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Abstract

Natural selection favors the evolution of brains that can capture fitness-relevant features of the environment’s causal
structure. We investigated the evolution of small, adaptive logic-gate networks (‘‘animats’’) in task environments where
falling blocks of different sizes have to be caught or avoided in a ‘Tetris-like’ game. Solving these tasks requires the
integration of sensor inputs and memory. Evolved networks were evaluated using measures of information integration,
including the number of evolved concepts and the total amount of integrated conceptual information. The results show
that, over the course of the animats’ adaptation, i) the number of concepts grows; ii) integrated conceptual information
increases; iii) this increase depends on the complexity of the environment, especially on the requirement for sequential
memory. These results suggest that the need to capture the causal structure of a rich environment, given limited sensors
and internal mechanisms, is an important driving force for organisms to develop highly integrated networks (‘‘brains’’) with
many concepts, leading to an increase in their internal complexity.
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Introduction

Many studies have sought to elucidate the role of information in

evolution [1–4], its relation to fitness [5–7], and how information

about the environment is acquired and inherited by an organism

[8,9]. Common to most current approaches to characterize and

quantify information in biology is the notion that biological

information has to be physically implemented and should be

functional, meaning valuable to the organism and related to the

environment [3,4,9]. There is also growing interest in how

measures of information can shed light on the apparent growth in

complexity during evolution [2,10–12].

Artificial adaptive agents (‘‘animats’’) have proven useful for

investigating how various information and complexity measures

change during evolution [6,7,13]. Animats consist of small neural

networks (‘‘brains’’), with sensors, hidden elements, and motors,

which are evolved under selection based on task fitness. In recent

work we used animats consisting of Hidden Markov elements

evolving in a task environment that requires integrating current

sensor inputs with memory. We showed that the animats’

increasing fitness is associated with an increase in the capacity to

integrate information [6,7].

In this study, we extend these initial results in two ways. First,

we evaluate the animats’ capacity for integrated information using

the comprehensive set of measures recently introduced in the

context of integrated information theory (IIT 3.0, see Box 1 and

[14,15], for previous versions see [16] (‘‘IIT 2.0’’) and the original

formulation for stationary systems [17,18] (‘‘IIT 1.0’’)). Specifical-

ly, we ask whether adaptation to an environment leads to an

increase in the number of evolved concepts and in the total amount

of integrated conceptual information (WMax, ‘‘Big Phi’’). Second,

we compare how different task environments influence the

evolution of animats and their capacity to integrate information

depending on memory requirements and size of the sensory-motor

interface. In this way, we aim to elucidate under which conditions

integrated brains with high WMax become advantageous.

Information-theoretic approaches to assess the evolved com-

plexity of (artificial) organisms are typically based on extrinsic

correlational measures, either between the system’s genome and its

environment [8,19] or between the system’s sensors and motors

[20] (sensory-motor information), or between successive system

states [6,7] (predictive information [21]). By contrast, IIT

quantifies information from the intrinsic perspective of the system,

based on the causal power of its internal mechanisms - the

‘‘differences that make a difference’’ within the system [14–

16,18,22,23]. In the animats employed here, a mechanism consists

of one or more system elements that, at a given time, are in a

particular state (on or off). A mechanism in a state specifies a

concept if it meets the following conditions (see Methods for

details). First, the mechanism must specify which past and future
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states of the system are possible and which are not (information).

The particular way in which it does so constitutes its cause-effect
repertoire, the probability distribution of past and future system

states given the current state of the mechanism. Second, its cause-

effect repertoire must be irreducible to that specified by sub-

mechanisms (integration). Irreducibility of a mechanism is assessed

by measuring its integrated information Q (‘‘small phi’’) - the

distance between the cause-effect repertoire of the intact

mechanism and that of its minimum partition (MIP), which

renders the weakest connection of the mechanism causally

ineffective. Q thus quantifies how much causal information is lost

due to the MIP. A mechanism can specify only one cause-effect

repertoire, the one that is maximally irreducible (exclusion, QMax,

see Methods). This constitutes its concept—what the mechanism

in a state ‘‘does’’ for the system from the intrinsic perspective of the

system itself.

The set of all concepts and associated QMax values generated by

a set of elements constitutes a conceptual structure (information,

see Methods for details). As for individual concepts, the integration

of a conceptual structure can be evaluated by measuring the

distance W (‘‘big phi’’) between the conceptual structure of the

intact set and that of its minimum (unidirectional) partition (see

Methods). Within some animats, a set of elements may generate a

maximally integrated conceptual structure (WMax), which consti-

tutes a main complex (MC, exclusion). Other animats may not

contain complexes (W = 0) because their brains are constituted of

functionally segregated modules with feed-forward architecture

(containing at most self-loops) [15]. In sum, W can be viewed as a

measure of complexity, since only systems with many specialized,

but integrated mechanisms have high W, whereas systems that

have only a few different mechanisms and/or are very modular

have low or no W [15,16,22].

From an engineering point of view, modular systems with

segregated functions are much simpler to design and understand

than integrated systems. However, simplicity of design is not an

issue for evolution by natural selection. Instead, important factors

are economy of elements/wiring [24], composition of functions

[14], degeneracy (multiple ways to achieve the same function)

[25], adaptability in the face of change [26,27], integrated control

[14], and robustness to failure [28]. These factors should favor the

evolution of organisms with integrated brains in an environment

that is complex, changing, and requires sensitivity to context

[14,25,29]. Based on these considerations, we predict that

measures of integrated information should increase with the

complexity of the environment. Specifically, i) evolving animats

should show an increase in the number of concepts; ii) integrated

conceptual structures should become larger and more irreducible;

iii) the increase in concepts and integrated conceptual structures

should be related to the complexity of the environment and to the

requirements for memory. Moreover, to the extent that IIT is

correct in claiming that the capacity for information integration

underlies consciousness [14,15,18,23], finding an increase in

animats’ WMax values in complex environments would provide a

plausible account of why and how consciousness evolved.

In what follows, we test and confirm these predictions by

evolving animats solving perceptual categorization tasks [13,30] in

task environments that vary in the amount of sequential memory

necessary to solve the task optimally. The results show that, given

strict constraints on the number of elements in the animat’s brain,

integrated network architectures become advantageous over

modular or feed-forward architectures when the environment

was more complex. Moreover animats with restrictions on the

number/fidelity of their sensors or motors evolved more concepts

and larger integrated conceptual structures, in line with an

increased reliance on memory.

Results

In order to investigate the causal structure of a system from an

evolutionary perspective, we simulated the adaptation of simple

neural networks (‘‘animats’’) [6,7,13] in task environments of

varying difficulty. For these animats, their concepts and integrated

conceptual information W can be calculated rigorously across

many generations (see Methods). This permits testing the following

predictions about the evolution of (integrated) conceptual infor-

mation during adaptation to specific environments:

a) The number of concepts and their summed Qmax values

should increase during adaptation, proportional to the

amount of internal computation necessary to solve a task.

b) Given a limited number of hidden elements, integration

should also increase during adaptation, particularly in

tasks that require more memory.

c) Since the reliance on memory increases with the

complexity of the environment relative to the sensor and

motor capacities of the organism, the number of concepts

and their integration should also increase during evolution

under sensor or motor limitations.

Animats and adaptation
Each animat is equipped with a fixed number of sensors, hidden

elements, and two motor outputs (to move either left or right, see

Fig. 1). All elements are binary Markov variables, whose value is

specified by deterministic logic gates. Each animat has a genome,

which encodes the wiring diagram of the animat’s brain and the

logic functions of its elements. More precisely, each gene specifies

a hidden Markov gate (HMG) and all HMGs together determine

the brain’s causal structure (see Methods and [6,13]). The animats

are allowed to evolve over 60,000 generations using a genetic

algorithm, starting with an initial population of 100 animats

without connections between brain elements (generation zero). To

compose the next generation, the genetic algorithm selects a new

sample of 100 animats based on an exponential measure of the

animats’ fitness (roulette wheel selection). The genome of each

selected animat is mutated according to three probabilistic

mutation mechanisms (point mutations, deletions, and duplica-

tions) [13]. The mutated genomes then determine the wiring

diagrams and logic functions of the next animat generation, which

Author Summary

The capacity to integrate information is a prominent
feature of biological brains and has been related to
cognitive flexibility as well as consciousness. To investigate
how environment complexity affects the capacity for
information integration, we simulated the evolution of
artificial organisms (‘‘animats’’) controlled by small, adap-
tive neuron-like networks (‘‘brains’’). Task environments
varied in difficulty due primarily to the requirements for
internal memory. By applying measures of information
integration, we show that, under constraints on the
number of available internal elements, the animats
evolved brains that were the more integrated the more
internal memory was required to solve a given task. Thus,
in complex environments with a premium on context-
sensitivity and memory, integrated brain architectures
have an evolutionary advantage over modular ones.

