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Abstract

Gene duplication is an important evolutionary mechanism that can result in functional divergence in paralogs due to neo-
functionalization or sub-functionalization. Consistent with functional divergence after gene duplication, recent studies have
shown accelerated evolution in retained paralogs. However, little is known in general about the impact of this accelerated
evolution on the molecular functions of retained paralogs. For example, do new functions typically involve changes in
enzymatic activities, or changes in protein regulation? Here we study the evolution of posttranslational regulation by
examining the evolution of important regulatory sequences (short linear motifs) in retained duplicates created by the
whole-genome duplication in budding yeast. To do so, we identified short linear motifs whose evolutionary constraint has
relaxed after gene duplication with a likelihood-ratio test that can account for heterogeneity in the evolutionary process by
using a non-central chi-squared null distribution. We find that short linear motifs are more likely to show changes in
evolutionary constraints in retained duplicates compared to single-copy genes. We examine changes in constraints on
known regulatory sequences and show that for the Rck1/Rck2, Fkh1/Fkh2, Ace2/Swi5 paralogs, they are associated with
previously characterized differences in posttranslational regulation. Finally, we experimentally confirm our prediction that
for the Ace2/Swi5 paralogs, Cbk1 regulated localization was lost along the lineage leading to SWI5 after gene duplication.
Our analysis suggests that changes in posttranslational regulation mediated by short regulatory motifs systematically
contribute to functional divergence after gene duplication.
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Introduction

Gene duplication is thought to be one of the major sources of

evolutionary innovation (reviewed in [1]). Several molecular mech-

anisms of functional change have been proposed: 1) changes at the

transcriptional level can alter the expression of the paralogous copy

[2–5], 2) changes at the enzymatic level can alter the activity or

specificity of the protein [1,6], 3) changes at the posttranslational level

can modify the regulation or localization of the protein [7–9], and 4)

changes within the splicing sites can change the isoforms produced at

each loci [10,11]. Studies on genome-wide mRNA expression

patterns have established that transcriptional changes are one of

the major contributors of functional differences within duplicated

genes [12–14]. However, whether functional divergence occurs

predominantly by changes in gene regulation or by changes within

the amino acid coding sequence of the proteins are still unclear [15].

Coding sequences of paralogous genes show increased evolu-

tionary rates after duplication [16,17], consistent with the

hypothesis that changes within the amino acid coding sequences

are also important contributors to functional divergence. Howev-

er, because some functional features in proteins comprise a small

number of amino acids, statistical studies comparing evolutionary

rates of whole proteins do not provide mechanistic explanations

for changes in function [18]. For example, many proteins contain

short linear motifs (SLiMs) such as phosphorylation sites,

localization signals and interaction motifs, and these motifs are

only 2-15 amino acids long [19]. For instance, the cell-cycle

regulator Sic1 is a disordered protein with several phosphorylation

and protein binding sites that comprise less than 20% of the

protein [20]. Computational identification of short linear motifs is

an important challenge, often relying on experimental data

[21,22]. However, recently we [23] and others [24] have shown
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that they can be systematically identified in fast evolving

disordered regions because they tend to be preferentially

conserved. Nevertheless, most short linear motifs in disordered

regions probably remain uncharacterized [23]. Therefore, analy-

ses on whole proteins may underestimate the level of functional

divergence after gene duplication because changes in constraints in

short linear motifs may lead to regulatory changes and therefore

functional divergence [8]. Recently, several studies have investi-

gated specific types of posttranslational regulatory changes [8,25–

27] (reviewed in [28]), such as differences in patterns of

phosphorylation between paralogs [9] or differences in localization

in paralogous proteins [7], and have shown that regulatory

changes can also contribute to functional divergence. However,

these regulatory changes can also be attributed in part to trans-
regulatory changes (changes in proteins that control posttransla-

tional regulation). Identification of changes in the protein

regulatory sequences would allow us to determine cis-regulatory

divergence (changes within duplicated proteins), and provide

amino acid level mechanistic explanations for protein regulatory

changes after duplication [29].

Formally, functional divergence in amino acid sequences after

gene duplication has been divided into two types of evolution [30].

The first (type I) describes so-called ‘‘changes in constraint’’ where

the rate of evolution in a site or region changes after duplication,

and remains different in one of the paralogous clades. The second

(type II) describes a burst of rapid evolution immediately after gene

duplication, and then a restoration of similar levels of constraint in

the two paralogous lineages. Several statistical methodologies have

been developed to identify sites or regions in proteins that fall into

these classes [31,32]. These approaches have largely focused on

identifying sites in globular regions of proteins for which large

numbers of homologues can be accurately aligned [33]. These

approaches often use likelihood-ratio tests based on advanced

probabilistic models of phylogeny and amino acid substitution to

compare the rates of evolution in individual sites [34] or groups of

sites [31,32] to the rest of the protein. For example, previous

applications of these methods have identified possible positions in

the globular domain of carbonic anhydrase III that are responsible

for posttranslational addition of glutathione [35]. In principle,

these methods could be applied to identify changes in short linear

motifs within disordered regions that contribute to posttransla-

tional regulatory change. However, because real protein evolution

can be more complicated than even the most sophisticated models

[36] and real protein alignments include non-biological sources of

heterogeneity (such as alignment errors and missing data), the

likelihood-ratio test can falsely identify type I functional divergence

[32]. One strategy to tackle these issues is to estimate the rejection

rate of the likelihood-ratio test using empirical data, for example

using permutation tests [37]. However, the distribution of the

likelihood-ratio test statistic must be obtained through permuta-

tions performed for every protein and therefore may be too

laborious for genome-wide studies.

We set out to study the change in selective constraints in short

linear motifs within disordered regions after the whole-genome

duplication (WGD) in budding yeast by asking whether the rates of

evolution of these segments significantly differed after the whole-

genome duplication event. We first developed a statistical method

to correct the p-value distributions of likelihood-ratio tests and

show how this approach can be applied to predicted short linear

motifs. We then show that the turnover of predicted motifs within

retained paralogs is faster than in genes whose paralogs were lost

after duplication (which we refer to as single-copy genes or

proteins) and that, for these putative short linear motifs, correlated

loss of selective constraints appear to be common, consistent with

changes in function specific to one of the two paralogs.

Finally, we identify examples of experimentally verified motifs

present in one paralog that are unlikely to be present in the other

copy, and verify our prediction of changes in subcellular

localization for one of these examples (Ace2 and Swi5). Our

results show that a view of molecular evolution with amino acid

resolving power can allow us to propose specific hypotheses about

the functional divergences between paralogs.

Results

Detection of type I functional divergence in short linear
motifs using a non-central chi-squared null distribution
for likelihood-ratio tests

We have previously shown that short linear motifs can be

predicted based on their conservation relative to their surrounding

regions [23]. We sought to detect regulatory divergence in proteins

by looking for statistical signals of lineage-specific evolutionary rate

changes in predicted short linear motifs in multiple sequence

alignments. Likelihood-ratio tests have previously been used to

detect differences in rate of evolution of full-length yeast proteins

after the whole-genome duplication [16]. We sought to perform

essentially the same test to identify short linear motifs whose rate of

evolution changed significantly after gene duplication. To do so,

we first predicted short linear motifs within proteins of species that

have diverged prior to the yeast whole-genome duplication (see

Methods) and mapped the location of the predicted short linear

motifs to the genes post-duplication (Fig. 1A). Using a likelihood-

ratio test [38], we tested whether two rates of evolution (one for the

post-duplication clade and one for the remainder of the

phylogenetic tree) explain the data significantly better than one

single rate of evolution common to the whole tree (see Methods).

