.5 cm), which is what we have
used in Fig. 1. In this best case scenario, for data set 1, the Pearson correlation coefficient is
0.56 for the full data, with both halves of the data in all 20 sets of random halves still demon-
strating the phase dependent pattern shown in Fig. 1. Cells with nearby grid patterns had stron-
ger positive correlations, while those further apart in phase demonstrated a slightly negative, or
no correlations (the slope and intercept of the linear regression lines were all significantly dif-
ferent from 0 (t-test, P< 0.03)). This was also the case for the 20 random halves of data set 2.

The pairwise correlation analysis done here is a good first step, however, it suffers from a
number of shortcomings. First of all, it is really a pairwise measure, which excludes the interac-
tions with other neurons, and thus a perceived correlation between two cells might really be ex-
plained by the presence of a third neuron or external covariates. Second, although we take into
account spatial covariations in rate, there is no systematic way of evaluating how much other
covariates, such as theta oscillations or head direction, contribute to the correlations between
cells. Given the fact that grid cells are known to covary with these, it is important to evaluate
their influence when analyzing correlations between grid cells. While pairwise correlation anal-
ysis suffers from these problems, they can be addressed, to a large extent, using statistical mod-
els of the GLM type. This is what we will do in the rest of the paper.

Functional couplings and the effect of external covariates
As a statistical model, we considered the simplest maximum entropy model to include both
asymmetric couplings and time varying external input: the kinetic Ising model. The activity of
the cells was binned in 10 ms bins, and a binary variable Si(t) was associated to each neuron in
each bin, which would be equal to +1/−1 denoting the presence/absence of spikes emitted by
neuron i within time bin t. Letting the state of each neuron at time t depend on the state of the
population in the previous time step t − 1 and some covariates, independent of the state of the
system, the maximum entropy distribution over the state Si(t) of neuron i at time t is [20]

PðSiðtÞjfSðt � 1ÞgÞ ¼ exp½SiðtÞHiðt � 1Þ�
2 cosh ½Hiðt � 1Þ� ; ð1Þ

Hiðt � 1Þ ¼ hiðt � 1Þ þ
X

j
JijSjðt � 1Þ ð2Þ

where Jij would be identified as the functional coupling from neuron j to neuron i, and hi(t) as
the time varying covariate which in statistical physics terminology is called an external field. As
mentioned in the introduction, Eq. 1 defines a GLM, where in each time bin, mostly only one
or zero spikes per bin are observed and the interaction kernel extends one time step in the past.
With binary states and only one time step kernels, this model represents the simplest possible
model capable of capturing functional connectivity from neural data, which is convenient
given the finite time in which the neural recordings were taken. This model should not be con-
fused with the maximum entropy equilibrium models (equilibrium Ising model [21, 22]),
which assume symmetric couplings and are not related to the GLMs.

Given Eq. 1, we asked what values of the parameters hi(t) and Jij are the most likely to gener-
ate the observed data. Both exact and fast approximate algorithms for solving the inverse kinet-
ic Ising model have been developed [23] similar to other GLMmodels [15, 16, 19]. The exact
solution is found by maximizing the log-likelihood function

L½S;J;h� ¼
X

it
½Siðt þ 1ÞHiðtÞ � log 2 coshHiðtÞ� ð3Þ
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with respect to hi(t) and Jij. The term ‘exact’ is used here in the sense that if data is generated by
a kinetic Ising model, this learning algorithm would recover the parameters exactly in the limit
of infinite data. The log-likelihood is the logarithm of the probability of observing the data at
hand given that it was generated from the model, and thus measures how well the model ex-
plains the statistics in the observed data. In our analysis we have used the natural logarithm.

An important issue in dealing with a model of this type is choosing the external field. In the
absence of couplings, the external field, hi(t), can explain the variations in the firing rate as the
rat navigates in space. Ideally, the external fields can be inferred by binning the environment
into small spatial bins, assuming that the external field in each bin takes a constant value for
each neuron. If the rat passes through each bin many times, the external field in each bin can
be reliably estimated. However, during a recording period, and as described above, the require-
ment of passing through small spatial bins many times is rarely satisfied.

Alternatively, the spatial input could arise as the sum of two-dimensional Gaussian basis
functions with the basis set spanning the environment. By inferring the parameters of a linear
combination of Gaussian basis functions (see Material and Methods for details), an accurate re-
presentation of the spatial field can be found, even with a reduced amount of data, as shown in
the following.