Evolution of Integrated Causal Structures in Animats
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are tested for fitness in the respective task environment. In sum,

adaptation arises through mutation and selection driven by the

animat’s task performance.

Throughout this study, the animats’ task environments are

variants of ‘‘Active Categorical Perception’’ (ACP) tasks [13,30],

where moving blocks of different sizes have to be distinguished in a

‘Tetris-like’ game (Fig. 1B). Adaptation is measured as an increase

in fitness, where fitness corresponds to the fraction of successfully

caught or avoided blocks within a fixed number of trials (128 for

each animat at each generation, with one falling block per trial).

Blocks move sideways and down at 1 unit per time step either to

the right or left starting from one of 16 possible initial positions. If

a block moves out on the left it will reappear on the right and vice

versa. A block is ‘‘caught’’ if the animat overlaps with at least one

of its units when it reaches the bottom (after 36 time steps);

otherwise the block is ‘‘avoided’’. Each animat’s size is 3 units,

with a space of 1 unit between the two sensors (a ‘‘blind spot’’).

Therefore, only blocks of size $3 can activate both sensors at the

same time (Fig. 1C,D). Note that the sensors of the animat convey

limited information about the environment and only at a single

time step, yet solving ACP tasks successfully requires integration of

sensor inputs over multiple time steps. Hence, information about

past sensor states (memory) has to be stored through the states of

internal elements.

At the end of each evolutionary run at generation 60,000, the

line of descent (LOD) of one animat is traced back through all

generations. Every 512 generations along the LOD, a transition

probability matrix (TPM) is generated for all possible states of the

animat’s brain, which captures how the brain transitions from one

state to another. From these TPMs, concepts and integrated

conceptual information W can be calculated across the LOD. We

averaged the causal measures for a particular generation in one

LOD across all network states experienced by the animat during

the 128 test trials, weighted by their probability of occurrence. For

each task condition, 50 independent LODs were obtained, each

from a different evolutionary run.

IIT predictions on Tasks 1–4
To investigate how the number of concepts and their

integration depends on the causal structure of the task environ-

ment, we tested the animats in four tasks (Task 1–4) with different

block categories and strategic requirements (Fig. 1E). Given the

periodic boundary conditions and the fact that the animats can

actively explore their environment, predicting the evolutionary

difficulty of an ACP design is not straightforward. Nevertheless, if

solving a task requires more memory of input sequences, the

number of concepts developed by the animats should increase.

Since the number of evolvable hidden elements is limited to four,

the number of time steps that can be combined without feed-back

between elements and thus W = 0 (see Methods and [15]) is

limited, too. Higher memory requirements should thus bias the

animats towards developing brains with more integrated concep-

tual structures with larger main complexes and higher W.

As a first simple task environment (Task 1), the animats have to

catch blocks of size 1 and avoid blocks of size 3. In Task 1, the two

block conditions can in principle be distinguished based on a

momentary sensor state (S1S2 = 11, see Fig. 1C,D). Categorization

can thus be achieved in a modular manner (e.g., ‘‘if S1S2 = 11

avoid, else follow’’). However, memory is still required to identify

the direction of the moving blocks, since sensor information of at

least two time steps must be combined to infer movement

direction. Task 1 will serve as the comparison environment in the

following sections.

In Task 2, the blocks to be avoided are smaller (2 units).

Consequently, the two block categories cannot be distinguished

based on a single sensor state, since neither block can activate both

sensors at the same time. Here, memory is required for both

categorization of block size and direction.

In Task 3, four instead of just two different block sizes have to

be distinguished. The blocks to be caught (size 1 and 4) and

avoided (size 2 and 3) cannot be distinguished based on a single

threshold (e.g. ‘‘$3’’), nor based on a single sensor state.

Box 1. Integrated (Conceptual) Information

Information and causation in physical systems are typically
evaluated from the extrinsic perspective of an observer. By
contrast, integrated information theory (IIT) [14–16,18,52]
provides a theoretical framework to characterize the
causal/informational structure of adaptive systems from
the intrinsic perspective of the system itself (‘‘differences
that make a difference’’ to the system). A system is
comprised of a set of mechanisms, where ‘‘mechanism’’
simply denotes anything having a causal role within the
system (i.e., elements or sets of elements that (1) can
assume different states depending on the rest of the
system and (2) also influence the state of the rest of the
system), for example, a neuron in the brain that can be
‘‘firing’’ or ‘‘not firing’’, or a logic gate in a computer with
‘‘on’’ and ‘‘off’’ states. IIT invokes five postulates (stated
explicitly in IIT 3.0 [15]) that lead to the definition of a
fundamental quantity, integrated information (‘‘phi’’) that
measures to what extent mechanisms (Q) and systems (sets
of mechanisms) (W) are irreducible to their parts in causal/
informational terms [14,15]:

N Existence: From the intrinsic perspective of a system,
only ‘‘differences that make a difference’’ [53] within the
system matter. Therefore, the system’s mechanisms
must specify causes and effects within the system.

N Composition: The elements of a system can be
structured, forming higher-order mechanisms.

N Information: The mechanisms of a system in a given
state must specify the system’s potential past and
future states in a particular way. A conceptual structure
is made up of the set of cause-effect repertoires
specified by the system’s mechanisms (which past and
future states of the system are possible given a
mechanism and its current state).

N Integration: The conceptual structure specified by a
system must be irreducible (W.0) to that specified by a
partition of the system into non-interdependent sub-
systems (minimum partition). Similarly, each mechanism
must specify a cause-effect repertoire that is irreducible
(Q.0) to that specified by its sub-mechanisms.

N Exclusion: Over a set of elements within a system, only
one conceptual structure can be specified — the one
that is maximally irreducible (Wmax). In that case the set
of elements constitutes a complex. Exclusion avoids
multiple causation: a mechanism that specifies a
particular cause-effect repertoire within one complex
cannot, in addition, specify an overlapping cause-effect
repertoire as part of other, overlapping complexes.
Otherwise, the difference that mechanism makes would
be counted multiple times. Similarly, each mechanism
can only specify one cause-effect repertoire, the one
that is maximally irreducible (Qmax). In that case the
mechanism constitutes a concept.

Evolution of Integrated Causal Structures in Animats

PLOS Computational Biology | www.ploscompbiol.org 3 December 2014 | Volume 10 | Issue 12 | e1003966



Adaptation to Task 3 is thus expected to be more difficult.

However, sensor state S1S2 = 11 allows distinguishing blocks of size

1 and 2 from blocks of size 3 and 4. Whether to catch or avoid a

block can then be decided based on a memory of one time step,

just as in Task 2. Note also that in Task 3 at least 75% fitness can

be achieved with the same categorization strategy as in Task 2 (‘‘$

2’’). Therefore, more concepts than in Task 2 are expected only for

fitness levels.75%.

Finally, in Task 4, four blocks of sizes $3 have to be

distinguished. To successfully catch blocks of size 3 and 6 and

avoid blocks of size 4 and 5 the animats have to combine memory

of at least 3 time steps.

In sum, the evolutionary pressure to develop brains with

integrated concepts should be lowest for Task 1, intermediate for

Task 2/3, and highest for Task 4, in line with the requirements of

sequential memory in Task 1–4. According to IIT, both the

average number of concepts and their integration (WMax) should

therefore be highest in Task 4 and lowest in Task 1.

Comparing number of concepts and W in Task 1–4
Throughout the following analysis, the animats are evaluated in

two ways: first, all concepts and the sum of their QMax values are

calculated for the animat’s brain as a whole, including the sensors,

motors, and all hidden elements. These measures quantify all
causal relations (‘‘IF-THEN’’) in the animat’s brain. Second, the

main complex (MC) within the animat’s brain is identified and the

number of elements that form the MC (‘‘MC elements’’), the

number of concepts in the MC (‘‘MC concepts’’), and its WMax

value are calculated according to IIT 3.0 [15]. These measures

quantify the amount of integration in the animat’s brain. In this

way, increases in fitness that rely on integrated structures can be

distinguished from those that can be achieved with modular

networks with feed-forward architecture (containing at most self-

loops). Fig. 2 illustrates all the causal measures of a potential

animat brain in one particular state. The maximal possible

number of concepts specified by an animat’s brain is 15 (2421, the

power-set of all hidden elements excluding the empty set, see

Fig. 2B). An animat’s main complex can, at most, comprise the 4

hidden elements. Determining upper bounds for SQMax and WMax

is not straightforward (see S1 Text). In the present set of

simulations, the overall highest observed values for an animat in

a particular state were SQMax = 3.11 and WMax = 4.125. Note that

all the above measures are state-dependent [15]. At a particular

generation, these measures are evaluated for every brain state

experienced by the animat during the test trials. The resulting

state-dependent values are then averaged, weighted by the

probability of occurrence of each brain state.