This test is performed once for genes that reverted to single-copy,

and twice in retained duplicates (one for each post-WGD protein).

Previous efforts to identify changes in evolutionary rate have

shown that the likelihood-ratio test statistic often deviates from the

expected chi-squared null distribution even when there is truly no

Author Summary

How a protein is controlled is intimately linked to its
function. Therefore, evolution can drive the functional
divergence of proteins by tweaking their regulation, even
if enzymatic capacities are preserved. Changes in post-
translational regulation (protein phosphorylation, degra-
dation, subcellular localization, etc.) could therefore
represent key mechanisms in functional divergence and
lead to different phenotypic outcomes. Since disordered
protein regions contain sites of protein modification and
interaction (known as short linear motifs) and evolve
rapidly relative to domains encoding enzymatic functions,
these regions are good candidates to harbour sequence
changes that underlie changes in function. In this study,
we develop a statistical framework to identify changes in
rate of evolution specific to protein regulatory sequences
and identify hundreds of short linear motifs in disordered
regions that are likely to have diverged after the whole-
genome duplication in budding yeast. We show that these
divergent motifs are much more frequent in paralogs than
in single-copy proteins, and that they are more frequent in
duplicate pairs that have functionally diverged. Our
analysis suggests that changes in short linear motifs in
disordered protein regions could be important molecular
mechanisms of functional divergence after gene duplica-
tion.

Detecting Posttranslational Regulatory Divergence
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Fig. 1. Likelihood-ratio test on short linear motifs after gene duplication on simulated data. A) Schematic of the motif-specific likelihood-
ratio test applied to all motifs. Rates of evolution are computed for each motif before (apre-WGD) and after (aWGD) gene duplication and compared with
the rates that were observed for the whole protein (see Methods). Red double arrow illustrates the duplication event. Bolded clades are clades with
significant changes in constraints. Striped patterned boxes indicate short linear motifs with significantly different rate of evolution. DKL indicates the
expected deviation of the likelihood-ratio test from the whole protein. B) Alignment of the N-terminus of the Dbp1/Ded1 homologs illustrates the
rate heterogeneity amongst columns and highlights the short length of a putative motif (black rectangle zoom). Blue shade represents the
percentage identity. C) Alignment of the N-terminus of a simulated protein based on Dbp1/Ded1 using our ‘realistic’ simulation of evolution (see
Methods). D) Histogram shows the p-value distribution obtained from set of protein sequences that were evolved as in C). Grey shaded area indicates
the expected proportion of tests. Circles indicate the distribution of p-values obtained from the likelihood-ratio test described in A) when the test
statistic is assumed to be chi-squared distributed (black circles) or non-central chi-squared distributed (white circles, ‘‘corrected’’).
doi:10.1371/journal.pcbi.1003977.g001
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change in rate of evolution [37,39]. Indeed, when we performed

simulations of molecular evolution with no changes in rate of

evolution specific to the short linear motifs (Fig. 1B–C, see

Methods), but included realistic aspects of the evolutionary process

(such as rate heterogeneity, insertions and deletions, etc.), we

found that the likelihood ratio test falsely identified increased rates

of evolution after gene duplication (Fig. 1D, black circles, Text

S1).

We hypothesized that the increased rate of false rejections was

because the additional evolutionary rate parameter in the

alternative hypothesis (that is supposed to capture the change in

selective constraints) can also model some of the background

heterogeneity in evolutionary rate (due to alignment errors, non-

stationary and non-homogeneous evolution, etc.).

Under assumptions that 1) the majority of the tests performed

are truly null, and that 2) the deviation of the real data from the

models assumed by the test is consistent over the columns of the

multiple sequence alignment, the distribution of the likelihood-

ratio test follows a non-central chi-squared distribution with a

data-dependent non-central parameter (see Methods). This non-

central parameter (the expected increase in the test statistic from

‘fitting’ some of the heterogeneous background process using the

likelihood ratio test) is the product of the Kullback-Leibler (KL)

divergence DKL, (the ‘‘fit’’ or the expected log-likelihood ratio of

the alternative hypothesis over the null hypothesis given the data

see Methods) and the number of data points used to compute the

likelihood-ratio test. Larger KL divergence means larger deviation

of the background distribution from the null model assumed by the

test. To use this in practice, we first estimate a non-central

parameter using sequence data generated by a background

heterogeneous evolution process and then use the non-central

chi-squared distribution to obtain p-values for our test (see

Methods). Extensive simulations on full length proteins with

non-stationary and non-homogeneous evolution, including align-

ment errors, showed that this approach works as expected and

yields uniform p-values (see Text S1).

We applied this approach to our ‘realistic’ simulation (Fig. 1C

for an example protein) by calculating a KL divergence parameter

for each protein (see Methods) and obtained p-values for each

likelihood-ratio test (for each short linear motif) in that protein.

This procedure reduced the false-rejection rate (Fig. 1D, white

circles) and p-values were nearly uniform.

Frequent post-duplication changes in constraints in
motifs

Having confirmed that our approach to detect type I functional

divergence could be applied on short linear motifs, we then

analyzed our set of protein alignments. After correction for

multiple testing, we identified 159 short linear motifs with

significantly different rates of evolution after gene duplication at

a false discovery rate of 5% (see Methods, S1 Table). This

corresponds to 1.2% of the motifs identified in single-copy genes

(67/5825 significant motifs, Fig. 2A) and 9.8% of the identified

motifs in retained duplicates (92/942 significant motifs, Fig. 2B).

Because motifs in retained duplicates are tested twice (once per

branch), changes in constraints are approximately 4.5 times more

frequent in retained duplicates versus single-copy proteins (5.26%

vs 1.15% of LRTs, p-value ,10-20, Fisher’s exact test).

Our previous ‘realistic’ simulation had no intended site-specific

changes in constraints. Despite this, our pipeline (including the

non-central correction) identified 0.059% of the motifs in

simulated single-copy proteins (4/6753 significant motifs) and

0.55% of the motifs in simulated retained paralogs (6/1083

significant motifs) to have significantly different rates of evolution

after false-discovery rate correction. Using these values as our

estimate of false positives due to possible computational artifacts

(such as misalignments) or due to incorrect non-central parameter

estimation for the null distribution of the likelihood-ratio test

statistic, we expect that 5 motifs in duplicates and 3 motifs in

single-copy genes are artifacts. Therefore, although the false

positive rate due to artifacts in retained duplicates is significantly

higher than in single-copy genes, the increased proportion of

motifs identified with changes in constraints in duplicates cannot

be explained by these computational artifacts.