Focusing on data set 1, which had the most cells, we first inferred couplings, assuming that
each neuron receives an external field which is constant across time and space, hi(t) = hi. Next,
we studied how the inferred couplings were affected by increasing the spatial resolution of the
external fields, hi(t), to account for the spatial variation in firing rate by dividing the environ-
ment into spatial bins, considering the cases of bins of size 37.5 cm and then bins of size
7.5 cm, assigning one external field per box to each cell. We also considered external fields in
the form of a sum of Gaussian basis functions. Fig. 2 shows the resulting couplings, plotted
against couplings found in the model that assumed spatially and temporally constant external
input, hi, for each neuron. As can be seen, increasing the resolution of the external fields made
the couplings weaker but not inconsistent with the constant field case, even in the case of
Gaussian fields, where the spatial rate maps were well captured by the model, as shown in

Figure 2. The couplings of the kinetic Ising model.We considered different forms of spatial external input to the neurons, boxes of length 37.5 cm (A), 7.5
cm (B) and fields formed as a weighted sum of Gaussian basis functions (C) for data set 1. For each case, we compared the resulting couplings to that of a
model with spatially and temporally constant fields. The effect of input with spatial variation is to slightly weaken the couplings. Pearson correlation coefficient
(PCC) was calculated for all the couplings together (All), as well as for just the self-couplings (SC) shown by red stars, and the non-self-couplings (NonSC)
shown by blue circles. The corresponding values are A: PCC, All = 0.91, PCC, SC = 0.98, PCC, NonSC = 0.86. B: PCC, All = 0.91, PCC, SC = 0.94, PCC,
NonSC = 0.90. C: PCC, All = 0.92, PCC, SC = 0.94, PCC, NonSC = 0.91.

doi:10.1371/journal.pcbi.1004052.g002
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Fig. 3. In this case, there was a significant weakening of the couplings (the estimated variance
of the Gaussian field model couplings (S2Gauss) was significantly smaller than that of the constant
field model (S2constant), (F-test for equal variances, P< 0.001)). In each of the models, the total ex-
ternal fields were negative and often strong, as one would expect for data sets with low firing
rates (mean firing rate 2.4 Hz).

Interestingly, no matter which of the various external fields we used, when neurons i and j
both belong to one of the two smaller modules of data set 1, or the one module of data set 2, the
inferred couplings, Jij, showed a consistent dependence on the spatial phase difference, with
nearby phases showing positive Jij while those further away more negative values. This is
shown in Fig. 4 for both data sets for the case of the Gaussian fields. The slopes and intercepts
of linear regression lines were all significantly different from zero, both for the full data and the
20 sets of random halves (t-test, P< 0.02) for all figures except for Fig. 4E, where the slope and
intercept of linear regression were not significantly different from 0 (t-test, P> 0.7). We re-
mind that with the Gaussian fields, the correlations between two cells due to overlapping fields
are explained away.

Since many cells in our data had some theta phase and head directional preferences, we also
considered a model in which each cell was coupled to the head direction of the animal and the
LFP theta oscillation through coupling constants that were inferred from the data; see Material
and Methods. In general, there were only small differences between the couplings when theta

Figure 3. Grid cell spatial firing rate map. The smoothed rate maps from the original spike data (panel A) and synthetic spike data (panel B). Three
example grid cells from the three different modules identified in data set 1 are shown here: left column, module 1 (T4C4 is cell identity—tetrode 4 cell 4),
middle column, module 2, and right column, module 3. The synthetic data (panel B) was generated using Eq. 1 (with Hi(t) determined by the inferred values
for the Gaussian basis functions plus a constant field) and the trajectory of the rat. The rate maps in both panel A and B were generated by first binning the
spike data into 3 cm spatial bins, for which the mean rate was calculated and then smoothed using a Gaussian filter (standard deviation = 2 bins).

doi:10.1371/journal.pcbi.1004052.g003
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and head direction were added. This can be seen in Fig. 5A, which shows the couplings in the
model with Gaussian fields with and without theta included. In this case, we observed a small
but selective change, depending on the phase preference of the neurons. The cells could be clus-
tered into two groups according to their theta phase preference (see Material and Methods):
one with connections between cells of similar theta phase preference, and the other with con-
nections between cells with opposite preference.