Fig. 3 shows the evolution of all causal measures during

adaptation over 60,000 generations in all four task conditions.

For each task condition, 50 independent LODs are assessed every

512 generations. In Table 1, the average Spearman rank

correlation coefficients across all 50 LODs are listed for all

measures and tasks. As previously observed in a different kind of

task environment [7], trial-by-trial correlation coefficients with

fitness were rather broadly distributed (see histograms in S1 Fig.).

While the causal measures are interrelated to some extent

and the MC measures in particular tend to correlate, disso-

ciations among them occur for individual LODs (see S2 Fig. for

examples).

Task 1 (Fig. 3, 1st column): At generation 59,904 the average

fitness across all 50 LODs was 94.260.7% (mean 6 SEM); in 13

out of 50 evolutionary lines the animats reached perfect fitness. On

average, all causal measures were found to increase during the

initial steep rise in fitness. The number of concepts and their

SQMax values measured in the whole animat brain showed

significant positive correlation with fitness (p,0.05) in 34/

50 LODs. MC measures only correlated positively with fitness in

12/50 LODs (S1 Fig.), reflecting the fact that both modular

(functionally segregated) and integrated concepts can lead to an

increase in fitness. In other words, not every increase in fitness

requires an increase in integration. In the case of Task 1, perfect

categorization can be achieved with a purely modular (no MC,

WMax = 0, 7/13 animats) as well as with an integrated network

(WMax.0, 6/13 animats, see below, Fig. 4).

Task 2 (Fig. 3, 2nd column): In terms of adaptation, Task 2 was

as difficult as Task 1 since the same level of fitness was reached

(94.061.2%). Perfect fitness was achieved in 22/50 LODs. 16 out

of these 22 animats developed integrated brains. Compared to

Task 1 (black), with increasing fitness in later generations the

animats developed brains with more concepts and higher SQMax

values in Task 2 (U98 = 695.5/749.0, Z = 23.844/23.454,

p = 0.000/0.001 respectively for #concepts/SQMax averaged

across the last 3,000 generations). MC measures in Task 2

Fig. 1. Animats and task environments. (A) Exemplar wiring
diagram. Elements without causal role (unconnected elements, or
hidden elements with inputs or outputs only) are dashed. Sensor
elements can connect directly to motor elements. No feedback to the
sensor elements or from the motor elements is allowed. (B) Schematic
of animat in exemplar environment with periodic boundary conditions
at the vertical walls (if a block e.g. moves out on the left it will reappear
on the right). The animat has to distinguish the size of the downward
moving blocks and either catch or avoid them. The animat is 3 units
wide with a space of 1 unit between its sensors. Per trial, one block is
positioned at one of 16 possible starting positions, 36 units above the
animat. (C,D) Blocks continuously move either to the left or right, one
unit per time step and also down at one unit per time step. If a block is
positioned above a sensor element, the sensor switches on. (C) Pattern
of sensor activation for a block of size 2 in case the animat is not
moving. (D) The same for a block of size 3. Blocks with size $3 can
activate both sensors at the same time. (E) Illustration of Task 1–4.
doi:10.1371/journal.pcbi.1003966.g001

Evolution of Integrated Causal Structures in Animats
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increased more subtly, but reached higher values than in Task 1

(U98 = 985/966/922, Z = 21.899/22.035/22.350, p = 0.058/

0.042/0.019 respectively for #MC elements/#MC concepts/

WMax). The number of LODs with significant positive correlation

with fitness (p,0.05) was also higher than in Task 1 for number of

concepts and SQMax (42/50) and MC measures (24/50).

Fig. 2. Assessing the causal structure of an animat in a state. (A) A hypothetical animat brain comprised of a logic-gate network with 2
sensors (S1S2), 4 hidden elements (ABCD), and 2 motors (M1M2) is analyzed for illustration in state 00-1010-10. (B) First, the power set of all candidate
concepts in the entire animat brain is evaluated. Note that the sensors and motors cannot give rise to concepts or be part of higher order concepts
since – by design - they either lack causes or effects (i.e., inputs or outputs) within the system. Each animat brain can thus maximally have 2421 = 15
concepts (the power-set of the 4 hidden elements, excluding the empty set). ‘‘Small phi’’ Q measures how irreducible a mechanism’s cause-effect
repertoire is over a particular set of inputs and outputs. QMax is the integrated information of the most irreducible cause-effect repertoire of the
mechanism. The number of concepts and SQMax are measures of all the brain’s causal relations and their strength, both modular or feed-forward and
integrated. Here, 6 concepts exist, 4 elementary concepts ([A], [B], [C], [D]) and 2 higher order concepts ([AB], [AC]). All other higher order mechanisms
are reducible (QMax = 0). (C) Second, W (‘‘big phi’’) is evaluated for all subsets of the system (candidate complexes). W measures how integrated a set of
elements is. It quantifies how much the concepts of the set of elements change under a unidirectional partition between elements (for example,
‘‘noising’’ the connections from A to the rest of the system, leaving the connections to A from the system intact, see Methods). During the analysis,
elements outside of the candidate complex are taken as fixed background conditions and remain unperturbed. Note that all subsets that contain
either a sensor or a motor have W= 0, because elements that are connected to the rest of the system in a feed-forward manner cannot be part of an
integrated system (see Methods). An animat’s main complex can thus contain at most the 4 hidden elements. (D) Of all subsets of elements, in this
particular system state, ABC is maximally integrated (WMax = 0.92) and thus forms the main complex (MC). Gray arrows denote fixed background
conditions, blue arrows denote functional connections within the MC. (E) Out of the power-set of ABC (maximally 2321 = 7 possible concepts), the
MC specifies 4 irreducible concepts. The number of elements of the main complex, the number of MC concepts, and WMax measure different aspects
of how integrated the animat’s brain is. For each animat at a particular generation, the analysis is performed for every state of the animat’s brain,
while the animat is performing its particular task. The state-dependent values are then averaged, weighted by the probability of occurrence of each
state over 128 trials of different blocks falling.
doi:10.1371/journal.pcbi.1003966.g002

Evolution of Integrated Causal Structures in Animats
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Task 3 (Fig. 3, 3rd column): The average fitness reached at

generation 59,904 was 82.961.0%. Perfect fitness was achieved

only temporarily in one LOD (with final fitness 98.4%). The

average number of concepts and WMax evolved to higher values in

Task 3 compared to Task 1 (black) (U98 = 854/899, Z =

22.746/22.530, p = 0.006/0.011 for #concepts/WMax), while

SQMax and the number of MC concepts and MC elements stayed

comparable to those of Task 1. To compare the different tasks

without confounding effects due to differences in fitness, a subset of

LODs with high final fitness was chosen out of the 50 LODs of

Task 3, so that the average fitness across the last 5,000 generations

matched that of Task 1 (9 fittest LODs, shown in dark red). When

compared at the same level of fitness, all causal measures evolved

to significantly higher values, except for the number of MC

concepts, which still almost reached significance p,0.05

(U57 = 77.5/71.0/136/141/112, Z = 23.143/23.247/2

1.999/21.886/22.538, p = 0.002/0.001/0.046/0.059/0.011 re-

spectively for #concepts/SQMax/#MC elements/#MC con-

cepts/WMax). As predicted, the evolutionary pressure for concepts

and integration in Task 3 appeared to be comparable to that of

Task 2. Accordingly, trial-by-trial positive correlation with fitness

in Task 3 was also similar to Task 2: number of concepts and

SQMax correlated significantly with fitness in 39/50 LODs; MC

measures correlated significantly with fitness in 24/50 LODs. At

comparable average fitness levels, the fact that four instead of just

two blocks had to be distinguished only led to a marginal increase

in the number of concepts and their integration, since the

requirement for sequential memory remained comparable be-

tween Task 2 and 3. Solving the more difficult Task 3 perfectly,

however, might still require significantly more overall concepts

and higher SQMax values than Task 2, since the perfect solution

requires distinguishing the 4 different block sizes under every

initial condition (see below, Fig. 5A).