As another negative control, we also looked at whether the

flanking regions of the putative short linear motifs (five amino

acids on each side of the motifs) showed changes in constraints

after gene duplication. After correction for multiple testing, only

two flanking regions were identified as having significantly

different rates of evolution after gene duplication. Given that

these identified changes in constraints on the flanking regions are

consistent with our false positive rate, this result indicates that the

type I functional divergence we identify in predicted short linear

motifs is specific to the motifs and not due to some local change in

constraint.

Most of the motifs with changes in constraints in duplicates only

occurred in one of the two copies (85/92 motifs retained in

duplicates), consistent with the idea of sub-/neo-functionalization

after gene duplication through posttranslational regulatory

changes [8] (Fig. 2B).

Lineage bias in post-duplication changes in constraints
One hypothesis as to the fate of paralogous proteins is the

duplication-degeneration-complementation (DDC) model [2]

which explains the preservation of paralogous proteins by the

neutral generation of sub-functionalized copies of proteins. Under

this hypothesis, one might expect that both paralogous proteins

would show signs of relaxed evolution, but that specific functional

regions of each protein showing relaxation in selective constraints

would be complementary, such that they partition the functional

regions in the ancestral protein. We sought to test whether signs of

the DDC model could be detected at the posttranslational

regulatory level and found 20 paralog pairs where more than

one short sequence was detected as having different rate of

evolution after gene duplication (see Methods). Of these, seven

showed reciprocal changes in constraints on their motifs, which is

consistent with degeneration and complementarity at the post-

translational regulatory level as predicted by the DDC model.

Despite some evidence for complementarity, the majority of

paralogs (13/20) with more than a single change in constraints

appeared to have a lineage bias in their posttranslational

regulatory changes. We tested this using the set of 20 paralog

pairs described above and asked whether the motifs were more

likely to have correlated evolution than expected by chance. To do

so, we randomly permutated the changes in constraints across

paralogous pairs to establish the null expectation of random

assortment and counted the lineage differences in changes in

constraints (see Methods). We ensured that the lineage bias was

not caused by technical issues, such as large-scale alignment errors

or bipartite motifs being predicted as two motifs by the phylo-

HMM, by grouping motifs when they were within 35 amino acids

of each other for this test (see Methods). This analysis revealed a

lineage bias in changes in constraints for regulatory sequences (p-

value = 0.01106, one-tailed non-parametric permutation test,

Fig. 3). Therefore, proteins that change function after duplication

may typically change multiple short linear motifs in concert,

consistent with the idea that multiple regulatory mechanisms often

work together to control protein function. For example, multisite

Detecting Posttranslational Regulatory Divergence
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phosphorylation from individual or multiple kinases can form

intricate regulatory modules on single proteins (reviewed in [40])

and these clusters of phosphorylation sites have been found to be

frequently conserved through evolution [41–43] and have been

shown to turnover [44].

Amino acid level resolving power allows detection of
additional changes after gene duplication

The increase in resolving power obtained by analysing short

linear motifs allowed us to determine whether specific regions

within the paralogous proteins differed in their selective con-

straints. We wanted to test if this amino acid level analysis could

also allow us to detect signatures of functional divergence even

when the rate of evolution of the whole protein after duplication

did not appear to be different than the pre-WGD clade.

Using similar methodologies as previous studies [16], we found

that 57% of the paralog pairs showed no evidence of significant

increase in rate of evolution of the whole protein in either of the

two lineages. This value is slightly higher than that obtained

previously (44% [16]), which we attribute to either a different gene

set or methodology, or to the non-central correction that we

applied. Nevertheless, we then searched within these proteins for

motifs with significant changes in constraints. Doing so, we

identified 37 motifs in 28 paralogous pairs, and 46 motifs in 43

single-copy proteins. This indicates that an analysis of evolutionary

rate differences using higher resolving power of functional

sequences within proteins can identify additional sources of

functional divergences than analyses at the whole protein level.

Post-duplication changes in constraints are associated
with changes in regulation

If changes in posttranslational regulation are important for

functional divergence after gene duplication, we expect the

changes in constraints in short linear motifs that we detected to

point to functional differences between paralogous proteins. A

previous study investigated changes in localization after gene

duplication by taking advantage of the systematic green fluores-

cently-tagged protein collection in budding yeast [7,45] and

categorized paralog pairs as having different or similar subcellular

localization. We sought to test if motifs present in paralog pairs

with different subcellular localizations were more likely to turnover

after gene duplication. Motifs with changes in constraints were

more than twice as likely to appear in proteins with detected

changes in localization (26/209 motifs with changes in constraints

in proteins with different localization vs 12/197 in proteins with

similar localization, p-value = 0.032, permutation test), providing

Fig. 2. Regulatory turnover after gene duplication. A-B) The proportion of motifs with changes in constraints at a 5% false-discovery rate is
significantly larger than in genes with retained duplicates (B) than in single-copy genes (A). Error bars represent the 95% confidence interval of the
estimated proportion (binomial distribution). Bolded clades are clades with significant changes in constraints. a is the rate of evolution.
doi:10.1371/journal.pcbi.1003977.g002
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evidence that proteins with changes in localization are more likely

to have evolved differences in short linear motifs. We were

concerned that this result could be primarily driven by the fact that

paralog pairs with changes in localization had significantly higher

rates of evolution [7], for example if our non-central correction

was not adequate. However, we only found a modest increase in

rate of evolution for the paralogs with changes in constraints on

motifs and this increase was not significant (two-tailed p-value

= 0.093, Mann-Whitney U test on Dn estimated previously [7]).

Considering that we have more power to detect changes in

constraints in more rapidly evolving proteins, this further suggests

that our non-central correction has controlled for the overall

protein rate of evolution.

We next tested if the changes in constraints we predicted

corresponded to interpretable differences in posttranslational

regulation by analyzing experimentally characterized motifs (same

set as in [23]) that overlapped with segments predicted to have a

change in constraint in paralogous proteins. In addition, we also

wanted to confirm that the differences were not specific to S.
cerevisiae by looking at the presence or absence of motifs in the

other species we analyzed.

Of these, the paralog pair Rck1/Rck2 contained two predicted

motifs that were found to have significant changes in constraints in

the Rck1 protein. Interestingly, both motifs are involved in Hog1

signaling [46,47]. Consistent with our predictions, Rck2 is known

to be regulated by Hog1, while Rck1 is thought not to be regulated

by Hog1 [47]. However, while our algorithm identified that the

motif required for Hog1 binding in Rck2 was evolving more

rapidly in Rck1, it is clear that Rck1 preserved some of the critical

residues required for binding to Hog1, yet its binding activity to

Hog1 has been shown to be poor [47]. This suggests that: 1) the

protein ancestral to Rck1/Rck2 is likely to also be regulated by

Hog1, and 2) that Rck1 is likely to be regulated in a different

manner, having lost or changed critical regulatory sequences after

the duplication event (Fig. 4A).