Couplings between cells with similar theta phase preference were on average positive (aver-
age (m) significantly different from 0 (t-test, P< 0.001)), whereas couplings between cells of op-
posite theta preference were on average negative (m< 0, P< 0.001). As shown in Fig. 5B,
including the time-varying phase of theta as an external covariate resulted in shifting the cou-
pling strength towards less positive values for pairs of cells that prefer the same phase of theta
(mno theta > mtheta, P< 0.001), whereas the opposite was true for couplings between cells that
showed preference to opposite phase of theta (mno theta < mtheta, P< 0.001).

One would expect, based on the experimental indications of modules operating indepen-
dently, that grid cells of the same module are more likely to participate in the same functional
network than neurons from different modules. We found that the couplings within and be-
tween modules in data set 1 both had means close to zero (within modules (mean�std):
−0.01�0.13, between modules: −0.01�0.09). However, the within module couplings had a
greater variance (S2within > S2between, P< 0.001)), i.e. there was a higher proportion of couplings
with high absolute values within modules than between, as can be seen in Fig. 6. This result
was found to be stable with respect to data limitations, as shown in the next section.

Figure 4. Couplings versus phase distance. Inferred couplings are positive for small phase differences while they become negative for larger phase
separations, both for data set 1 (A) and data set 2 (B). When we break the population to the three contributing modules of data set 1, this pattern persists for
the smaller modules (C,D) while for the largest module (E) the excitatory part is absent. In each plot, the circles represent the inferred values using the full
data length. The black lines show the average values of the couplings calculated from 20 random partitions of the data.

doi:10.1371/journal.pcbi.1004052.g004
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Figure 5. Effect of theta on the couplings. (A) Adding theta to the Gaussian model has little effect on the couplings (data set 1) with PCC, All = 0.95, PCC,
SC = 0.97, PCC, NonSC = 0.94. (B) Mean of couplings from the two theta clusters in the Gaussian model with and without theta included. Black: couplings
between cells with similar theta phase preference. Blue: couplings between cells with opposite theta phase preference. Error bars show the standard error of
the mean. Without theta taken into account, the connections between cells that fire in the opposite theta phase are on average negative, while they are
positive for those that tend to fire in the same theta phase. This difference is suppressed when theta is taken into account.

doi:10.1371/journal.pcbi.1004052.g005

Figure 6. Couplings between and within modules. Both couplings between and within modules have a mean value very close to zero. The probability of
the absolute value of the couplings for the model with constant (A) and full (B) fields are shown here. For the between module couplings (blue bars) there is a
bigger peak at zero compared to the within module couplings (green bars), and the green histogram has bigger mass at larger values.

doi:10.1371/journal.pcbi.1004052.g006
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Stability of the couplings
In this section we consider a number of factors that could have influenced our estimations of
the couplings, and show that our results were stable with respect to these factors.

It is known that some grid cells show phase precession. This could be an additional source
of correlation, so we tried to address how phase precession can influence the couplings. We
first investigated whether or not any of the cells in our data phase precess, focusing on data set
1. In general, quantifying phase precession in two-dimensions is a difficult task due to the
changes in the animals movement direction within the field. To classify cells as phase precess-
ing or not, we thus used a novel approach described in [24], correlating the distance to the field
peak projected onto the current running direction with the phase of theta at the time of spikes.
Our analysis revealed that 13 of the 27 grid cells showed significant phase precession (5 of 8 in
module 1, 6 of 7 in module 2, and 2 of 7 in module 3). We then excluded the couplings between
phase precessing cells from the analysis for the two smaller modules and found that this did
not remove the trend reported in Fig. 4 between the spatial phase difference and the inferred
couplings. As can be seen in Fig. 7A, there was still a significant negative relationship between
coupling value and spatial phase distance for cell pairs in which at least one of the cells do not

show significant phase precession (both the slope (b̂ ¼ � 0:60) and intercept (â ¼ 0:21) of
the linear regression line are significantly different from 0 (t-test, P< 0.001)).