Task 4 (Fig. 3, 4th column): As expected, Task 4 was the most

difficult task in terms of adaptation with an average final fitness of

79.561.4% at generation 59,904. The highest overall fitness

reached across all 50 LODs was 97.7% (125/128 correct trials) in

one LOD. Despite the lower fitness reached, the average number

of concepts, SQMax, and WMax were significantly higher in Task 4

than in Task 1 (U98 = 813/862/850, Z = 23.034/22.675/2

2.879, p = 0.002/0.007/0.004 for #concepts/SQMax/WMax).

More evolutionary pressure for sequential memory thus led to

causal structures with a higher number of concepts and more

integration. This became even more evident when comparing a

subset of LODs of Task 4 with equivalent average fitness (fittest

7 LODs) to Task 1 (U55 = 28.5/47/53/52/33, Z = 23.604/2

3.112/23.159/23.185/23.677, p = 0.000/0.002/0.002/0.001/

0.000 for #concepts/SQMax/#MC elements/#MC concepts/

WMax). In this subset, the evolved WMax of Task 4 was significantly

higher than in any of the other tasks (U55/55/14 = 33/61/11, Z = 2

3.677/22.792/22.170 compared to Task 1/2/3). Also most

other causal measures were significantly higher than in Task 2

(U55 = 62.5/103/66/74, Z = 22.740/21.751/22.670/22.474,

p = 0.006/0.080/0.008/0.013 for #concepts/SQMax/#MC ele-

ments/#MC concepts). Moreover, the number of LODs posi-

tively correlated with fitness was highest in Task 4: in 48/

50 LODs the number of concepts and SQMax correlated

significantly with fitness, and the MC measures correlated

significantly with fitness in 33/50 LODs.

Taken together, comparing the causal measures across different

task environments confirmed the predictions of IIT: the number of

concepts that evolved during adaptation and their integration was

higher in those tasks that required more memory and that could

not be solved based on momentary sensor inputs – lowest for Task

1, intermediate for Task 2/3, and highest in Task 4.

Features of network structures evolved in Task 1–4
Given the restrictions imposed on the animats’ brains (binary

elements and at most 4 hidden elements), evolutionary selection

based on task fitness provides a driving force for more concepts

and their integration proportional to the amount of memory

necessary to solve the tasks. This can be illustrated by considering

the evolved network structures with high fitness in Task 1–4.

In Task 1 the maximum fitness reached with just one hidden

element was 92.2% (118/128 correct trials). Yet, perfect fitness in

Task 1 can be achieved in both a modular and integrated manner,

i.e., with network structures with either WMax = 0 or WMax.0

(Fig. 4). Out of the 13 LODs in which animats reached perfect

fitness, 7 developed modular networks. An example LOD is shown

in red in Fig. 4A. In this example, an initial increase in fitness at

generation 9,216 was accompanied by an increase in integration.

Subsequently, however, the animat’s brain turned modular again

at generation 13,824 (W = 0), which in this case led to a jump in

fitness. The evolved network structure is shown in Fig. 4B for

generation 59,904. The two hidden elements have memory in the

form of self-loops, which however does not count as integration

(W = 0, since single units cannot form a MC because they cannot

be partitioned). In all of the 7 independent LODs that led to

perfect fitness and a modular brain, the final generation of animats

had evolved the same functional wiring diagram and similar logic

functions with only 2 types of behavior (low degeneracy).

In the remaining 6 LODs in which animats achieved perfect

fitness, they evolved an integrated main complex with feedback

between elements. An example LOD is shown in blue in Fig. 4A.

The initial increase in fitness of that LOD to 87.5% was achieved

without a main complex (WMax = 0) and just one concept in the

Fig. 3. Comparison of concepts and integration across different task environments. Fitness, the average number of concepts and their ,
SQMax. values in the whole animat brain, and the average number of MC elements, MC concepts, and ,WMax. of Tasks 1–4 were measured for 50
independent LODs. All animats were evolved for 60,000 generations. Shaded areas indicate SEM. The block sizes that had to be caught or avoided for
the respective tasks are indicated at the top. For comparison, Task 1 is shown in black in every column. Task 1: The average fitness increases rapidly at
first (to ,82% in 5000 generations), followed by a slower increase to 93% at generation 59,904. The mean number of concepts specified by all
elements comprising the animats’ brains and their mean ,SQMax. increased during adaptation. The animats also developed main complexes with
increasing mean number of MC elements, MC concepts, and mean ,WMax. value, albeit with higher variability between the different LODs. Task 2: In
contrast to Task 1, the two different block sizes in Task 2 could not be distinguished based on a momentary sensor state since both blocks are ,3.
The difficulty of Task 2 is similar to Task 1—the same average level of fitness is reached. Nevertheless, the animats developed more concepts and
higher ,SQMax.. Also the average MC measures show higher values in Task 2 for generations.40,000, but to a lesser degree (see text). Task 3/4: The
animats had to distinguish four different block sizes. Task 3 and 4 were thus more difficult: the average fitness reached after 60,000 generations is
lower (83% and 80%) than in Task 1 and 2 (93% and 94%). The average measures across all 50 LODs are shown in blue (columns 3 and 4). To compare
the causal measures independent of differences in fitness, we also analyzed the subsets of LODs with highest final fitness that on average best
matched that of Task 1 (shown in red, columns 3 and 4, see Methods). As expected, in Task 3, only the subset that reached high fitness evolved more
concepts than Task 1. Yet, even considering all 50 LODs, MC measures showed higher values, similar to those of Task 2. In Task 4 all causal measures
reached higher values than in Task 1, particularly for the subset of LODs with high fitness.
doi:10.1371/journal.pcbi.1003966.g003

Evolution of Integrated Causal Structures in Animats

PLOS Computational Biology | www.ploscompbiol.org 7 December 2014 | Volume 10 | Issue 12 | e1003966



whole animat brain (generation 8,704-51,200). The rapid increase

to 100% fitness at generation 52,224, however, was preceded by

the formation of a main complex (WMax.0) and thus integration of

concepts at generation 51,712. In Fig. 4C the final evolved wiring

diagram at generation 59,904 is shown. This network structure is

predominant among the evolved animats that reached perfect

Table 1. Average Spearman rank correlation coefficients ,R. across all 50 LODs between all applied measures and fitness.

,#concepts. ,SQMax. ,#MC elements. ,#MC concepts. ,WMax.

Task 1 ,R. 0.38 0.28 0.13 0.14 0.11

SEM 0.05 0.05 0.05 0.05 0.05

Task 2 ,R. 0.55 0.48 0.22 0.22 0.21

SEM 0.04 0.04 0.05 0.05 0.05

Task 3 ,R. 0.47 0.39 0.30 0.28 0.27

SEM 0.04 0.04 0.05 0.05 0.05

Task 4 ,R. 0.71 0.63 0.47 0.48 0.50

SEM 0.04 0.03 0.06 0.06 0.06

Since the average number of concepts and their SQMax values capture both modular and integrated causal relations in the animat’s brain as a whole, they correlated
more strongly with fitness than the average number of MC elements, MC concepts and ,WMax., which nevertheless increased with adaptation. See S1 Fig. for
complementary histograms of the correlation coefficients of all individual LODs.
doi:10.1371/journal.pcbi.1003966.t001

Fig. 4. Task 1 can be solved in a modular and integrated manner. (A) Evolution of fitness, concepts, and integration across 60,000 generation.
Two individual LODs are shown for two evolutionary histories in which the animats reached perfect fitness: in one history (blue) the animats
developed an integrated main complex (,WMax. = 0.10 at generation 59,904); in the other history (red), the animats developed a feed-forward
structure with two self-loops (WMax = 0 at generation 59,904). The red LOD, moreover, is a good example for dissociation between the MC measures
and the number of concepts and their ,SQMax. in the whole animat brain (generation 13,824). As in Fig. 3, the average across 50 animats (LODs) is
shown in black, SEM in gray. (B) Wiring diagram at generation 59,904 for the red LOD that developed a modular network. (C) Wiring diagram at
generation 59,904 for the blue LOD that developed an integrated network.
doi:10.1371/journal.pcbi.1003966.g004
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fitness in an integrated manner (5 out of 6). Despite this

‘‘anatomical’’ uniformity, the evolved logic functions, and thus

the evolved behavior of the animats in the final generation,

differed for all 6 LODs (high degeneracy). Analyzing all animats

with perfect fitness across all generations and LODs, the animats

with WMax.0 showed 341 different TPMs, leading to 332 different

behavioral patterns, which were implemented by 15 different

wiring diagrams. By contrast, animats with WMax = 0 had only 60

different TPMs, leading to 44 different behavioral patterns, which

were implemented by 11 different wiring diagrams. Moreover,

once a solution (perfect fitness) with WMax = 0 was encountered,

subsequent descendants with WMa.0 networks (and vice versa)

were rather rare and the variability of TPMs within one LOD was

lower for modular networks with WMax = 0 than for integrated

networks (see Fig. 4A and S3 Fig.). This indicates that, while

solutions with WMax = 0 were encountered with about equal

probability to WMax.0 solutions across 50 independent LODs,

within a LOD neutral mutations without decrease in fitness

happen more frequently given integrated networks. Recurrent

networks with W.0 are thus more flexible, in the sense that there

are other solutions close by on the fitness landscape, which can be

reached through neutral mutations. Taken together, perfect

adaptation to Task 1 seems to require at least 2 hidden elements,

but could be achieved in a recurrent/integrated and feed-forward/

modular manner with about equal likelihood. However, animats

with perfect fitness and WMax.0 showed higher degeneracy and

variability in structure and behavior (see also S3 Fig.).

