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Abstract: This year we celebrate
the 150th anniversary of the law of
mass action. This law is often
assumed to have been ‘‘there’’
forever, but it has its own history,
background, and a definite starting
point. The law has had an impact
on chemistry, biochemistry, bio-
mathematics, and systems biology
that is difficult to overestimate. It is
easily recognized that it is the
direct basis for computational en-
zyme kinetics, ecological systems
models, and models for the spread
of diseases. The article reviews the
explicit and implicit role of the law
of mass action in systems biology
and reveals how the original, more
general formulation of the law
emerged one hundred years later
ab initio as a very general, canon-
ical representation of biological
processes.

Introduction

Some things not only seem timeless,

they also seem to have been with mankind

forever. Apple pies, sandals, and drums

come to mind. In the field of computa-

tional chemistry and biochemistry, the

same attribute appears to apply to the

law of mass action. This law describes how

a chemical reaction takes place under ideal

conditions. Namely, if a substance A reacts

with substance B to form substance C,

then the production of C follows the

function:

Production of C~k:A:B, ð1Þ

where A, B, and C are concentrations that

typically change over time until the

reaction comes to an end, and k is a rate

constant describing the speed of the

reaction. This formulation of a fundamen-

tal process seems so natural and intuitive

today that only historians seem to remem-

ber its beginnings, and hardly anyone cites

its originators. Nonetheless, the perception

of the mass action law’s eternal existence is

just that, a perception.

It is 150 years this year that the seminal

work of two Norwegians, Cato Maximilian

Guldberg and Peter Waage, was first

published. A few years earlier, fate had

brought them together; they worked

together and ultimately even became

brothers-in-law. Guldberg (1836–1902)

was a mathematician, to whom Norway’s

crown prince had just awarded a gold

medal for solving a challenge problem

related to the manner in which circles

touch. Waage (1833–1900) was a chemist,

who had also received the crown prince’s

gold medal, for an essay on the theory of

radicals in acids containing oxygen. Guld-

berg at the time held a teaching appoint-

ment at the Norwegian Royal Military

University, and Waage had just been

named Professor of Chemistry at Oslo

University, which at the time was called

Christiana University [1]. The two started

to collaborate in 1862 and documented

the law of mass action in a series of three

articles [2–4]. The first of these was

published in Norwegian in 1864 (for an

English translation see [5]), and the second

in French in 1867. Primarily due to the

choice of these languages, both articles

remained essentially unknown until Jaco-

bus Henricus van’t Hoff in 1877 devel-

oped similar ideas [6], and Guldberg and

Waage published their third paper in 1879

in German, the language of chemistry at

the time.

Of course, Guldberg and Waage did not

operate in a vacuum. Chemists had been

thinking about the affinity between mole-

cules for quite some time. In a seminal

treatise of 1775 [7], the Swedish geochem-

ist Torbern Olof Bergman (1735–1784)

postulated that if substance A had a

stronger attraction for substance B than

for substance C, then B would displace C

from its complex with A, so that AC+
BRAB+C. This simple idea allowed Berg-

man to establish a table in which numer-

ous reactions were ranked by the strengths

of their affinities. Bergman’s work had a

strong impact on the manner in which

affinity was pondered at the end of the

18th century. Importantly, affinity was

considered a genuine feature of every

substance, and chemical reversibility was

not permitted, because it violated the

perceived order of affinities, as document-

ed in Bergman’s tables [8]. In truth, some

reversible reactions had been observed,

but they did not fit the prevalent thinking

of the time and were therefore deemed

anomalous and due to peculiar conditions.

Dissatisfied with the concept of affinity

and its flaws, the French chemist Claude

Louis Comte Berthollet (1748–1822) de-

veloped, between 1801 and 1803, an

opposing theory that permitted reversibil-

ity [9–11]. According to his new theory, all

substances had an affinity toward each

other, but its degree depended on the

properties of each substance, such as its

solubility. Moreover, Berthollet never con-

sidered a displacement reaction complete:

if A had an affinity for B and for C, and B

and C were in excess, one would always

find a distribution of AB, AC, B, and C.