It has been suggested that correlations and thus inferred couplings from multi-electrode re-
cordings can be biased due to problems with spike sorting [25, 26]. Since the main part of our
conclusion is on the phase dependence of the correlations and functional connections and not
their actual value, and since the phase of grid cells appears to be not anatomically ordered, it is
unlikely that a phase dependent bias would be introduced to the correlations due to mistakenly
assigning spikes to wrong cells. In addition to this, the cells in the two data sets analyzed here
were recorded using hyperdrives that consist of 14 independently movable tetrodes [7]. It has
been suggested that a tetrode is unlikely to record signals from cells farther than 65mm away
[27]. As the distance between tetrodes on the hyperdrive is approximately 250�50 mm, it was
very unlikely that the same cell was recorded on two tetrodes, and in that way confound our re-
sults across tetrodes. We therefore examined the couplings versus spatial phase for cell pairs
from different tetrodes, and found that this led to a qualitatively similar result, as shown in

Fig. 7B (both the slope (b̂ ¼ � 0:59) and intercept (â ¼ 0:20) of the linear regression were
significantly different from 0 (t-test, P< 0.001)).

In order to investigate the stability of the inferred couplings and the various covariates to
data limitations we inferred the parameters of the models using only half of the data, and com-
pared them with the ones from the other half. For this, we defined the spike data as being made
up of consecutive time pairs, (S(t), S(t + 1)) and created partitions by randomly selecting 50%
of the pairs. In this way, we generated 20 random sets, and for each set inferred the couplings
using constant fields without taking theta and head direction into account, and Gaussian fields
with theta and head directional input included (the full model). In general, the inferred cou-
plings from these random halves were correlated with each other. As shown in Fig. 7C and D,
the within module couplings were more stable than the between-module ones, with an average
Pearson correlation coefficient of 0.88 versus 0.73 for the constant field model, and 0.70 versus
0.51 for the full model. We noticed that the self-couplings are the ones that are most stable
from one half to the other, showing a Pearson correlation coefficient of 0.94 between the cou-
plings inferred from the two halves for the full model. We also found that the mean absolute
values of the within and between module couplings maintained their relationship, with stron-
ger couplings between cells within module than those between modules, for all 20 random
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partitions of the data (S2within > S2between, P< 0.005 for all 20 random partitions, in both constant
field model and Gaussian field model).

The analyses reported here were produced using the data from two recordings of grid cells,
the biggest of them consisting of 27 grid cells. This was the biggest data set we had access to,
but still represents only a small fraction of the true local cell population. One might wonder
how much the connections between these cells would be influenced if we had access to record-
ings from more cells. As described in Material and Methods, data set 1 included neurons which
were not classified as grid cells. We found that using this entire data set (65 cells) did not affect
the couplings between grid cells (see Fig. 7E).

Statistical importance of the couplings and covariates
In order to evaluate the strength of the statistical effect of the couplings and the external covari-
ates on explaining the correlations in spike trains, we calculated the log-likelihood of half of the
data using parameters inferred from the other half for various models for both data sets. The
results are shown in Fig. 8A-D. To correct for the number of parameters, the total log-likeli-
hood was penalized according to the Akaike correction, that is by subtracting the number of in-
ferred parameters (covariates and couplings) used in each model (see Material and Methods)

Figure 7. Stability of the inferred couplings. Stability of the phase-dependent trend in inferred couplings filtered for cell pairs where at least one cell is
phase precessing (A), as well as for couplings filtered for cells on the same tetrode (B). The phase dependence of the coupling can be seen to be similar to
when all pairs were included. Couplings inferred using one random half of the data plotted against those inferred from the other half, assuming constant
external field (C) or Gaussian spatial fields (D). The within module couplings (green triangles) consistently showmore stability across partitions of the data
than the between module couplings (blue circles), but not as much as the self-couplings (red triangles). A: PCC, within modules = 0.88, PCC, between
modules = 0.73, PCC, SC = 0.99. B: PCC, within modules = 0.73, PPC, between modules = 0.51, PCC, SC = 0.94. (E) The effect on between grid cells-
couplings from including non-grid cells in the inference for the biggest data set (data set 1, 65 cells) is small.

doi:10.1371/journal.pcbi.1004052.g007
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[28]. The negative log-likelihoods of the models without the couplings are also shown. In a like-
lihood ratio test, all covariates gave a significant increase (P< 0.001) compared to the constant
field model. This was also the case where we included the couplings in each of the models com-
pared to the same model without couplings. In general, adding head direction as a covariate
had little effect on the likelihood. The effect was even weaker when including speed as a covari-
ate, or using running direction instead of head direction (see methods), with the penalty from
the Akaike correction larger than the increase in likelihood from the inclusion of the parame-
ters. For the case of constant fields, adding couplings and then theta had the most significant
effect. It is interesting to note that, when comparing the constant field model to the model with