In Task 2 the maximum fitness reached with just one hidden

unit was only 75% (96/128 correct trials) compared to 92.2% in

Task 1. The fact that the two categories of blocks in Task 2 have to

be distinguished based on memory without the possibility to rely

on momentary evidence thus appears to increase the evolutionary

pressure to develop more hidden elements. Nevertheless, in Task 2

as well, perfect fitness was achieved with both modular (W = 0) and

integrated networks (W.0). However, out of the 22 independent

LODs with perfect fitness only 6 showed no integration of

concepts (W = 0) at generation 59,504, with the same wiring

diagram as shown in Fig. 4C (Task 1) in 5 out of 6 cases. Of the

remaining 16 animats with perfect fitness and integrated MCs, half

evolved 2 hidden elements and half 3, with 9 different types of

wiring diagrams and even higher degeneracy in their evolved logic

functions and behavior. This corroborates the fact that evolution-

ary pressure for more concepts and integration is higher in Task 2

than in Task 1. As in Task 1, degeneracy and variability in

network structure and behavior in Task 2 was higher for animats

with integrated brains: taking all animats with perfect fitness across

all generations and LODs into account, the animats with WMax.0

showed 920 different TPMs, leading to 407 different behavioral

patterns, implemented by 34 different wiring diagrams, compared

to only 235 different TPMs, with 85 different behavioral patterns,

implemented by 30 different wiring diagrams for animats with

WMax = 0.

Although Task 3 and 4 were more difficult, the maximal fitness

that was reached with just one hidden element in these tasks was

similar to that of Task 2: 78.1% (100/128) in Task 3 and 77.3%

(99/128 correct trials) in Task 4. However, even with 2 hidden

elements, the highest overall fitness reached was only 96.9% (124/

128 correct trials) in Task 3 and 93.8% (120/128 correct trials) in

Task 4. While in Task 3 the highest fitness achieved with a

modular network without an integrated main complex (W = 0) was

96.1%, in Task 4 it was only 89.8%. The wiring diagrams of the

fittest animats of both tasks are displayed in Fig. 5. In both cases,

the animats developed brains with more than two hidden elements

and an integrated main complex. Notably, the fittest animat in

Task 4 evolved a main complex that was strongly integrated with

,WMax. = 1.13 and had many higher order concepts. Fig. 5C

shows the conceptual structure of the fittest animat of Task 4 for

one representative state. While the MC concepts are always about

the elements in the main complex, some may be interpreted from

the extrinsic perspective, such as the concept AC = 11, which here

could mean ‘‘keep going right’’. Which concepts exist at a given

time depends on the state of the system. In this way, evolved

concepts can correlate with and indirectly refer to specific states/

events of the environment. A detailed interpretation of the

extrinsic and intrinsic meaning of the animats’ MC concepts is,

however, beyond the scope of this study. Although it cannot be

excluded that Task 4 is in principle solvable with 4 hidden

elements connected in a non-integrated manner (W = 0), these

results suggest that evolution strongly prefers integrated brains in

Task 4.

In summary, under the constraints of maximally 4 binary,

hidden elements, the fittest animats evolved in Task 1 developed

modular and integrated wiring diagrams with similar likelihood.

With higher memory requirements evolution increasingly selected

for integrated networks with WMax.0. In Task 4, all animats

with.90% fitness (8 LODs) developed an integrated main

complex.

Reduced sensor/motor capacity requires more concepts
and higher integration in the same task

Task difficulty and the amount of sequential memory necessary

to solve a task depend not only on the environment, but also on

the sensor and motor capacities of the animats themselves. Solving

the same task with fewer (or worse) sensors and motors requires

increased reliance on memory. Consequently, the animats’

evolved number of concepts and their integration should increase

if the animats’ sensor and motor capacities are restricted during

adaptation.

To test this hypothesis, 50 additional LODs were evolved in the

environment of Task 1 with one of the animats’ sensors disabled

(set to 0 at each time step and thus rendered useless). As explained

above, with two functional sensors the two blocks in Task 1 can be

categorized based on momentary sensory data alone (Fig. 2C,D).

As a result, Task 1 could be solved equally well with a modular

and integrated brain network (Fig. 4). Given only a single sensor,

however, the task becomes more complex and requires memory of

input sequences for block categorization. Fig. 6 shows the results

obtained from the animats with only one sensor compared to Task

1 with two sensors (in black).

The average fitness reached with just one sensor was

82.861.4%. Nevertheless, in 4/50 LODs the animats reached

98.4% fitness (126/128 correct trials). As predicted, the animats

evolved brains with more concepts, higher SQMax, and more

integration than those with two sensors at their disposal

(U98 = 510.5/514/746.5/749.5/728.5, Z = 25.116/25.074/2

3.591/23.566/23.716, p = 0.000, respectively for #concepts/

SQMax/#MC elements/#MC concepts/WMax). Also the number

of LODs that correlated positively with fitness was higher with

only one sensor: number of concepts and SQMax correlated

significantly in 46/50 LODs and MC measures in 36/50 LODs

(compared to only 34/50 and 12/50, respectively, with two

sensors). The increase in concepts and integration due to restricted

sensors is even more apparent in the subset of 19 fittest LODs with

the same average final fitness as in Task 1 with two sensors (Fig. 6,

dark orange).

In terms of network structure, with just one sensor, the maximal

fitness achieved with one hidden element was only 67.2%

(compared to 92.2% with two sensors) and 95.3% with two

Evolution of Integrated Causal Structures in Animats
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hidden elements (100% with two sensors). In three out of the four

fittest LODs (98.4% fitness), the animats evolved brains with an

integrated main complex (W.0). Overall, the results obtained in

Task 1 with one sensor are comparable to those of Task 4, the task

with the largest block sizes, which requires most sequential

memory (Fig. 3, 4th column).

As demonstrated above, restricting the sensor capacities of the

animats increased brain integration since Task 1 had to be solved

based on memory alone instead of momentary sensor states.

Restricting the animats’ motor capacities still allows using the

sensor state S1S2 = 11 to distinguish blocks of size 3 from size 1.

Nevertheless, with just one available motor, reliance on memory

should increase, since movements have to be coordinated across

several time steps. This, in turn, should lead to more concepts and

higher integration. Fig. 7 shows the results of another 50 LODs

evolved in Task 1 with one of the animats’ motors disabled (set to 0

at every time step).

Overall, restricting the animats’ motor capacities to one motor

led to larger main complexes with more concepts and higher

integration (WMax) (U98 = 806/824/741, Z = 23.156/23.028/2

3.618, p = 0.002/0.002/0.000 for #MC elements/#MC con-

cepts/WMax). With one motor only, the maximal fitness achieved

was 87.5% (112/118 correct trials) in one LOD; average final

fitness was 78.860.7%. Task 1 with one motor could thus not be

compared at the same level of fitness as Task 1 with two motors.

Instead, a subset of the 10 fittest animats is plotted in dark green in

Fig. 7, in addition to the average across all 50 LODs (light green).

In this subset, also the number of modular concepts was

significantly increased compared to the standard Task 1

(U58 = 107.5, Z = 22.857, p = 0.004). The maximal fitness

reached with one motor and one hidden element was 71.8%.

24/50 animats evolved the same wiring diagram as shown in

Fig. 4B, but with only one motor element. The fittest animat (112/

128 correct trials) evolved an integrated main complex with at

most 3 elements and ,WMax. = 0.38. Positive correlation with

fitness was also higher given just one motor: the number of

concepts and SQMax correlated significantly in 40/50 LODs and

MC measures in 34/50 LODs.