This distribution was explained with a

balance between opposing forces, whose

strengths depended on the relative affini-

ties as well as the quantitative proportions

of the substances [3]. Berthollet’s theory

also had some problems [12,13], and it

was conceptual rather than formalized, let

alone mathematical.

The French organic chemist and early

thermodynamicist Henri Victor Regnault
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(1810–1878) discussed another problem

with the current concept of affinity by

demonstrating with careful experiments

that steam oxidizes metals at certain

temperatures, but that these oxides are

reduced by steam at other temperatures

[14]. He further showed that both reac-

tions could happen simultaneously. These

experiments provided proof that the

difference between two forces alone was

not sufficient for explaining a chemical

reaction, and that the amounts of sub-

stances, as well as other factors, had to be

determinants of chemical reactions. Quite

a different approach to understanding

chemical reactions was chosen by the

proponents of ‘‘Wärmetheorie’’ (‘‘heat

theory’’), which one may consider a

precursor of thermodynamics [3,15]. Ac-

cording to this way of thinking, every

molecule, A, had a specific heat, f(A). The

theory said that two substances A and B

could only form a product if f(A)+f(B).

f(AB) [3].

Guldberg and Waage doubted the gen-

erality of this theory, because experience

had shown that the experimental conditions

determined whether a reaction could take

place at all and whether it generated or

consumed heat. At the same time, they

disagreed with Berthollet’s theory, recogniz-

ing that the amounts relative to each other

and to the reaction volume determined the

progression of a reaction. Formalizing these

insights, Guldberg and Waage focused on

the chemical equilibrium as well as the rate

of the reaction.

Guldberg and Waage were particularly

intrigued by a new experimental approach

to studying ester reactions, which occurred

at much slower rates than other standard

reactions of the time. This new approach

had just been reported during 1862–1863

by Berthelot and Saint-Gilles [16,17] and

helped them demonstrate that at any point

in time the amount of ester formed was

proportional to both the alcohol and acid

concentrations. The experiments also

showed that the reaction remained incom-

plete, and that both substrates and both

products were always available. Berthelot

and Saint-Gilles formulated the forward

process mathematically, but never consid-

ered the reverse reaction between ester

and water [8]. In an unrelated study,

which in retrospect indicates that the time

was ripe for new, formal ideas and

concepts about affinity, Ludwig Wilhelmy

derived a differential mass action equation

for the inversion of cane sugar [18,19],

although Guldberg and Waage were

apparently not aware of this study.

Intrigued by the new experimental

options developed by Berthelot and

Saint-Gilles, Guldberg and Waage per-

formed 300 experiments that investigated

reversible reactions [3]. They motivated

this effort as follows: ‘‘The theories that so

far have been proffered in chemistry with

regard to the action of chemical forces are

deemed unsatisfactory by all chemists.

This is true for electrochemical as well as

thermochemical theories; indeed, it seems

doubtful whether it will ever be possible to

discover the laws with which chemical

forces act, based on the generation of

electricity and heat that accompany chem-

ical processes. We have therefore attempt-

ed to find a more direct method for

determining the mode of action of these

forces, and we believe to have found, with

our quantitative investigation of the mu-

tual interactions of different substances, a

way that will most safely and naturally

reach the goal’’ (translated from [1,2]).

The key to Guldberg and Waage’s

theory was thus the balance between two

forces that are simultaneously in effect

during a chemical reaction, one that joins

and one that disassembles. In fact, they

adamantly declared it imperative to ac-

count for both forces simultaneously, if a

realistic quantitative description was to be

found. Their strategy was therefore to

characterize these forces mathematically,

and then to formulate a general law that

would encapsulate their balance, but also

account for modulation of these forces, for

instance, by temperature and solubility.