Another clear example where experimentally characterized

regulation of one paralog appears to have been lost in the other

following gene duplication is in the Fkh2/Fkh1 paralogous pair of

transcription factors. While both proteins play a role in cell-cycle

progression, they are known to have non-redundant functions

[48]. For example, Fkh2, but not Fkh1, associates with Mcm1

[49]. Another important function of the Fkh2 protein that is absent

in Fkh1 is its ability to recruit the transcriptional co-activator

Ndd1. This interaction is mediated by at least two adjacent Cdk1

phosphorylation sites [50], one of which is found to have

significant changes in constraints in the Fkh1 lineage. The other

phosphorylation site is not predicted by our motif prediction

algorithm but is also likely to have changed constraints. We

speculate that the ancestral protein to Fkh1/Fkh2 may also have

bound Ndd1 in a Cdk1-dependent manner, but Fkh1’s regulation

appears to have changed, possibly to accommodate new functional

roles (Fig. 4B).

A third example could be found in the Ace2/Swi5 paralog pair,

important cell-cycle regulated proteins known to localize differ-

ently in budding yeast [51]. These two proteins have been

extensively characterized, with several major posttranslational

regulatory sequences identified [52,53]. Two of these have

significant p-values in our analysis, suggesting that changes in

constraints occurred within the Swi5 lineage. One of these is the

Cbk1-regulated nuclear export signal, known to give Ace2 its

daughter-cell specific nuclear localization [52], and another is a

putative Cbk1-binding motif [23] (Fig. 4C). In Ace2, Cbk1

phosphorylation prevents nuclear export and Cbk1 is only active

in daughter cells [52]. Therefore, we hypothesize that the ancestral

protein to the Ace2/Swi5 paralog pair was also regulated by Cbk1

to provide daughter-cell specific nuclear localization, but that loss

of these important signals allowed Swi5 to localize to both mother

and daughter cells’ nuclei.

Pre-WGD Ace2 localizes asymmetrically
To confirm our sequence-based predictions about evolutionary

divergence, we focused on the Swi5/Ace2 paralog pair. It has

previously been shown that these motifs in the extant S. cerevisiae
proteins control the differential localization pattern of the paralogs

[52]. Because the ancestral protein likely contained critical

regulatory motifs, we hypothesized that it was also regulated by

Cbk1, and localized asymmetrically in the daughter cell (Fig. 4C).

We therefore wanted to assess whether the localization before and

after the gene duplication was consistent with our sequence

analysis. To test this, we cloned and replaced the S. cerevisiae
endogenous SWI5 gene with GFP-tagged Swi5/Ace2 homologs

from multiple species that diverged before and after the whole-

genome duplication and quantitatively assayed their localization

pattern using fluorescence microscopy (Fig. 5A, see Methods and

Text S1).

Upon visual inspection, consistent with our predictions, both

single-copy genes localized in an Ace2-like pattern with clear

daughter specific localization (Fig. 5B). To quantitatively compare

the localization asymmetry of the retained duplicates and the

single-copy proteins, we manually quantified the nuclear fluores-

cence (see Methods) and computed the difference between

fluorescence intensity in bud and mother cells, and used this as

measure of asymmetry. While we could not reject the null

Fig. 3. Correlated evolution of short linear motifs. Top panel
shows the procedure to obtain the number of lineage specific changes
in constraints in a single protein. Red double arrow illustrates the
duplication event. Stars represent significant changes in constraints
along the lineage. Significant changes in constraints detected on short
linear motifs are shown in dotted red boxes. Bottom panel shows the
distribution of the total cumulated number of lineage specific changes
in constraints from a non-parametric permutation test. Arrow shows the
observed total difference for all 20 paralog pairs.
doi:10.1371/journal.pcbi.1003977.g003
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Fig. 4. Examples of known regulatory motifs with changes in constraints. Alignment of the short linear motifs with known function
(indicated with arrows) and significant changes in constraints (red boxes) after gene duplication from representative species. A) The Rck2 protein is
known to bind and be phosphorylated by Hog1 kinase at two motifs that have significant changes in constraints after gene duplication. Numbers
indicate residue position within the S. cerevisiae Rck2 protein. The two identified motifs occur at aa519-538 and aa577-591 for Rck2, and changed
constraints within the aligned region aa439-456 and aa492-506 in Rck1. These overlap with the known phosphorylation site in Rck2 (aa520) and the
MAP kinase binding site (aa492-506) in Rck2. Both Rck2 and Rck1 retain kinase function. B) The Fkh2 protein is known to be phosphorylated by Cdk1
at two phosphorylation sites on a region shown to have significant changes in constraints after gene duplication. Numbers indicate residue position
within the S. cerevisiae Fkh2 protein. The identified motif occurs at region aa692-702 in Fkh2 and has changed constraint in the aligned region aa459-
469 in Fkh1. One of the known phosphorylation site in Fkh2 occurs within this region at aa697. Fkh2 and Fkh1 retain their forkhead-associated
domain (FHA) and DNA binding domain (DBD). C) The Ace2 protein is known to bind and be phosphorylated by Cbk1 kinase at two motifs that have
significant changes in constraints after gene duplication. Numbers indicate residue position within the S. cerevisiae Ace2 protein. The two identified
motifs occur at aa121-134 and aa283-287 in Ace2, and changed constraints within the aligned region aa115-128 and aa247-248 (it is a gap) in Swi5.
These overlap with the known phosphorylation site in Ace2 (aa122) and the Cbk1 binding site (aa283-286) in Ace2. Both Ace2 and Swi5 retain their
DNA binding domain (DBD). Stars represent significant changes in constraints along the lineage. Red double arrow illustrates the duplication event.
aa: amino acid position. Scer: S. cerevisiae, Ncas: N. castellii, Zrou: Z. rouxii, Calb: C. albicans.
doi:10.1371/journal.pcbi.1003977.g004
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Fig. 5. Posttranslational change in regulation after gene duplication in Swi5 and Ace2. A) Schematic of the gene tree relating the Ace2/
Swi5 paralog pair with diagram of protein features found in proteins from different yeast species. Bolded species name indicate cloned genes assayed
for localization in S. cerevisiae. The nuclear localization signal characterized in Swi5 is putatively altered and may not be functionally homologous in
Candida and Ace2, but this difference was not predicted in our analysis (see Discussion and S3 Figure). B) Green-fluorescent protein tagged genes
cloned from the labeled species were assayed for their localization in unsynchronized S. cerevisiae cells. Two representatives of each pre-/post-WGD
genes were assayed. Orange and blue arrows indicate representative bud and mother nucleus pairs. C) The fluorescence intensity of the nucleus in
cells expressing the labeled proteins was quantified, and mean difference of the intensity (bud-mother) is used as the measure of asymmetry (unfilled
bars). Error bars show 95% confidence interval of the mean. Stars indicate 5% statistical significance. Red double arrow illustrates the duplication
event. Scer: S. cerevisiae, Cgla: C. glabrata, Zrou: Z. rouxii, Lwal: L. waltii, Lklu: L. kluyveri, Calb: C. albicans.
doi:10.1371/journal.pcbi.1003977.g005
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hypothesis of symmetry in bud and mother cell localization for

Swi5, the single-copy proteins and Ace2 showed statistically

significant asymmetry, consistent with our visual inspections

(Fig. 5C, p-value ,0.05). The most parsimonious explanation

for these results is that the ancestral protein also showed

asymmetrical nuclear localization.