Finally, evolutionary pressure for more memory should also

arise with sensory data that are less reliable. Consequently, more

concepts and higher integration are expected to evolve in an

environment where sensor inputs are noisy, if compensating

mechanisms are developed. To test this prediction, we simulated

50 additional LODs of Task 1 with 1% sensor noise for each of the

Fig. 5. Wiring diagrams of fittest animats in Task 3 and 4. (A) In Task 3, perfect fitness was achieved temporarily in one LOD only. The fittest
evolved animat had 4 hidden elements; two of them form a main complex. ,#concept., ,SQMax., and ,WMax. are averages across all states
experienced by the animat while performing the task weighted by probability of occurrence of each state. Note that this perfect Task 3 animat
developed a very large overall number of concepts and high ,SQMax., while its MC values are comparable to Task 1/2 animats with perfect fitness
and integrated MCs (Fig. 4C). (B) In Task 4, the fittest animat achieved a fitness level of 97.7%. The animat’s hidden elements formed a main complex
in all experienced states. Shown is the largest MC consisting of all 3 evolved hidden elements. In some states, however, the MC was comprised of only
two hidden elements. Note that the average number of MC concepts was higher than the maximal number of 3 MC elements, which means that the
main complex gave rise to higher order concepts. (C) Conceptual structure of the animat shown in B, for one representative state. This state is active,
whenever the animat follows a block to the right (right sensor and motor are on). The animat’s conceptual structure comprises 5 MC concepts, the
elementary concepts A, B, and C and the 2nd order concepts AC and BC. The cause-effect repertoires of the MC concepts are always about the
elements within the main complex (ABC). Nevertheless, some concepts allow for interpretation from an extrinsic point of view: the higher order
concept AC = 11, for example, specifies that coming from any of three possible past states (ABC = 001, 101, or 111), the next state of ABC will again be
101. Since this state is associated with switching the right motor on, the concept AC can be interpreted as ‘‘keep going right’’. Interestingly, in the
state associated with ‘‘follow left’’ (not shown), a corresponding 2nd order concept AB = 11 exists, which can be interpreted as ‘‘keep going left’’.
doi:10.1371/journal.pcbi.1003966.g005
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two sensors (Fig. 8), meaning that the state of each sensor had a

probability of 1% to be flipped. During evolution with noise, each

trial was repeated 20 times and the next generation of animats was

selected based on the average fitness across repetitions.

On average (Fig. 8, pink), animats evolved in the noisy

environment developed brains with similar number of concepts

and integration as those evolved in the noise-free environment

(black). Presented with the noise-free Task 1, their average final

fitness was lower than for those animats that had adapted to the

noise-free environment (88.161.0% compared to 94.260.7%).

Given the limited size of the animats’ brains, it is possible that

during 60,000 generations no compensatory mechanisms could be

developed and the sensor noise only reduced the animats’

performance without adaptive influence on their network struc-

tures. However, when fitness is evaluated in the environment with
1% sensor noise, the animats that had adapted to the noisy

environment reached 79.060.8% fitness at generation 59,904,

while the animats that had evolved without sensor noise only

reached 76.360.7% fitness. This indicates that in a subset of the

50 evolutionary runs, the animats adapted to compensate for the

sensor noise, at least in part. We thus evaluated the subset of

20 LODs evolved under noise with highest fitness in the noisy

environment, shown in purple in Fig. 8. In line with the above

predictions, this subset of LODs indeed showed more concepts

and a trend for higher SQMax, and larger main complexes with

more MC concepts than the animats that evolved without sensor

noise (U68 = 299.0/368.0/380.0/382.0, Z = 22.638/21.716/2

1.658/21.630, p = 0.008/0.086/0.097/0.103, respectively for

#concepts/SQMax/#MC elements/#MC concepts), although

their fitness in the noise-free Task 1 was very similar (first panel,

Fig. 8). Note that, due to the data processing theorem [31],

introducing sensor noise would generally decrease standard

(Shannon) measures of information processing across the commu-

nication channel between the environment and the animat,

regardless of compensatory mechanisms in the system. By contrast,

measures of information integration may actually increase, since

they take into account the noise compensation mechanisms

implemented by the intrinsic causal structure of the animat.

Taken together, the results presented in this section show that the

number of concepts and their integration not only increase with

the complexity of the environment, but also with the complexity of

the environment relative to the sensor and motor capacities of the

organism. This confirms the hypothesis that, if more reliance on

memory is required to reach high levels of fitness and the number

of elements is restricted, evolutionary pressure favors more

integrated network structures.

Discussion

In this study, we analyzed how the causal structure of simulated

neural networks (animats) evolves during adaptation to environ-

ments of increasing complexity. To that end, we first evaluated all

concepts (modular and integrated) specified by the brain elements

of each animat and measured their integrated information QMax.

Second, we identified the animat’s main complex (MC), the set of

elements in an animat’s brain that generates the maximally

integrated conceptual structure, and computed its associated

integrated conceptual information WMax.

We investigated the evolution of animats in four environments

(Task 1–4) with different levels of task difficulty and requirements

for sequential memory. Task difficulty (assumed to be inversely

related to the average evolved fitness after 60,000 generations) was

lowest for Tasks 1 and 2 and highest for Task 4. The requirements

for sequential memory were low for Task 1, intermediate for Task

2 and 3, and high in Task 4. In accordance with the predictions of

IIT, the animats evolved on average more concepts and larger,

more integrated main complexes (higher W) the more sequential

memory was necessary to solve a task. Similar results were

obtained in a second set of simulations, in which the animats’

sensor or motor capacities were restricted while the animats

adapted to Task 1. This increased the reliance on memory and led,

as predicted, to more concepts and more integrated conceptual

structures. Taken together, these results point to an active

evolutionary trend towards more concepts and integrated

conceptual structures if the environment’s causal structure is

complex and there are constraints on the number of sensors,

motors, and hidden elements.

Informational measures of complexity
The notions of information and complexity play an important

role in recent attempts to understand evolutionary success [2–

4,6,7,13,20,21,32]. For example, Marstaller et al. [13] presented a

measure of ‘‘representation’’, defined in information-theoretic

terms as the mutual information between (coarse-grained) states of

the environment and internal ‘‘brain’’ states, given the states of the

sensors. Applied to animats adapting to a block categorization task

similar to Task 1, representation of a set of salient environmental

variables was shown to increase during adaptation [13]. Another

recent study examined how sensory-motor mutual information

(ISMMI) [20], predictive information (IPred) [21], and integrated

Fig. 6. Concepts and integration in Task 1 with just one
functioning sensor. Given only one sensor, Task 1 requires sequential
memory for block and direction categorization. As a consequence the
animats developed brains with more concepts and main complexes
with more elements, concepts, and higher WMax than with two sensors.
The number of evolved concepts and their integration in Task 1 with
one sensor was comparable to Task 4, the task that requires most
sequential memory (Fig. 3, 4th column).
doi:10.1371/journal.pcbi.1003966.g006
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information as defined in [6], change over the course of adaptation

to a single environment with fixed statistical properties (traversing

random mazes) [6,7].

The mutual information between sensors and motors quantifies

the degree of differentiation of the observed input-output behavior

[20,32]. Thus, ISMMI reflects the richness of a system’s behavioral

repertoire (behavioral complexity), which should be advantageous

in a complex environment. Predictive information [21]—the

mutual information between a system’s past and future states—

measures the differentiation of the observed internal states of a

system. Thus, IPred reflects the richness of a system’s dynamical

repertoire (dynamical complexity), which is also expected to

promote adaptation to complex environments. ISMMI, IPred, and

integrated information as defined in [6] all increased during

evolutionary adaptation to the maze environment [6,7]. More-

over, these indices showed a positive correlation with fitness and

positive lower bounds pointing to a minimal, necessary amount of

complexity for a given fitness [7]. In the present simulations, IPred

always increased during evolution and was highest for Task 4 (see

S4–S6 Figs.). However, changes in ISMMI with adaptation as

measured in [6,7,13] varied with the task. Specifically, in Task 1

and 2, after an initial maximum ISMMI actually decreased with

increasing memory capacity, as also observed in [13].