Quasi as a special case, the two forces

could be equally strong, and if so, the

system had reached a steady state, which

was always the same if the conditions were

the same.

Thus, in their 1867 and 1879 papers

[3,4], the force of a reaction between two

substances with M and N molecules,

respectively, and occurring in a volume,

V, was formulated as

Force~k:
M

V

� �
: N

V

� �
ð2Þ

Considering concentrations instead of

numbers of molecules, a generic reaction

with two substrates, p and q, and two

products, p9 and q9, was therefore formu-

lated as

pzq~p0zq0 ð3Þ

According to Equation 2, the forces in this

reversible reaction are k p q and k9 p9 q9,

respectively. Rewriting the rate parame-

ters as k9 = a k, the steady state in this

system is reached if the forces are

balanced, that is, if

k:p:q~k0:p0:q0 or a~
p:q

p0:q0
: ð4Þ

Guldberg and Waage called this state a

‘‘mobile steady state,’’ because it balances

two dynamic forces that simultaneously

occur in opposite directions and eventually

equilibrate in this steady state. To formal-

ize this dynamics, Guldberg and Waage

assumed as the starting point an arbitrary

state and argued that a certain amount of

material, x, had to be converted during the

approach of the mobile steady state. Thus,

for every molecule of type p undergoing

the reaction, one molecule of type q was

lost and, at the same time, one molecule of

type p9 and one molecule of type q9 were

gained. Accounting for the fact that

reactions occurred simultaneously in both

directions, they formulated the dynamics

as

v~
dx

dt
~

p{xð Þ q{xð Þ
a p0zxð Þ q0zxð Þ ð5Þ

[2,3]. The forces became equal at the

steady state, where v = 0. Guldberg and

Waage noted explicitly [3] that if one

could measure p, q, p9, and q9, then one

could determine the ratio between the

affinity coefficients, a= k9/k, and that,

conversely, knowledge of a allowed pre-

dictions regarding the reaction. They

subsequently expanded the same ideas

for reactions requiring, for instance, two

molecules of substance M and one mole-

cule of N, and argued that the rate

expression naturally emerges as k M2 N.

The mass action law was much later

derived by others from first principles of

equilibrium thermodynamics, balanced

potentials, statistical mechanics, equilibria

in multicomponent systems, and mean

field approximations [20,21]. As an exam-

ple, Kittel and Kroemer [22], and Ku-

driavtsev et al. [23], demonstrated how the

mass action law can be derived from

chemical potentials or statistically inde-

pendent, interacting molecules in ideal

gases under constant pressure and tem-

perature. Other authors discussed the

deterministic mass action concepts in the

context of stochastic processes [24,25].

These newer derivations do not diminish

the value and enormous applicability of

Guldberg and Waage’s conjecture. On the

contrary, they highlight how fundamental,

as well as chemically and physically

meaningful, the law of mass action is.

In addition to various derivations of the

mass action law, different generalizations

were proposed over the years. In particu-

lar, several authors discussed time-depen-
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dent rate constants or suggested real-

valued kinetic orders, especially for species

in reactions that are constrained to one or

two dimensions or occur under conditions

of molecular crowding, where the best

process representation appears to be

fractal kinetics [26–29].

Impact of the Mass Action Law
on Computational Systems
Biology

Guldberg and Waage’s intuition and

mathematical formulation may have been

all but forgotten by many, but the impact

of the mass action law on the fields of

chemistry, biochemistry, biology, pathway

analysis, and systems biology can hardly

be overstated. To appreciate this impact, it

is useful to study how mathematical

models are designed in modern-day sys-

tems biology.