Interestingly, we noted that the quantitative measure of

asymmetry for the single-copy proteins was not as extreme as

the post-duplicate Ace2 (Fig. 5C). We also observed several cells

with clear mother cell GFP localization just as observed for Swi5

(e.g., Fig. 5B, L. wal panel, top cell, blue arrow). This suggests that

the single-copy genes may actually represent a mixture of the Ace2

and Swi5 localization patterns, and may be more consistent with

sub-functionalization of the ancestral function, as opposed to the

simple lineage specific losses predicted based on sequence analysis

alone (see Discussion).

To confirm our prediction that the changes in regulation were

not specific to the S. cerevisiae lineage and occurred during the

period of rapid diversification immediately following the whole-

genome duplication, we also examined the corresponding genes

from C. glabrata (a budding yeast species that diverged from S.
cerevisiae after the whole genome duplication) and found similar

patterns of localization to S. cerevisiae. This supports our

prediction that the change in localization in the two paralogs

most likely occurred shortly after the gene duplication event

(Fig. 5B,C) and rules out the possibility that the changes we

observe are simply due to a problem with expressing foreign

proteins in S. cerevisiae. Although we cannot rule out more

complicated artifacts due to the expression of heterologous

proteins, because we observe consistent localization in two proteins

that diverged before and two proteins that diverged after the gene

duplication, we consider such artifacts unlikely.

Although our results only provide indirect evidence for the role

of the motifs in the localization of the heterologous proteins we

tested, we believe that, along with the experimental evidence for

the mutations on the motifs that was performed previously by [52],

that these experiments support our prediction that the asymmetric

localization pattern of Ace2 was present in the single-copy

ancestral protein, and this asymmetry was lost after the gene

duplication in Swi5 due to losses of specific posttranslational

regulatory sequences.

Discussion

In this study, we have analyzed the evolution of short linear

motifs in protein disordered regions after gene duplication and

found that regulatory change is likely to contribute to functional

divergence in paralogous genes. An important outstanding

question in this analysis is whether the functional changes we

identify are adaptive. Previous studies have shown adaptation due

to specific changes in posttranslational regulation [54], however

general molecular mechanisms for these adaptive posttranslational

regulatory changes are still under study. The resolution of adaptive

conflicts has been suggested as a model for adaptation of

paralogous copies of multifunctional genes after duplication [4]

and differential patterns of posttranslational regulation could be an

example of resolved ‘multifunctionality’. For example, in our

analysis of the Ace2 and Swi5 paralogous pair, we observed that

the asymmetry of the single-copy proteins was reduced when

compared to the post-duplicate Ace2 (Fig. 5C). Although we

cannot rule out that these single-copy proteins have other

mechanisms within these species that confer daughter specific

localization (as we use a heterologous system to test for their

localization), we believe that this observation may instead be due

to a Swi5-specific motif. Indeed, the characterized nuclear

localization signal (NLS) of Swi5 [55] was not predicted in our

analysis, most likely due to its proximity to the DNA-binding

domain, or to the weak conservation of the residues associated

with the NLS in the Candida species. This NLS of 20 amino acids

spans 50 alignment columns within our alignment, and upon close

inspection appears to show that the single-copy protein contains

high sequence similarity to the Swi5 NLS and that the Ace2

protein and proteins from Candida have a more dissimilar one,

suggesting that they might not be functionally homologous (S3

Figure). This hypothesis is consistent with the predominantly

Ace2-like localization pattern of the orthologous protein in the

Candida clade [56]. We speculate that this NLS is responsible for

the Swi5-like pattern of localization in both Swi5 and the single-

copy protein. Given that Swi5 is known to enter the nucleus

slightly before Ace2 and becomes degraded before Ace2 exits the

daughter-cell nucleus [51,57], the observed pattern for the single-

copy protein is consistent with first localizing to both mother and

bud nucleus as Swi5, and subsequent nuclear export from the

mother cell. We propose that the differential localization pattern of

the Ace2/Swi5 paralogs is a repartitioning of localization of the

ancestral protein due to sub-functionalization of the short linear

motifs present in the ancestral protein.

In this study, we have identified several putative motifs that

have changed constraints within proteins after the whole-genome

duplication in budding yeasts. Our methodology to identify

changes in evolutionary rate in very small motifs relies on a

correction to the distribution of the likelihood-ratio test statistic to

control for possible ‘protein level’ background heterogeneous

evolution that can be encountered. These ‘protein level’ effects,

such as changes in protein expression levels [58] and divergence

due to changes in essentiality or gene function [59,60], have been

shown to be major issues in evaluating correlated changes in

evolutionary rates between interacting proteins [61,62]. These

effects are likely to be encountered in our set of paralogous

proteins. Therefore, we ensured that the identification of divergent

short linear motifs is unlikely to be caused by these ‘‘protein level’’

effects by correcting the null distribution of the likelihood-ratio test

to take account of the whole protein’s deviation to the null model

assumed by the test. Other methodologies have been previously

proposed to empirically obtain the distribution of the likelihood-

ratio test statistic [37]. Our approach is similar; however we only

estimate one parameter (the non-central parameter) because in our

case it sufficiently describes the null distribution. Both approaches

(empirically-derived null distribution and estimation of the non-

central parameter) have the caveat that they rely on having several

data points (in our case alignment columns) that are assumed to be

null distributed. An additional constraint of our approach is that it

requires that the null distributed data evolves under a shared and

constant background heterogeneous evolutionary process to obtain

the KL divergence. Therefore, it cannot accurately produce an

adequate null distribution under cases where recombination has

occurred in a gene, for example. Nevertheless, this approach can

be simpler and faster than the permutation tests when performed

on genome-wide data where we expect a small proportion of tests

to reveal functional divergence. We believe that the non-central

chi-squared null-distribution can be applied to other important

tests in molecular evolution where genome-scale data are available

and where the assumptions of the chi-squared distribution of the

likelihood-ratio test statistic are violated; however this is still under

study.

Our study on short linear motifs reveals that posttranslational

regulatory evolution is widespread after gene duplication. How-

ever, an important limitation of our study is that it cannot identify
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novel regulatory sequences that have appeared along any lineage

or that occur within structured regions, in part due to the way

motifs are predicted. Additional genomic sequences such as

population data or from additional post-WGD species may allow

further analyses of functional changes in the budding yeast after

gene-duplication. These types of analyses are likely to uncover

even more functional variations between paralogous proteins than

were suggested by protein-wide and motif-wide analyses.

Nevertheless, our results are consistent with several results

suggested by other studies [8,9]: posttranslational regulatory

change may underlie an important number of observed functional

differences between paralogous proteins. This appears analogous

to the models of functional divergence after gene duplication due

to transcriptional regulatory change [2]. These parallels between

transcriptional and post-translational regulatory evolution [29]

suggest that transcription factor binding sites in non-coding DNA

are analogous to SLiMs in proteins. In the former, the rapid

transcriptional regulatory evolution is facilitated by the rapid

evolution and lack of strong constraints on non-coding DNA. In

the case of post-translational regulatory evolution, because SLiMs

are typically found in protein disordered regions which evolve

rapidly due to lack of structural constraints, changes in motifs in

disordered regions may be a general means to facilitate functional

evolution [63].