The present approach extends previous investigations in several

ways. In addition to aggregate measures of information applied to

the animat’s brain as a whole, we evaluated all the individual

concepts specified by the elements of each animat, taken alone or

in various combinations (as specified in IIT 3.0 [15]). In essence,

concepts characterize the irreducible input-output functions

performed by a mechanism in a state [15]. Assessing concepts

requires a perturbational approach that reveals a mechanism’s

causal properties within a system under all possible initial states

[14,15]. Thus, a concept expresses the entire set of causal

dispositions or ‘‘powers’’ conferred by a mechanism in a given

state to the system to which it belongs. This analysis thus picks up

causes and effects, not just correlations, and does so for the entire

set of possible circumstances to which an animat may be exposed,

not just for those that happen to be observed in a given setting.

Importantly, the causal analysis performed here also shows that

combinations of elementary mechanisms (higher-order mecha-

nisms) may specify additional concepts, thus greatly enriching the

causal powers of an animat for a given number of elements.

Crucially, higher-order concepts only count if they are integrated

(Q.0), indicating that their causal power cannot be reduced to the

causal power of their parts. For each animat in the present study

the IIT 3.0 measures were evaluated for every brain state with p.

0 and averaged, weighted by each state’s probability of occurrence

while the animat is performing the task. The finding that successful

adaptation to more complex environments leads to the develop-

ment of an increasing number of concepts fits well with the notion

Fig. 7. Concepts and integration in Task 1 with just one
functioning motor. Given only one motor, Task 1 requires sequential
control of the motor element. As a consequence the animats developed
main complexes with more elements, concepts, and higher WMax than
with two motors. The subset of the 10 fittest animats with only one
motor evolved even larger main complexes and also more concepts
outside of the main complex.
doi:10.1371/journal.pcbi.1003966.g007

Fig. 8. Concepts and integration in Task 1 with 1% sensor
noise. The average fitness shown in the first plot is the percentage of
correct trials in Task 1 tested in a noise-free environment. On average,
adaptation with sensor noise decreased the animats’ average fitness in
the noise free environment of Task 1, without affecting the average
number of concepts, ,SQMax., and the evolved main complexes.
However, the subset of 20 LODs with the best final performance in the
noisy environment (1% sensor noise, evaluated over 50 repetitions of
each trial at generation 59,904) developed more concepts, ,SQMax.,
and larger main complexes with more MC concepts than those animats
evolved in Task 1 without sensor noise, while reaching about the same
level of fitness in the noise free condition.
doi:10.1371/journal.pcbi.1003966.g008
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that, everything else being equal, different concepts provide

different causal powers, thereby increasing the substrate available

to selective processes.

The present results also show that complex environments lead

not only to an increasing number of concepts available to an

animat, but also to the formation of integrated conceptual

structures within the animats’ brains. If a conceptual structure

specified by a set of elements is maximally irreducible to the

conceptual structures specified by subsets of elements (WMax), the

set of elements constitutes a main complex (MC) [15]. The

conceptual structure specified by the main complex of an animat

thus corresponds to a local maximum of causal power. In this way,

the main complex forms a self-defined causal entity, whose borders

are determined based on the causal powers of its own mechanisms.

Importantly, while the concepts within a main complex are

specified over hidden elements (the cause-effect repertoires are all

within the MC), they do reflect previous input from the sensors

and they can, of course, influence the motors. In this way, an

integrated conceptual structure can combine current inputs and

outputs with past ones and with the state of internal elements that

may reflect past memories as well as future goals. All the concepts

specified by the main complex over itself thus reflect a system’s

intrinsic complexity.

When does evolution favor integrated structures?
Complexity and fitness are often associated, though not

invariably [6,7,10,33,34]. In particular environmental niches,

simple systems can be very successful, while complex systems may

be selected against if, for example, increased energy requirements

trump higher behavioral flexibility (e.g., [35–38]). For the

evolution of intrinsic complexity investigated in this article, it is

thus important to understand under which environmental

conditions integrated conceptual structures become advantageous.

Overall, the results of the present simulations indicate that,

given constraints on the number of elements and connections,

integrated systems can have a selective advantage if the causal

structure of the environment is complex. This was shown, first, by

the finding that the highest fitness in the more complex tasks (2,3

and especially 4) was achieved by animats with (highly) integrated

conceptual structures. By contrast, in a simpler task (Task 1), high

fitness was achieved by both integrated and modular systems.

Accordingly, correlations between measures of integration and

fitness were low in Task 1, but increased progressively over Tasks

2–4 (Table 1, S1 Fig). The relative simplicity of Task 1 is

illustrated by the rapid achievement of close to maximum fitness in

most evolutionary histories and by the minimal requirement for

sequential memory (in Tasks 2–4, a longer sequence of sensor

inputs needs to be stored inside the animat’s brain to perform

adequately). Second, when Task 1 was made more difficult

without changing the environment, by reducing the number of

sensors and motors, animats had to rely more on sequential

memory to achieve high fitness. In this case, animats that evolved

highly integrated conceptual structures had once again a selective

advantage.

Why is this so? Given limitations on the number of hidden

elements, integrated brains can implement more functions

(concepts) for the same number of elements, because they can

make use of higher-order concepts, those specified by irreducible

combinations of elements (see also [26]). Moreover, integrated

brains with functions specified by hidden elements over hidden

elements, or combinations of input, hidden, and output elements,

are able to rely more on memory. Note that given an upper limit,

or cost on the number of sensors, motors, and hidden elements

(and the speed of interaction between them), an empirical positive

lower bound of W will exist for higher fitness values in complex

task environments, as observed for the informational measures

evaluated in [7] (ISMMI, IPred, and integrated information as

defined in [16]). Note also, however, that any task could, in

principle, be solved by a modular brain with W = 0 given an

arbitrary number of elements and time-steps (see in particular

Fig. 21 in [15] and [39–41]).

Another potential advantage of integrated brains is related to

degeneracy [25]. Degeneracy is the property according to which a

given function can be performed by many different structures

[25,42,43], and it is ubiquitous in biology [44]. Degenerate

structures show equivalent behavior in certain contexts, but can

perform different functions in different contexts. Degeneracy

contrasts with redundancy, where many identical structures

perform the same function under every circumstance. Systems

that show high degeneracy usually are well-suited to integrating

information [14,25]. Indeed, our results are in line with higher

degeneracy for animats having high W, both at the population

level and within each individual animat brain. The number of

different neural architectures, logic functions, and behaviors

developed by animats with integrated brains (W.0) that solved

Task 1 and 2 was much higher than for animats with modular

brains (W = 0). More potential solutions with W.0 provide a

probabilistic selective advantage for integrated structures and lead

to higher variability due to neutral mutations (S3 Fig.) and more

heterogeneous populations. This suggests that populations having

high W and high degeneracy should be better at adapting rapidly

to unpredictable changes in the environment and more robust to

mutations, because some animats are likely to be available that are

already predisposed to solve new problems.

A similar advantage is provided by degeneracy in the concepts

available to each individual animat. In integrated brains, selective

pressure may favor the emergence of particular concepts.

However, in such brains higher order concepts will also become

available at no extra cost in terms of elements or wiring, and they

may prove useful to respond to novel events. How the evolution of

integrated conceptual structures with high degeneracy is affected

by changing environments, or by environments with multiple

connected niches and coevolution of different species [45] will be

the subject of future work.

To conclude, rich environments that put a premium on context-

sensitivity and memory, such as competitive social situations,

should favor the evolution of organisms controlled by brains

containing complexes of high W. This is because the integrated

conceptual structures specified by complexes of high W can

accommodate a large number of functions in a way that is more

economical and flexible than what can be achieved with modular

or nearly-modular architectures. Moreover, since according to IIT

integrated conceptual structures underlie consciousness

[14,15,18,23], the finding that such structures offer a selective

advantage in complex environments could provide a rationale as

to why and how consciousness evolved.

Methods

Animats
Animat brains consist of 8 binary elements: 2 sensors, 4 hidden

elements, and 2 motors (left, right) that can loosely be referred to

as neurons. The sensors are directed upwards with a space of one

unit between them and activated (set to 1) if a falling block is

located directly above a sensor (Fig. 1). Otherwise the sensor

element is set to 0. All elements are updated from time step t to t+1
according to a transition probability matrix (TPM). In general, the

TPM could be probabilistic with transition probabilities between 0

Evolution of Integrated Causal Structures in Animats
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and 1. In the present work, however, the animats’ TPMs are

purely deterministic, i.e., transition probabilities are either 0 or 1.