Computational systems biology uses

mathematical and computational methods

in an attempt to understand how biology

works, with a secondary goal of manipu-

lating and optimizing biomedical systems,

guided by mathematics. Efforts are also

increasing to improve clinical applications

by biomedical modelling. The key to these

investigations is a valid mathematical

model. While novices often believe that

the mathematical analysis of such a model

is the most complicated part of biological

systems analysis, the truly more difficult

aspect is the choice and design of the

model. After all, biological systems are

complicated, and nature has not provided

us with guidelines telling us how to

translate a biological phenomenon into

the optimal, or at least an appropriate,

computable structure. One might assert

that biological processes must obey the

laws of physics, which would dictate the

best formulation, and while this assertion

is certainly true, many biological processes

are convoluted systems of numerous

elementary steps. Thus, a full mechanistic

description is beyond the capacity of

today’s science, in terms of mathematical

details, parameter identification, and com-

putational power, as well as our cognitive

capacity.

Consider, for example, the expression of

a gene in response to a chemical stimulus,

such as a hormone. The hormone reaches

a target cell and binds to the external

portion of a cellular receptor, which

penetrates the cell membrane. The bind-

ing event typically causes a conformational

change of the internal portion of the

receptor protein, which in turn causes a

number of molecular events that ultimate-

ly trigger a signaling cascade. This cascade

consists of several layers, in which specific

proteins are phosphorylated. This phos-

phorylation may actually cross over onto

other signaling cascades, but the main goal

is an amplified, denoised signal that, for

instance, may lead to the translocation of a

transcription factor from the cytosol into

the nucleus, where it binds to a specific

region of DNA, which ultimately leads to a

change in gene expression. A molecular

biologist will cringe at the simplifications

in this description of events, but it seems

quite evident that even this abridged

model would be extremely difficult to

translate into elemental physical processes.

More generically, a modeler must ask

whether ‘‘true’’ mathematical representa-

tions even exist and, if not, what to do

about it. To address this substantial

challenge, systems biology either assumes

particular mathematical formulations to

be valid or resorts to approximations. In

fact, even the former strategy is not all that

different from the latter, because it must

ultimately employ approximations. As it

turns out, the approximations used in

systems biology typically lead to the law

of mass action. A few representative

examples will suffice to demonstrate the

pervasiveness of this formulation.

The most prevalent model in biochem-

istry is the Michaelis-Menten rate law

(MMRL) [30]

vp~
VmaxS

KMzS
, ð6Þ

which describes a single-substrate, en-

zyme-catalyzed reaction that may be

diagrammed as shown in Fig. 1. The

format of MMRL in Equation 6 is the

result of a useful approximation of a

system of three differential equations,

namely,

_SS~{k1
:S:Ezk{1

:(ES)

( _EES)~k1
:S:E{(k{1zk2):(ES) ð7Þ

_PP~k2
:(ES):

In this direct mathematical formulation of

the diagram in Fig. 1, all terms follow the

mass action format developed by Guld-

berg and Waage [3]. Even if inhibitors are

included in the process, the same model

design strategies hold, and one either

obtains a formulation corresponding to

the approximation in Equation 6 or a set

of differential equations that again exclu-

sively contain processes in mass action

format [31].

A slightly more complicated example is

a reversible bi-substrate reaction of the

type

AzB'PzQ:

On the surface, one might use two mass

action laws, but if an enzyme is involved,

the elemental reaction scheme becomes

unwieldy. According to Schultz [32], an

appropriate model for the rate, v, of the

reaction is

v~

num:1

coef :AB

� �
Að Þ Bð Þ{ num:1

coef :AB
|

num:2

num:1

� �
Pð Þ Qð Þ

const

coef :A
|

coef :A

coef :AB

� �
z

coef :A

coef :AB

� �
Að Þz coef :B

coef :AB

� �
Bð Þ

z
coef :AB

coef :AB

� �
Að Þ Bð Þz

coef :P

coef :AP
|

coef :AP

coef :A
|

coef :A

coef :AB

� �
Pð Þ

z
coef :Q

const
|

const

coef :A
|

coef :A

coef :AB

� �
Qð Þ

z
coef :AP

coef :A
|

coef :A

coef :AB

� �
Að Þ Pð Þ

z
coef :BQ

coef :B
|

coef :B

coef :AB

� �
Bð Þ Qð Þ

z
coef :QP

coef :Q
|

coef :Q

const
|

const

coef :A
|

coef :A

coef :AB

� �
Pð Þ Qð Þ

z
coef :ABP

coef :AB

� �
Að Þ Bð Þ Pð Þ

z
coef :BPQ

coef :BQ
|

coef :BQ

coef :B
|

coef :B

coef :AB

� �
Bð Þ Pð Þ Qð Þ,

ð8Þ

where the quantities num, coef, and

constant are parameters that govern the

individual reaction steps. While compli-

cated in detail, the format is that of the

mass action law.

Outside biochemistry, mathematical

modeling has been used successfully in

ecology for a long time. Here, the default

for describing the dynamics of two inter-

acting species is a product of the two

population sizes and a rate constant. The

most prevalent systemic model of this type

is the Lotka-Volterra system [33,34],

which describes the population dynamics

of n species i with Pi individuals, inhab-

iting the same space. The generic formu-

lation of such a model is

_PPi ai
:Piz

Xn

j~1

bij
:Pi
:Pj ð9Þ

It is immediately evident again that the

rate of change in the prevalence of a

species is a linear combination of a species-

intrinsic term and of pairwise products.

(8)
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Specifically, the intrinsic growth or decay

process of each variable Pi is captured as a

univariate mass action function, and the

interactions between each pair of popula-

tions Pi and Pj follow the typical mass

action law for two substrates. The struc-

ture of Lotka-Volterra models looks de-

ceivingly simple and restrictive, but these

models are capable of describing arbitrari-

ly complex dynamics, including various

types of oscillations and chaos [35–37].

Mathematical epidemiologists often

study the spread of an infection with some

variation of the so-called SIR or SIRS

model [38], which describes the dynamics

of susceptible (S), infective (I), and recov-

ered (R) individuals, as diagrammed in

Fig. 2.

The corresponding equations

_SS~rS
:R{rI

:S:I

_II~rI
:S:I{rR

:I ð10Þ

_RR~rR
:I{rS

:R

are directly in the format of the mass

action law.

In the examples so far, the reaction or

change rates are linear combinations of

individual states (concentrations or preva-

lences) and their products. It is quite evident

that this linearity is a stark idealization that

quickly fails in realistic situations and even in

simple chemical reaction systems where, for

instance, diffusion limitation leads to non-

linearities. In the late 1960, Savageau

initiated a long discussion about modeling

biological systems in a general nonlinear,

canonical manner [39–41]. Within the

context of biochemistry, he argued that the

generalized framework of Michaelis-Menten

representations is impractical for modeling

large biochemical systems. It also obscures

insights into what is truly driving a complex

system and which components are particu-

larly sensitive or influential. Except for linear

models, the only candidate for a systemic

modeling structure at the time was the

Lotka-Volterra formalism, which however

turned out to be ill suited for representing

metabolic systems (for details, see discussion

in [42]).

Instead of designing patches for the

existing ad hoc approaches, Savageau

proposed a new framework he called

Biochemical Systems Theory (BST)

[31,39–41] that was partially inspired by

mass action functions and by Bode

analysis, which is used in electrical engi-

neering and linearizes arbitrary nonlinear

functions upon logarithmic transformation

in a piecewise manner [40]. Using the

combination of these concepts as a starting

point, Savageau proposed power-law for-

mulations as core representations for

biochemical processes. The format of this

particular type of formulation is directly

derived from first mathematical principles,

because it is the result of a Taylor

linearization, once variables and processes

have been transported into a logarithmic

space [40,42–45]. Because of the fixed

structure with which processes are repre-

sented, the steps of model design, diag-

nostics, and analysis follow rather strict

rules, and the power-law models can

therefore be considered ‘‘canonical’’

[44,46].