Methods

Alignment of related species of yeasts
We based the orthology assignment on the data from the Fungal

Orthogroups Repository [64] because it contained both sequences

from Candida species and budding yeasts. Protein sequences and

orthology assignment from six Candida yeast species [Candida
tropicalis, Candida albicans, Candida parapsilosis, Candida
lusitaniae, Candida guilliermondii, Debaryomyces hansenii] were

obtained from the Fungal Orthogroups Repository. When several

protein sequences from the Fungal Orthogroups Repository were

mapped to a single budding yeast orthology group, only the most

similar sequence as assessed by blast scores was chosen. The six

Candida genes, along with the Saccharomyces cerevisiae gene, were

supplemented with protein sequences and orthology assignment

from 19 additional related budding yeast species [Saccharomyces
mikatae, Saccharomyces bayanus var. uvarum, Saccharomyces
kudriavzevii, Candida glabrata, Kazachstania Africana, Kazach-
stania naganishii, Naumovozyma castellii, Naumovozyma daire-
nensis, Tetrapisispora blattae, Tetrapisispora phaffii, Vanderwal-
tozyma polyspora, Zygosaccharomyces rouxii, Torulaspora
delbrueckii, Kluyveroymces lactis, Eremothecium gossypii, Ere-
mothecium cymbalariae, Lachancea kluyveri, Lachancea thermo-
tolerans, Lachancea waltii] that were obtained from the Yeast

Gene Order Browser [65]. By basing our orthology assignment on

the species that have not undergone a whole-genome duplication,

our single-copy genes do not include singletons (newly arisen genes

after the whole-genome duplication), and our set of retained

duplicates do not include small-scale duplicates (duplications that

arose after the whole-genome duplication). In total, 452

alignments of retained duplicates and 3566 alignments of single-

copy proteins were used in our analysis.

Protein sequences were then aligned using MAFFT v6.864b

with the —auto flag at default settings [66].

Conserved segment prediction
We sought to predict small functional regions that could be

labeled as short linear motifs. Because we were interested in

functional segments that could be identified before the whole-

genome duplication [67], we first removed from the multiple

sequence alignment the sets of proteins from species that had

undergone the whole-genome duplication and predicted short

linear motifs within the remaining species (which we refer to as the

‘pre-WGD clade’). To identify short linear motifs, we used a

phylogenetic hidden Markov model (phylo-HMM) [23]. Briefly,

this method identifies highly conserved short amino acid sequences

within disordered regions of proteins. The unstructured regions

are predicted by DISOPRED2 [68], filtered for coiled coils using

pFilt [69] and for repetitive regions using the SEG algorithm [70].

We also use the phylo-HMM to filter out large conserved regions

as we consider them likely to be structural regions. In a previous

study, the phylo-HMM approach identified 104 of 352 known

motifs with a false positive rate of 1 in 9000 amino acids [23].

In addition to the heuristics used in [23], we now also assume

that a scaling factor of rates of evolution within the conserved state

is sampled from a discretized Gamma distribution with eight

categories [71] with a fixed alpha and beta parameter of 0.6,

which was chosen as a heuristic that allowed predictions of large

conserved regions (.35aa) interspersed by a few fast evolving

columns. We now obtain the rates of evolution through a Newton-

Raphson procedure, and used a window size of 31 alignment

columns for the calculation of the background rate.

Because the phylo-HMM tends to classify single insertion/

deletion events as slow evolving regions, motifs are trimmed on

either end to remove regions that are over 50% gaps or are filtered

out if the prediction itself contains over 50% gaps.

Flanking regions of the predicted conserved segments consisted

of five alignment columns on each side.

Likelihood-ratio test of multiple rates of evolution
We sought to systematically identify short linear motifs that

evolve at a different rate after the whole-genome duplication. To

do so, each predicted motif from the pre-WGD clade was mapped

back into the complete alignment.

Each predicted motif was then analyzed using the PAML

package [72] by a likelihood-ratio test that compares the null

hypothesis (H0) that motifs before and after the whole-genome

duplication are evolving at the same rate, to a model (H1) with two

distinct rates [38] (PAML program: AAML, clock = 2, clean-

data = 0, fix_omega = 0, ncatG = 8). Likelihood-ratio tests have

been previously used to study the evolution of the yeast paralogs

generated in the WGD [16]. Our test differs from this previous

application of the likelihood-ratio test, because we compared the

evolutionary rate on each paralogous clade (post-WGD_1 and

post-WGD_2) to the evolutionary rate on the lineages that

diverged before the whole-genome duplication (pre-WGD) one at

a time. Formally, the likelihood-ratio test (LRT) is:

LRT~2 log LR~2 log
P(datajĤH1)

Q(datajĤH0)

~2 log
P(dataj1~apre{WGD,âapost{WGD)

P(dataj1~apre{WGD~apost{WGD)

where the data corresponds to the motif segment within the

multiple sequence alignment, and aclade represents the rate for

corresponding clades. In this model [38], a is a scaling factor by

which the estimated branch lengths are multiplied, and one of the

rates always defaults to 1. Therefore, under the null hypothesis H0,

the single rate is equal to 1, while the alternative hypothesis H1

allows one of the two rates to be different than 1 and it is estimated

by maximum likelihood. Because these models are nested, under

the null hypothesis H0, the distribution of the likelihood-ratio test
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statistic (LRT) follows the chi-squared distribution with degrees of

freedom equal to 1 [73] (see the next Methods section for the

correction to the chi-squared distribution performed when

assumptions of the test are violated). Although it is in principle

possible using this test to find short linear motifs that evolve either

slower or faster than the proteins in which they are found, because

short linear motifs are predicted on the basis of their conservation

in the pre-WGD clade, we only expect to identify motifs with faster

rates of evolution after the whole-genome duplication.

We estimated the false discovery rate using a slight modification

of the procedure described in [74] to obtain a threshold for

significant p-values. We modified this approach because when

applying the LRT described above to our alignments of the yeast

proteome, we observed a large number of tests resulting in LRTs

of exactly zero (thus having a p-value of 1, e.g. Fig. 1D), many of

which correspond to motifs where no information can be inferred

about their rate of evolution. For example, in our real data, for

284/498 of these LRTs of exactly zero, we observed no amino

acid differences in the multiple alignments and therefore have no

power to estimate a change in evolutionary rate. Because we

observed that p-values between 0.6 and 0.95 appeared uniform as

expected for the distribution of truly null p-values, we used this

range only to estimate the false discovery rate (FDR). We counted

1836 p-values between 0.6 and 0.95 out of a total of 7709 tests. If

we assume that all these p-values correspond to truly null

hypotheses, then we can estimate the proportion of null tests (p0)

by 1836/(7709*(0.95-0.6)) = 0.6804. The FDR at p-value

threshold t is therefore estimated as:

FDR(t)~
p07709t

# piƒtf g

We considered p-values as significant where this FDR is lower

than 0.05.