Figure 8. Statistical importance of the parameters. The negative log-likelihood per cell per time bin for the constant field model (A: data set 1, C: data set
2) and Gaussian field model (B: data set 1, D: data set 2) with different covariates included. Smaller values correspond to better explanatory power. The blue
segment of the bar shows the negative log-likelihood. Adding parameters to a model will yield a log-likelihood-value greater than or equal to the model with
fewer parameters. To avoid overfitting by including parameters, we performed an Akaike correction on the log-likelihood (see Material and Methods). The
value of the Akaike-correction is shown for each covariate on top of the negative log-likelihood (blue) for each model: head direction (red), theta preference
(yellow), and couplings (green). In (C, D), grey is the Akaike-correction due to the Gaussian spatial fields. These two plots show that adding the couplings
always increases the explanatory power of the model, e.g. for the model with theta including couplings reduces the negative log-likelihood more than the
penalty from the Akaike-correction for the added number of parameters.

doi:10.1371/journal.pcbi.1004052.g008
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spatial fields, the impact on the likelihood from including the couplings is reduced, as would be
expected by explaining away the spatial component of the correlations. Adding theta resulted
in a consistent increase in the log-likelihood yielding 0.0025 for the model with constant fields
and 0.0026 for spatial.

Discussion
What is known about the connectivity in the grid cell network is primarily based on anatomical
in vitro studies. Recent studies show that stellate cells in layer II are connected to each other
primarily through inhibitory interactions [14, 29], and that the inhibitory drive varies dorso-
ventrally as the size of the grid spacing changes [30]. As opposed to the connections between
layer II stellate cells, within-layer recurrent excitation has been found between the main type of
principal cells, namely pyramidal cells, in both layer III and V [31]. Although the picture
drawn by these studies emphasizes the role of recurrent interactions in developing the proper-
ties of grid cells, it does not show how interactions between grid cells quantitatively depend on
properties such as theta rhythmicity and spatial phase separation, properties that play a major
role in computational models of grid cells. A previous work on in vivo recordings that studied
phase dependence of the interactions between cells in MEC focused on pairwise correlation
analysis by using recordings from one dimensional tracks [18], showing that cells with nearby
phases have stronger correlations than those far apart in phase. Another recent in vivo study
used strongly peaked cross-correlations as a signal for the presence of connections and has con-
cluded that grid cells with a wide range of phases project to a given inhibitory neuron [32]. To
analyse the multi-neuronal recordings in grid cells we took a different approach from previous
studies: that of statistical inference. We used a kinetic Ising model and studied how functional
connections depend on phase difference between grid cells, their level of theta modulation,
speed modulation and head directionality, and the statistical role that these connections play in
shaping multi-neuronal activity.

The kinetic Ising model that we used here for the inference is a model with minimal as-
sumptions: (1) it is the maximum entropy distribution over the spikes of neurons at time t,
given the spikes at time t − 1 [20], and (2) it is pairwise (meaning it only takes into account the
first-order non-trivial interactions). Being a generalized linear model, it is closely related to
other GLMs used for analyzing population recordings from other parts of the brain [15–17],
and it also employs the maximum entropy approach used by many in analyzing neural [21, 22]
or other biological data [33]. Our analysis showed that the correlations and the functional con-
nections between grid cells demonstrate a spatial phase dependence, even when spatial varia-
tions in rate (as well as other possible sources of correlations, such as theta oscillations and
head direction) are taken into account. Both correlations and functional connections were pos-
itive for small phase differences. Functional connections became negative, while the correla-
tions approached zero, for larger spatial distances for cells in the one module in data set 2, and
in the two smaller modules in data set 1. This connectivity provides support for a role played
by attractor dynamics as suggested by several modelling efforts [11–14]. The trend in the phase
dependence was, however, less clear in the third module in data set 1: the common inhibitory
portion was represented, but we did not find any functional excitation between cells close in
phase, possibly because of the lack of recorded cells with similar phase in this module. We also
found that the absolute value of the couplings was bigger for pairs of cells that belonged to the
same module than those belonging to different modules. This supports the idea that neurons in
the same module form a more coherent population of neurons, bound together in a stronger
manner than those in different modules.
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In attractor models of grid cells, the phase dependent connectivity pattern allows the net-
work to maintain a continuum of stable states such that, if the neurons of a single module
could be aligned according to their phases, the activity on that neural sheet would itself show a
regular pattern of activity. This local and relatively rigid relationship between within-module
grid cells has been surprisingly well supported. First identified in [1], grid cells were found to
locally share both orientation and spacing that were later observed to remap and deform coher-
ently [7, 10, 34]. It has also been shown that the characteristics of the grid pattern of one cell
were more stable relative to other grid cells than with respect to local features of the environ-
ment [10]. This was even more pronounced in novel environments where the individual fields
were still changing significantly relative to the environment while remaining relatively stable
between cells [10], further suggesting that the coding of the grid cells is more coherent within
the grid cell population than it is with the actual space it is encoding. Even more convincing, a
recent study looking at a large population of cells taken from single animals in the same envi-
ronment showed that the cells clustered into a finite number of modules [7] suggesting there
exists not only the large number of cells necessary for an attractor map but that there might be
a finite number of these networks working together to better provide a metric of space. Our
work complements these studies in that we show that there exists the functional connectivity of
the type necessary to establish the patterned network activity that has been proposed to explain
the above experimental observations.