The generic process representation in

this format is

vi~ciP
n

j~1
X

fij
j , ð11Þ

where the rate constant ci is non-negative

and the kinetic orders fij are positive for

variables Xj that have an augmenting or

activating effect on vi, negative for vari-

ables that have an inhibiting effect, and 0

for variables that do not have a direct

effect on vi at all. In other words, the

kinetic-order parameters quantify the

strength of the effect that a variable has

on a process. For reversible processes, a

linear combination of two such power

expressions may be used for formation and

degradation.

A significant advantage of this power-

law formulation is the fact that biochem-

ical diagrams can immediately be convert-

ed into well-structured equations, quasi as

a default representation. Specifically, each

process is written as a power-law term that

contains exactly those variables that di-

rectly affect this process, be it as a

substrate, modulator, or regulator. As an

illustration, it is easy to write down a

stoichiometric model of the generic dia-

gram in Fig. 3 where, for instance, the

dynamics of X1 is directly given as

_XX 1~v01{v12{v14: ð12Þ

However, it is not at all evident how to

formulate the processes vij. The default in

biochemistry might be a Michaelis-Men-

ten model, but it is known that its

prerequisites are seldom satisfied in vivo

[47]. By contrast, a power-law formulation

makes no assumptions beyond positivity of

its state variables and is, at the same time,

mathematically guaranteed to be correct

at an operating point of one’s choice, and

very accurate close to it, if parameter

values are chosen appropriately. Thus,

one can immediately formulate the dy-

namics of X1 as

_XX 1~c01X
f101
0 X

f131
3 {c12X

f121
1

{c14X
f141
1 X

f144
4

ð13Þ

and the problem of choosing a functional

format is reduced to a much simpler task

of estimating parameter values.

The nonlinear power-law terms in

Equation 11 enter a system of differential

equations in one of two ways. In the

Generalized Mass Action (GMA) repre-

sentation, each process is represented as

one power-law term, as shown in Equa-

tions 12–13, and the result is therefore a

set of differential equations whose right-

Fig. 1. Diagram of a typical Michaelis-Menten reaction, in which an enzyme, E, catalyzes the conversion of a substrate, S, into a
product, P, via the formation of an intermediate complex, ES. The indexed quantities, k, denote reaction rates.
doi:10.1371/journal.pcbi.1004012.g001

PLOS Computational Biology | www.ploscompbiol.org 4 January 2015 | Volume 11 | Issue 1 | e1004012



hand sides each consist of a difference

between the sum of power-law terms for

all influxes and the sum of power-law

terms for all effluxes. In the alternate S-

system representation, all influxes are first

collected, and their sum is represented

with a single power-law function. The

same is done with all effluxes, so that each

S-system equation contains a single differ-

ence between two power-law terms. Thus,

the second and third terms on the right-

hand side of Equation 13 would be

represented with a single power-law term

containing X1 and X4.

The power-law formulation of process

representations (Equation 11) is clearly a

direct generalization of Guldberg and

Waage’s mass action law [3] as it is usually

presented today. However, if one returns

to their first article in the series [2], one

finds the following, slightly different for-

mulation of a chemical reaction: ‘‘If the

amounts of the two substances affecting

each other are called M and N, then the

substitution force for them is a(MaNb).

The coefficients a, a, and b are constants

that, if all other conditions are kept the

same, depend exclusively on the nature of

the substances.’’ Thus, the original mass

action law [2] was in power-law format

with adjustable parameters. Between 1864

and 1867, the exponents a and b disap-

peared from the discussion, except for the

case of integer stoichiometric coefficients

where, for instance, two molecules of M

were involved, thereby requiring a = 2, as

we discussed before. In fact, Guldberg and

Waage did not even mention the expo-

nents anymore in the 1867 paper, stating

‘‘We have concluded from our experi-

ments that the force [which brings forth

the formation of A9 and B9 from A and B]