Correction for data heterogeneity due to violations of
model assumptions about protein evolution

Increased evolutionary rate after gene duplication is frequently

observed in entire proteins [17]. We reasoned that short linear

motifs within these proteins may also show the same changes in

protein-level selective constraints. Furthermore, because mutations

may not be homogeneous over the phylogeny (e.g., due to lineage

specific changes in GC content), proteins might show biases in

their substitution process that are not accounted for by the models

assumed in the LRT. Because we were interested in short linear

motif evolution, we wished to test for additional changes in motifs

using the heterogeneity of protein evolution as the ‘‘background’’.

In this case, we can still compute the LRT statistic, but the test

statistic no longer follows the standard chi-squared null distribu-

tion because the heterogeneity in rates and patterns of protein

evolution can be ‘fit’ using the additional parameter in the

alternative hypothesis. This biases the test to reject the null

hypothesis and leads to detection of false positives. A permutation

test has been proposed for this case [37] however, in our case, this

test must be performed for each individual predicted motif, and

these permutation tests may lack power for genome-wide analyses.

We therefore devised another strategy by which we can

approximate the distribution of the LRT statistic under a

heterogeneous background process in protein evolution.

We assume that evolution of each alignment column is

independent and is possibly evolving under a heterogeneous

background process after the whole genome duplication event.

This heterogeneity that affects the whole protein could be due, for

example, to changes in expression level, lineage-specific changes in

GC content or alignment errors. The likelihood of the data

generated under this scenario can be computed under the

alternative hypothesis H1 where there has been a change in

constraints P(data|H1), or under the ‘null hypothesis’ where

evolutionary rate has remained constant, Q(data|H0). We note

that H1 can capture only some of the true heterogeneity in the

data using the additional rate parameter, and the null model H0

captures even less. If h is a parameter space and b the possible

values of those parameters, then there may exist sets of values b* in

the parameter space of the alternative hypothesis hH1 that captures

some of this heterogeneity and that cannot be captured by the

values b0 in the parameter space of the null hypothesis (hH0).

Although this heterogeneous background process does not

produce data following a generative process with parameters

and values b*, we only seek the extra ‘fit’ obtained from the

parameter space hH1 that cannot be captured by the parameter

space hH0.

This fit can be summarized by the expectation of the log-

likelihood-ratio of the two models, where the expectation is taken

using the probabilities P, which is the Kullback-Leibler (KL)

divergence DKL(P||Q). This measures the additional amount of

deviation of the possibly heterogeneous background captured by

the alternative hypothesis relative to the null hypothesis.

ð
log

P(dataDhH1~b�)

Q(dataDhH0~b0)
P(dataDhH1~b�)~DKL(PDDQ)

In practice, we cannot necessarily parameterize the heteroge-

neity in the background evolutionary process, for example if it is

due to alignment errors (i.e. it is difficult to estimate b* or how

data is generated from this heterogeneous process). Nevertheless,

the distribution of the likelihood-ratio test statistic (LRT) when we

test the alternative hypothesis H1 vs H0 (by maximizing the ‘fit’), is

related to the KL divergence as follows. Given that the data used

to compute the LRT are truly drawn from P, the distribution of

the likelihood-ratio test statistic converges to a data-dependent

non-central chi-squared distribution, x2(k,l), parametrized by the

‘‘non-centrality parameter’’ l and the degrees of freedom k. The

non-centrality parameter is given by l = 2 L DKL(P||Q), where L
is the number of data points used in the LRT [75]. To estimate

DKL(P||Q), we note that the mean of the LRT when data is drawn

from P must be equal to the mean of the non-central chi-squared,

which is given by k+l. Therefore,

E LRT½ �~ 2

L

XL

i~1

log
P(Xi DĤH1)

Q(Xi DĤH0)
~kz2LDKL(PDDQ)

where Xi is the data at an alignment column i, k is 1 in our case

and L in our case is the number of alignment columns.

Under the assumption of independence between alignment

columns, DKL can be estimated from the whole alignment using a

single likelihood-ratio test, which we believe is reliable since L is

the number of alignment columns in the whole protein and is

typically large, and we assume that the background process

operates uniformly over the alignment columns. Therefore, we let

E LRT½ �~LRTprotein and use:

DKL(PDDQ)&
LRTprotein{k

2L
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We note that because the motif is small in comparison to the

whole protein (which we use to estimate P), its contribution to the

calculation of DKL is small and unlikely to affect the results.

While the expectation of the likelihood-ratio test statistic

(E[LRT]) is always greater or equal to the degrees of freedom k,

the obtained likelihood-ratio test statistic for a single protein

LRTprotein may be smaller than k, especially when DKL is small. In

these cases, we assume that DKL is equal to the parameter

estimated for proteome-wide (species) evolution (see below).

We note that P = Q implies b* = b0, which indicates that the

data has no source of background heterogeneity that is better

captured by the alternative hypothesis than by the null hypothesis.

In that case, DKL is zero and this approach simplifies to the

standard chi-squared distribution. Further, although it is possible

to formulate a likelihood-ratio test with estimated b* as the values

of the parameters of the null hypothesis (akin to modeling more

complex evolutionary processes in the test), there are several

advantages of modeling the extra ‘fit’ instead. First, it is a single

value, and second, it is directional (such that rejection of the null

hypothesis occurs when values of the parameters are farther from

b0 than from b*).

This estimate of the non-centrality parameter gives us a new

null distribution for the LRT statistic for the predicted motifs in

each protein. Since these motifs are short segments chosen from

the entire alignment, we can compute the probability of having

observed an LRT statistic as extreme (or more) in a short segment,

given the length of the motif and the null distribution estimate for

that protein. Therefore, the p-value for each motif, m, is given by

the non-central chi-squared with 1 degree of freedom and non-

centrality lm.

lm~2LmDKL~Lm

LRTprotein{1

L

where Lm is the length of the short linear motif. A closed-form

solution exists, which we used, for the cumulative distribution of

the non-central chi-squared with one degree of freedom:

P(LRTƒLRTmDlm)~
erf

ffiffiffiffiffiffiffiffiffiffi
LRTm
p

{
ffiffiffiffiffi
lm
pffiffi

2
p

� �
{erf {

ffiffiffiffiffiffiffiffiffiffi
LRTm
p

{
ffiffiffiffiffi
lm
pffiffi

2
p

� �
2

Where erf is the error function, LRTm is the LRT statistic

computed (by PAML) for the motif m, and lm is as above. In more

general cases (i.e. k.1), this computation can be performed using

several algorithms (see e.g. [76]).

We also noticed that the species used in our study appeared to

evolve in a manner that differed from the single rate of evolution

null hypothesis (H0), even for single-copy proteins. To correct for

this additional source of heterogeneity, we estimated another DKL

parameter using the whole proteome to rule out any effect on the

short linear motifs that could be explained simply by species-level

evolution. This DKL parameter was estimated to be 0.014552523.

We therefore obtained two DKL parameters for each motif, and

because we wanted to correct for rate differences which could be

explained by genome-wide deviation or the individual protein’s

deviation, we chose the larger parameter while computing the p-

values. This chooses the larger p-value, for which we believe no

additional multiple-testing correction needs to be performed (in

that we believe we are still performing only one test per motif) and

allows us to perform a likelihood-ratio test using the standard tools

for molecular clock hypothesis testing. Importantly, this global

correction means our p-values are always more conservative than

the significance values obtained using the standard central chi-

squared distribution.