As opposed to the attractor model [11–13], other grid cell model frameworks, the oscillatory
interference [35] and the adaption model [36], were originally conceived as single cell models
that suggest that the periodic firing comes from a combination of convergent input and cellular
mechanisms within an individual neuron. As such, the role they have prescribed for the lateral
connectivity has been mainly to align the grid patterns of the cells, without requiring any phase
dependence in the couplings per se. However, it has recently been noted [9, 37] that in the ad-
aptation model, interactions between grid cells can also be learned, resulting in a developmen-
tal model for the phase dependent connectivity which could later sustain a continuous
attractor dynamics. In addition to aligning the grids, this connectivity will allow the adaptation
model to code for novel environments much more rapidly while maintaining the stabilizing
benefit of having convergent spatial input.

In our statistical inference, we considered various external covariates that comprise what is
known about the single cell coding of these cells, including spatial, speed, theta oscillations,
head direction and running direction inputs. Adding these additional covariates to the models
with constant field or Gaussian fields had little effect on the connectivity, but there was a signif-
icant weakening of the couplings when we compared the couplings of the Gaussian model to
those of the model with constant fields. This is not surprising, as a component of the correla-
tions in the model with constant fields was likely due to overlapping fields which was better ex-
plained by the spatial component of the Gaussian model. One benefit of using a statistical
model is the quantification of the relative contribution of the individual covariates to the over-
all likelihood of the data under the model, with the spatial component having the strongest im-
pact followed by functional connectivity and theta preference. Speed, head direction and
running direction, as covariates, had a small impact in all cases that we considered.

In all the statistical models, ranging from constant external field to Gaussian with and with-
out theta and head direction, we found that the model without couplings was worse at explain-
ing the statistics of the data than the same model with couplings, even when the Akaike
corrections were taken into account. Further support for the significance of the couplings come
from the stability of the connectivity when inferred from separate halves of the data.

Since the self-couplings appeared to be the most stable when one random partition of the
data was compared to the other, we wondered how the rest of the couplings would react if we
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did not include the self-couplings. With the refractory period in mind, positive self-couplings
might seem counter-intuitive. However, the refractory period lasts for only a few milliseconds,
and we use 10 ms time bins. In addition, grid cells are primarily active only when the animal is
in the cell’s spatial fields, and silent otherwise, i.e. the state of a grid cell in a time bin is likely to
be equal to the state in the previous time bin, which a statistical model could interpret as a posi-
tive self-coupling. Removing self-couplings, however, had little effect on the couplings between
cells (Pearson correlation coefficient> 0.98 for the constant model and the full model, for both
data sets).