is proportional to the product of the active

masses of the bodies A and B. If we denote

the active masses of A and B with p and q,

and the affinity coefficient with k, then the

force = k?p?q.’’ The authors do give some-

what of a verbal explanation: ‘‘As we have

stated several times, the force k p q or the

force between A and B is not the only

force in effect during the reaction. Other

forces attempt to slow down or speed up

the formation of A9 and B9. Let us posit,

however, that the other forces do not exist,

and we see how the formulae derive in this

case. We believe that the consideration of

this ideal reaction…will give the reader a

clear and lucent impression of our theo-

ry.’’ In the power-law representation

(Equation 11), the real-valued kinetic

order exponents account for such forces,

even if they are not known to exist. These

may include ill-characterized features of

system components, molecular crowding,

fractal kinetics, and a host of other

phenomenological relationships, in a most

generic and minimally biased fashion,

which is guaranteed by Taylor’s theorem

and, at the same time, simple yet quite

flexible. Linear combinations of power-law

terms increase this flexibility much further.

One might note that mass action

representations have been used for quite

a while as the basis for developing a

general theory of chemical reaction net-

works (CRN) [48–50], and it was recently

demonstrated that power-law representa-

tions are beneficial extensions within this

theory [51].

Intriguingly, any set of ordinary differ-

ential equations can be reformulated

equivalently as a set of power-law equa-

tions, when auxiliary variables are defined

[37,52]. Thus, even complicated oscilla-

tions, chaos, and other dynamic features

are within the repertoire of the power-law

formalism [53,54]. This fact is surprising

and demonstrates mathematically that the

power-law format is amazingly rich and

that it indeed constitutes a canonical

format that permits the design and analysis

of models in a rigorously prescribed

manner [44,55,56].

Future Perspective

Guldberg and Waage posited a bold

conjecture regarding the mathematical

representation of chemical reactions. Al-

though the concepts of the proposed mass

action law were deduced from rather

sparse data, different groups later demon-

strated that the law can be derived

rigorously from first principles of thermo-

dynamics and stochastic processes for

reactions that take place in ideal gases

under constant temperature and pressure.

Thus, Guldberg and Waage correctly

Fig. 2. Typical prototype for a model describing the spread of an infectious disease. S, I, and R describe pools of susceptible, infected, and
recovered individuals. Susceptible individuals only become sick as the result of contact with an infected person.
doi:10.1371/journal.pcbi.1004012.g002

Fig. 3. Generic pathway with one activating and two inhibitory signals. Subscripted X’s are
metabolites, while subscripted v’s are processes.
doi:10.1371/journal.pcbi.1004012.g003
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solved a fundamental problem. Nonethe-

less, a more general question persists as a

challenging task for the future, namely,

how to determine appropriate representa-

tions of chemical, biochemical, and bio-

logical processes under realistic conditions,

for instance, inside cells that are all but

homogeneous. It is quite evident that most

biological processes, although of course

obeying the laws of physics, cannot

realistically be formulated in terms of first

physical principals, because they are

driven by numerous forces, factors, and

spatial aspects that are tightly intermin-

gled, as we discussed before.

In response to this challenge, many ad

hoc representations have been proposed for

specific applications, but it is highly unlikely

that these will be able to serve as a

foundation for a general modeling frame-

work in biology, let alone serve as a basis for

theoretical analysis. For example, the

widely used Michaelis-Menten models and

their generalizations are not particularly

well suited for theoretical investigations,

because they become mathematically very

cumbersome for large systems. Of special

importance is the fact that they do not allow

explicit steady-state computations, which

renders stability and sensitivity calculations

difficult [57]. The best chance for system-

atic theoretical and applied analyses there-

fore appears to rest with effective approx-

imations, for instance, based on mass action

or power-law formulations.