Simulation of protein evolution
To simulate more ‘realistic’ protein evolution (Fig. 1), we use a

similar simulation program as in [23]. We evolve sequences to

closely mirror our protein alignments by using every protein in our

analysis as a template for a simulated protein. First, AAML is used

on every protein alignment to obtain protein-specific branch

lengths for the phylogenetic tree (we use the species tree for all

proteins). The root sequence is one of the sequences of the

alignment (we chose the protein sequence of median length), and a

site-specific rate of evolution for each amino acid is inferred by the

phylogenetic hidden Markov model, which we use as a scaling

factor to evolve the root according to the branch lengths obtained

by AAML. Indels are generated as in [23] but site specific rates are

propagated to indels, such that insertions have the same rate of

evolution as the amino acid positions that created it. To ensure

that the sequences were as realistic as possible, we also use two

amino acid substitution models: one for ordered regions, and one

for disordered regions. These two models differ by their

equilibrium, or stationary frequencies, of the 20 amino acids,

which is estimated based on DISOPRED2 predictions on the S.
cerevisiae proteome. The exchangeabilities of amino acid pairs was

estimated as a whole on closely related species as in [23]. Because

the rate matrix is a product of the stationary frequencies with the

exchangeabilities of amino acids [77], the substitution matrix for

disordered and ordered regions will tend to create amino acids

found in disordered and ordered regions, respectively. These

stationary frequencies of amino acids are also used in the

production of insertions.

We assigned ordered or disordered regions in the root sequence,

and propagated them across the phylogenetic tree. Finally, to

ensure that some motifs can be predicted, we do not allow indels

within regions that have been predicted as motifs in the ancestor.

Our simulated proteins are then evolved according to estimated

phylogenetic trees with two different substitution processes (and

therefore two different stationary frequencies of amino acids), and

with indels. Importantly, we do not include any site specific

changes in constraints. After alignment by MAFFT, the full

pipeline used to predict short linear motifs and calculate the

likelihood-ratio test is then used on the full set of simulated

proteins. In principle, none of the motifs are intended to have

lineage-specific changes in constraints. However, in practice,

computational artifacts may occur during the simulation (such as

misalignments, deletions of motifs within a clade, mispredictions of

short linear motifs) and these can cause signatures of type I

functional divergence. Deletions causing a motif to be removed in

one of the lineage are computational artifacts of the simulation

because they are unintended; however they also would represent

genuine changes in constraints on the motif. However, misalign-

ments and mispredictions of short linear motifs are actual

computational artifacts that can also occur within our data. Using

this set of simulated proteins, it is therefore possible to

conservatively assess how many of the predicted changes in

constraint can be explained by these computational artifacts or by

incorrect non-central parameter estimation for the null distribu-

tion of the likelihood-ratio test statistic.

Test of correlated evolution
We define correlated evolution to be a tendency for changes in

constraints on several functional sequences to occur within only

one of the two paralogous proteins. Our test for correlated

evolution cumulated the number of conserved segments with
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changes in constraints within each of the paralogs and asked

whether the changes occurred more in a particular direction than

expected by chance. Under the null hypothesis, the expected

difference in the number of motifs changing in one direction minus

the other on one protein should be zero. The sum of all the

differences is used as the final test statistic, for which a p-value was

obtained by a non-parametric permutation test.

To correct for the possibility that the phylo-HMM mistakenly

separated a functional fragment as two motifs due to rapid

evolution between the regions, we counted multiple motifs that

were close to each other (within 35aa) and that had accelerated

evolution on the same lineage as a single motif for the purpose of

this test.

Localization analysis
We wished to test that the localization of Ace2/Swi5

homologous proteins differed by quantifying the intensity of the

green fluorescent protein with respect to bud or mother nuclei. We

chose to quantify solely the nuclear intensity as these proteins are

transcription factors known to shuttle to the nucleus during the cell

cycle, and show distinct patterns of nuclear localization [51]. To

obtain normalized fluorescence intensity, images were analyzed by

manually quantifying the cell and nuclear median green fluores-

cence. Cell size in pixel count was also quantified in this manner

and was used to identify the daughter cells. The difference in

fluorescence intensity between the bud and mother cell was used

as the index of asymmetry. Cells where the median fluorescence

intensity observed was over 240 were discarded as they were

potentially too saturated to obtain reliable measures. Statistical

significance was calculated using a Z-test.

To determine statistical significance when testing for association

between changes in constraints and localization differences as

determined by [7], we asked whether the observed fold increase in

rate of motif changes in constraints was higher than random

permutations of the ‘different’ and ‘similar’ labels of localization.

Software availability
The updated phylo-HMM and simulation programs can be

found at http://www.moseslab.csb.utoronto.ca/phylo_HMM/

data.php

Supporting Information

Text S1 Supplementary results and methods.
(PDF)

Figure S1 The chi-squared approximation of the distri-
bution of likelihood-ratio test on short sequences is
conservative. A) Short amino acid sequences of various lengths

were evolved under the WAG model with the same phylogenetic

tree that follows a global clock (corresponding to the null model

assumed by the test). Grey bars show the expected distribution of

p-values if the chi-squared approximation is correct. Data points

are the obtained distribution of p-values. B) Short linear motifs of

length 7 were evolved using the same procedure as in A) but the

phylogenetic tree was scaled to allow for more substitutions per

sites, showing that more substitutions do not lead to more false

rejections than expected for short sequences.

(TIF)

Figure S2 P-value distribution of the likelihood-ratio
test obtained from chi-squared and non-central chi-
squared on simulated data. A) Amino acid sequences were

evolved under the WAG model with or without indels. Grey bars

show the distribution of p-values obtained from the likelihood-

ratio test when the data are generated according to the model

assumed by the test. Circles indicate the distribution of p-values

when indels are also included and data is aligned, and the test

statistic is assumed to be chi-squared distributed (black circles) or

non-central chi-squared distributed (white circles, ‘‘corrected’’). B)

Protein coding DNA sequences were evolved. Grey bars show the

distribution of p-values when sequences are evolved under a

homogenous and stationary codon frequency model assumed by

the test. Circles indicate the distribution of p-values when the

model is non-homogenous and the test statistic is assumed to be

chi-squared distributed (black circles) or non-central chi-squared

distributed (white circles, ‘‘corrected’’). Squares indicate the

distribution of p-values when the indels are also included and

the test statistic is assumed to be chi-squared distributed (black

squares) or non-central chi-squared distributed (white squares,

‘‘corrected’’).

(TIF)

Figure S3 Alignment of the characterized nuclear
localization signal of Swi5 and other species. Green box

indicates the characterized nuclear localization signal in the Swi5

lineage. Coordinates of Ace2 are indicated in the alignment.

Bolded species indicate species that we tested for their localization

in Fig. 5.

(TIF)

Table S1 Motifs identified and the associated p-value
for the changes in constraints.

(XLSX)

Table S2 Strains and primer sequences used in our
study.

(XLSX)
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