Stellate cells of MEC layer II, the main grid cell candidates, are known to functionally inhibit
each other. In our analysis, the inferred connections were both inhibitory and excitatory. There
are a few points to note regarding this apparent contradiction. First, considering the recording
locations of the tetrodes in data set 1 (see Supplementary figure 4 (rat 14147) in [7]), and that a
number of cells in this data set show head direction preferences, a property rarely observed in
the layer II population [3], many of these cells are most likely recorded from deeper layers
where, as mentioned, both intra- and interlayer excitatory connections between principal cells
have been found. For data set 2, on the other hand, it seems probable that a bigger fraction of
the cells is from layer II (see Supplementary figure 14 (rat 13855) in [7]). It is, however, not
possible to confirm the exact location or principal cell type for the cells analyzed here. Second,
the relationship between the inferred functional connections and the underlying anatomical
connectivity is a nontrivial one which may involve other non-recorded neurons. It is also possi-
ble that the correlations driving the functional connectivity come from a common input that
was not accounted for here. This input, however, should be non-spatial, non-directional and
independent of theta phase, but still depend on the spatial phase difference between pairs of
neurons and whether or not they belong to the same module. It would be interesting to see
what such a signal could look like. The existence of such an input would, of course, leave the
question open as to how the local network is connected, while opening a new possibility that
the grid cell modules play a role in encoding currently unidentified features that are neither
spatial or directional. Since it is possible in computer simulations to identify the presence or ab-
sence of a synapse based on the inference of functional connections [38, 39], it would be very
interesting to see how the inferred functional couplings and correlations look like for a data set
exclusively from layer II cells for which the actual functional connectivity between stellate cells
is known. In addition, considering the fact that modules span layers [7], our results also make a
case for taking a closer look at the between layer connectivity and how the different cell types
and connectivity patterns might work together to develop the grid cell code.

With Gaussian fields, the model with only theta has a slightly higher likelihood than the one
with only couplings, although the couplings still exhibit the phase dependence shown in Fig. 4.
The relative improvement gained by pairwise connections in explaining the data is known to
scale with the size of the recorded population [21, 40, 41], while other sources of higher order
correlations will also scale up. It would therefore be interesting to see how the relative contribu-
tion of the various factors, in particular that of theta oscillations, will scale compared to that of
the pairwise couplings. Future large-scale recordings of grid cells should allow us to perform
such analyses.

Material and Methods

Data
Two recordings of the activity of cells in the MEC area of two Long Evans male rats (from [7])
were analyzed in this paper. One recording, referred to as data set 1, consisted of a total of 65
cells (rat 14147 in [7]), where 27 were classified as grid cells (mean firing rate: 2.4 Hz). These
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27 cells distributed over 7 tetrodes, and 22 of them could be assigned to one of three modules
(see [7] for methods). The number of cells in each module, along with mean spacing and orien-
tation is given in Table 1. The other recording, data set 2, consisted of 8 grid cells (mean firing
rate: 2.8 Hz) distributed over 3 tetrodes (rat 13855 in [7]). All 8 cells belonged to the same
module. Mean spacing and orientation for this module is listed in Table 1. The movement of
the rats is shown in Fig. 9.

The spikes were binned into 10 ms time bins, but using both 20 ms and 5 ms time bins led
to similar results. Using the binned data, a spike matrix of −1’s and 1’s was constructed, where
a ‘−1’ indicated that the cell did not fire in time bin t, and a ‘1’ indicated that the cell emitted
one or more spikes in time bin t. More than one spike rarely happened (both data sets: average
over cells = 0.1 (�0.1)% of the time bins).

Noise correlations
Noise correlations were defined as

Cij ¼ hrð�ra
i ; �r

a
j Þia

where �ra
i is a 1 × k vector consisting of the average firing rate of neuron i in each of the k trajec-

tories through spatial bin a, and r(�, �) is the Pearson correlation coefficient (PCC), defined as:

rð�ra
i ; �r

a
j Þ ¼ E½ð�ra

i � h�ra
i ikÞð�ra

j � h�ra
j ikÞ�

s½rai � � s½raj �

with both the expectation (E) and the standard deviations (s) over the k trajectories.
Random partitions: Each spatial bin has a given number of visits. To split the data into two

random partitions, for all visited bins, a randomly chosen half of the visits to each bin was as-
signed to one partition, the other half to the other partition.

Theta clustering
The cells could be divided in two clusters based on preferred phase of theta. The theta phase
preference was defined as the peak in a circular kernel smoothed density estimate of the distri-
bution of theta value at spike time. The number of clusters were defined as the number of local
peaks in a kernel smoothed density estimate of the distribution of theta phase preference peaks
for all cells. A circular k-means clustering algorithm were performed to assign cells to clusters.
The clusters are shown in Fig. 10.

Model definition and inference
We used the kinetic Ising model to infer the functional network connectivity, i.e. we assumed
that the observed spike train comes from the probability distribution in Eq. 1. We constructed
different versions of the model by varying the form of the external field in several ways as de-
scribed in the introduction and in more details below.

Table 1. Mean spacing and orientation for the 3+1 modules.