Nonetheless, the deeper question re-

emerges whether it is possible to infer truly

optimal representations for complex bio-

logical processes. The search for the most

appropriate representations falls into two

overlapping categories. In the first case,

one assumes that a valid representation

structure is known and attempts to identify

its optimal numerical instantiation. In

other words, this first case concerns

parameter optimization against experi-

mental data. In this context, the homog-

enous structure of mass action and power-

law representations allows interesting op-

tions. Examples are alternative regression

[58] and the recently proposed method of

multivariate metamodeling [59]. The for-

mer is an effective linear regression

strategy for the class of S-systems. For

the latter, one initially uses extensive

computer simulations to establish, once

and for all, a catalog of responses of

individual power-law terms and their

combinations. Once this catalog is avail-

able, new empirical datasets may be fitted

against the ‘‘data bank’’ in the catalog by

local interpolation. This type of meta-

modeling also assists with the assessment

of ‘‘neutral’’ or ‘‘sloppy’’ parameter sets,

which all offer similarly good data fits

[60,61].

The second category concerns the

situation where it is unknown what types

of process description might be most

appropriate. This category is challenging,

as individual process descriptions are

usually embedded in a system of differen-

tial equations, where compensation

among, and even within, terms can lead

to entirely wrong parameter sets, yet

identify them as feasible [62]. One may

anticipate that if the parameter values, and

in particular the signs of the kinetic orders

in a canonical power-law representation,

as initially stipulated by Guldberg and

Waage in 1864, can reliably be estimated

from experimental data, it can help

uncover the regulatory control structure

of a system as a function of its position in

state space [63]. Indeed, this structure

would be reflected in the Jacobian archi-

tecture of the local power-law model

around each experimentally investigated

operating point. This knowledge of the

Jacobian architecture across the state

space could then serve as a tremendous

guide for modeling attempts where the

aim is to capture the global dynamics of a

system.

Conclusions

Over the past 150 years, the mass action

law has established itself as the most used

default model in mathematical modeling

and systems biology, to a point where it is

considered undisputed truth that needs no

further explanation or justification. It was

probably Guldberg, the mathematician on

the team, who had the intuition to include

exponents in the original 1864 rate law.

His rationale is unknown, but it is clear

that the exponents provided greater flex-

ibility. The exponents were not explicitly

specified, but seen as properties of the

molecular species in the reaction, and

were omitted later because they were

apparently not needed. As an added

benefit, the analysis of the simplified law

of mass action was certainly easier without

the exponents. Intriguingly, Guldberg’s

intuition reemerged rigorously almost

100 years later in the form of power-law

models. These models are mathematically

very flexible, as they contain additive,

multiplicative, and power elements; in-

deed, their structure was shown to be

capable of modeling any systems of

differential equations [52]. The models

are also very flexible from a statistical

point of view, because they can represent

the probabilities of events such as molec-

ular collisions or the spread of diseases. In

fact, if probability distributions are formu-

lated as power-law models, they exhibit

features of limiting distributions similar to

the normal distribution [64].

In the foreseeable future, it might be

fruitful to explore power-law models

further as intermediates between statisti-

cal, data-driven modeling and mechanistic

modeling. Statistical modeling—even if

based on experimental data—views the

observed system ‘‘from the outside’’ and

lacks the ambition to describe the system

mechanistically ‘‘from within’’ in order to

specify reasons for the observed changes.

By contrast, theory-driven mechanistic

modeling captures why a system changes.

It requires good theory or meaningful

tentative ideas about the inner workings of

a system and runs the risk of over-

parameterization. However, it excels in

combining a wide range of disjoint empir-

ical observations, assumptions, and prior

knowledge into meaningful quantitative

descriptions, and can be used for assessing

the validity of the prior knowledge and

assumptions as well as for forecasting

system responses under new circumstanc-

es. Thus, the law of mass action and its

modern instantiation in power-law models

is not only a useful way to think about

chemical reactions but also a useful

explorative data analytic tool in chemistry,

biochemistry, biology, and possibly else-

where.
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Chimiques. (Translation: Studies on chemical

equilibria.) In: Fremy M, editor. Encyclopédie

Chimique. Paris: Dunod. pp. 69–372.

13. Lemoine MG (1882) Théorie des équilibres
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