Module Mean spacing�std Mean orientation�std

Data set 1 1 (8 cells) 46.4�1.7cm 31.5�1.9°

2 (7 cells) 54.9�2.4cm 27.6�2.7°

3 (7 cells) 93.2�2.6cm 35.0�2.4°

Data set 2 1 (8 cells) 31.1�1.3cm 14.7�1.6°

doi:10.1371/journal.pcbi.1004052.t001
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To allow the external field of the kinetic Ising model to account for the spatial variations in
the firing of the grid cells, we started, for data set 1, by dividing the environment globally into
K square boxes. We defined three models with increasing spatial resolution, with K = 4 × 4
(37.5 cm boxes) in the first model, and K = 20 × 20 (7.5 cm boxes) in the second. For each K,
we defined external fields αik for each cell i and box k. The field resulting from this spatial dis-
cretization is then hS

i ðtÞ ¼ Sk aikIkðtÞ, where Ik(t) is a function indicating the presence (1) or
absence (0) of the animal in box k at time t.

We further increased the resolution of the spatial fields using Gaussian basis functions cen-
tered on an evenly spacedM ×M square lattice covering the recording environment. The

Figure 9. Trajectory and speed. In panel A, the trajectories of the rats are shown. Figures in Panel B show the frequencies of different speeds during the
recordings for the two data sets.

doi:10.1371/journal.pcbi.1004052.g009
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spatial field for cell i at time t is then

hS
i ðtÞ ¼

X
jk
aijk exp ½�ððxðtÞ � xjkÞ2 þ ðyðtÞ � yjkÞ2Þ=r2� þ hi ð4Þ

where (xjk,yjk) and r are the vertices of the regular lattice and the widths of the basis functions,
respectively. To determine the optimal values ofM and r (M = 15 and r = 8.5 cm), we maxi-
mized the likelihood for a range of values ofM and r and chose the values of the parameters
that gave the highest Akaike-adjusted likelihood value. To include the external theta phase
preference, we computed the fast-Fourier transform of the local field potential (LFP) and set
the theta rhythm to the maximum component between 4–12 Hz. From this, we constructed a
theta input vector, where each element was the angular average 2 (−p, p] of the theta phase in
that time bin. The partial field for cell i at time t due to local field potential theta preference is
then

hLFP
i ðtÞ ¼

X
k
aik exp ½�dðYðtÞ;YkÞ2=ðp=6Þ2� þ hi ð5Þ

where d(Y(t),Yk) is the minimum angular distance betweenY(t), the theta phase in time bin t,
andYk, the k’th component of a set of 10 equally spaced angular phases. The number of angles
and width of Gaussian (p/6) was selected by maximizing the Akaike-adjusted likelihood of the
model in the same way parameter values forM and r in the model with spatial fields were cho-
sen, as described above.

The head and running direction components was also accounted for using sums of Gaussian
basis functions

hHD
i ðtÞ ¼ ∑kαik exp½−dðφðtÞ;φkÞ2=ðπ=6Þ2� þ hi ð6Þ

Figure 10. Theta clusters. Preferred phase of theta of the 27 cells in data set 1 plotted onto the unit circle.
The cells were clustered into two groups (red and blue) (see Material and Methods). Asterisks mark cluster
centers.

doi:10.1371/journal.pcbi.1004052.g010
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where φ(t) is the head direction 2 (−p, p] at time t, calculated from the projection of two LEDs
onto the horizontal plane, and φk is the angular position of the kth basis function. The number
of basis functions (10) and width of Gaussian (p/6) were selected by maximizing the Akaike-
adjusted likelihood of the model, the same way it was done for parameter choice in the spatial
and theta model. Speed was also incorporated into the model with a simple time-varying field,
αi s(t), where s(t) is the average speed in the 100ms window around each time bin.

In all of the models, the parameters, Jij, hi and α’s, were found by maximizing the likelihood
function given in (3) for the data under the different models by gradient ascent. When compar-
ing the models, we first Akaike-corrected the log-likelihood. The Akaike information criterion
(AIC) is a measure to compensate for overfitting by models with more parameters, where the
preferred model is that with the minimum AIC value, defined as

AIC ¼ � 2lnðL½DjyML�Þ þ 2k ð7Þ
whereD is the observed data, and L[DjyML] is the likelihood at the maximum likelihood (ML)
estimates of the parameters y (yML), and k is the number of parameters [28]. Equivalent to the
method described above, we corrected the total log-likelihood as lnðLAkaikeÞ ¼ � AIC

2
.
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