The brain elements can thus be considered as binary Markov

variables, whose value is specified by deterministic logic gates (just

as the Markov brains in [13]). Note that the elements are not

limited to classic logic gates, such as ANDs, ORs, or XORs, but

can potentially specify any deterministic logic function over their

inputs. If only one of the motors is updated to state 1, in the next

time step the animat will move one unit to the right (motor state

01) or left (motor state 10), respectively. Since no other movement

was required of the animat, motor state 11 (both motors on) was

chosen to be redundant with motor state 00, for which the animat

will not move.

To evaluate the number of different TPMs and connectivity

matrices for animats with perfect fitness in Task 1 and 2, the

TPMs and connectivity matrices were compared in ‘‘normal

form’’, i.e., independent of the labels of their elements and only

potentially causal connections were included in the analysis

(meaning, hidden elements with only inputs or outputs to the rest

of the system were excluded). To that end, for a given matrix all

elements were permuted and the resulting permuted matrices were

ordered lexicographically. The first permuted matrix was then

chosen as the ‘‘normal form’’.

All animat brains are initialized without connections between

their elements. Connectivity evolves indirectly during adaption to

the environment as outlined below, following a genetic algorithm

that selects, mutates, and updates the animat’s genome at each

new generation. The animats’ genes encode hidden Markov gates

(HMGs), which in turn determine the connectivity and transition

table of each brain element: each HMG has input elements,

output elements, and a logic table that specifies the elements’

transition table (see [6,13] for details). In this study, the ancestral

genome (generation 0) of all animats does not encode any HGM.

Different from previous publications [6,7,13], evolution is thus not

‘‘jump-started’’, which avoids random causal connections in the

animats’ brains, but requires more generations to reach high levels

of fitness.

The animats’ genomes consist of at least 1,000 and at most

20,000 loci, where each locus in the genome is an integer value M
[0,255]. The beginning of a gene is marked by a start codon (the

consecutive loci 42 and 213), followed by two loci that respectively

encode the number of inputs and outputs of one HMG. The next

eight loci are used to determine where the inputs come from and

the outputs go to. Because gates are allowed to have at most 4 in-

and at most 4 outgoing connections, 8 loci are reserved, and used

according to the 2 preceding loci. The subsequent loci encode the

transition table of the HMG, determining the input and output

elements and their logical relations. This encoding is robust in the

sense that mutations that change the input-output structure of an

HMG only add or remove the respective parts of the HMG’s logic

table, while the rest of the table is left intact. Encoding the

connectivity and logic functions of the animats’ brain elements

with HMGs allows for recurrent connections between hidden

elements and also self-connections. Feedback from the hidden

elements to the sensors, and also from the motors to the hidden

units is however prohibited by zeroing out the sensors and motors

at each time-step respectively before the new sensor input arrives

and after the movement was performed.

Environment
The animat is located at the bottom row of a 16636 unit world

with periodic boundary conditions (Fig. 2B). We chose the height

of 36 units to allow the animats enough time to assess the direction

and size of the falling blocks from each initial condition. Each

animat is tested in 128 trials: all 16 initial block positions, with

blocks moving to the right and left, and four potentially different

block sizes. Note that in Task 1 (‘‘catch size 1, avoid size 3’’) and

Task 2 (‘‘catch size 1, avoid size 2’’) the two different block sizes

are thus shown 2632 = 64 times, while in Task 3 (‘‘catch size 1+4,

avoid size 2+3’’) and Task 4 (‘‘catch size 3+6, avoid size 4+5’’) each

block size is shown 32 times. In each trial a block of a certain size

falls from top to bottom in 36 time steps, moving 1 unit

downwards and sideways always in the same direction (left or

right). If at time-step 36 at least one of the animat’s units overlaps

with the block, it is counted as ‘‘caught’’, otherwise as ‘‘avoided’’.

In Task 1, sensor state S1S2 = 11 unambiguously distinguishes

size 3 blocks from size 1 blocks. In all other cases, whether a block

should be caught or avoided cannot be decided based on a

momentary sensor input state.

Fitness and Genetic Algorithm
An animat’s fitness F at each generation is simply calculated as

the percentage of successfully caught and avoided blocks out of all

possible 128 test trials. Starting from a set of 100 ancestral animats

without HMGs and thus without connections between elements,

the animats adapt according to a genetic algorithm across 60,000

generations. At each generation, fitness is assessed for all animats

in a population of 100 candidates. The most successful candidates

are selected probabilistically for differential replication according

to an exponential fitness measure S = 1.02F*128. For every

successfully caught or avoided block the score is thus multiplied

by 1.02. The 100 candidate animats are ranked according to S and

selected into the next generation with a probability proportional to

S and thus to their fitness (roulette wheel selection without elite).

After this replication step, the new candidate pool is mutated in

three different ways: a) by point mutations, which occur with a

probability of p = 0.5% per locus, causing the value to be replaced

by a random integer drawn uniformly from [0,…,255]; b) by

deletion: with 2% probability, a sequence between 16 and 512

adjacent loci is deleted; c) by duplication: with 5% probability a

sequence between 16 and 512 adjacent loci is duplicated and

inserted at a random location within the animat’s genome, where

the size of the sequence to be deleted or duplicated is uniformly

distributed in the range given. Since insertions are more likely than

deletions, genomes tend to grow in size during evolution. Deletions

and duplications are, however, constrained so that the genome

remains between 1,000 and 20,000 loci. All genes are expressed.

Some of the genes may give rise to redundant HMGs, which,

however, will not be robust to mutation. Under fitness selection,

the number of genes thus tends to converge to a balanced level

(roughly the number of possible elements). Under random

selection, only very few rapidly changing random connections

between elements appear, and existing network structures

decompose within less than 1,000 generations [7].

For each task, 50 evolutionary runs of 60,000 generations are

performed. At the end of each evolutionary run, the line of descent

(LOD) [19] of a randomly chosen animat from the final generation

is traced back to its initial ancestor at generation 0. For each

evolutionary run one LOD is obtained, which captures the run’s

particular evolutionary history. Since reproduction is asexual,

without crossover, a unique LOD can be identified for an animat

from the final generation. Because, moreover, all animats are part

of the same niche, it makes almost no difference which animat is

chosen in the final generation, since going backwards across

generations their different LODs quickly coalesce to a single line

[6]. We performed the full IIT analysis across each line of descent

every 512 generations starting from 0.
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IIT analysis
The most recent mathematical formulation of the integrated

information theory (‘‘IIT 3.0’’) is presented in detail in [15]. In the

following we will summarize the main principles and measures

relevant to this study, illustrated in simple examples of neuron-like

logic gates mechanisms (Fig. 9).

Mechanisms and concepts. From the intrinsic perspective

of a system, a mechanism has a causal role within the system (a

‘‘difference that makes a difference’’) if its present state constrains

the potential past and future states of the system compared to the

unconstrained distribution (the distribution of past and future

states if all input states to each element are equally likely). This is

assessed by perturbing the system into all possible states and

observing the effects on the system [25,46], yielding a transition

probability matrix (TPM) that contains the probability of

transitioning from each system state to every other system state.

As a simple example, Fig. 9A shows mechanism C in state ‘1’. C is

a XOR logic gate that receives inputs from elements A and B and

outputs again to A and B. The full system ABC is displayed in

Fig. 9D. The fact that C is an XOR gate and that at present it is in

state C = 1 inherently constrains the past state of the system

(‘‘cause repertoire’’ p(ABpDCc~1), i.e., only AB = [10, 01] are

possible causes) as well as the future state (‘‘effect repertoire’’

p(ABf DCc~1), i.e., AB = [11] is the only possible effect), as

compared to the unconstrained distribution (indicated in gray).

The superscripts p, c, f label ‘‘past’’, ‘‘current’’, and ‘‘future’’

system subsets. The same approach can be used to evaluate the

cause-effect repertoire of higher order mechanism (combinations

of elements), such as AB, which is used in what follows to illustrate

the notion of integration. In sum, the cause- and effect-repertoire

of a mechanism are conditional probability distributions over sets

of system elements, albeit not using observed distributions (as done

for correlational measures), but considering all system states with

equal probability.

From the intrinsic perspective, only integrated information

matters: the whole has to specify a cause-effect repertoire that is

not reducible to that of its parts (Fig. 9B). Irreducibility is assessed

by causally partitioning subsets of elements by introducing noise

into the connections between them [14,15]. The partitioned cause-

effect repertoire then corresponds to the product distribution of

the cause-effect repertoires specified by the parts. If a mechanism

can be partitioned without loss of information, as in the case of XY

in Fig. 9B (left), the combined mechanism XY cannot have a

causal role above and beyond the causal roles of X and Y

separately. By contrast, the elements A and B of the example

system ABC do form a 2nd order mechanism AB (Fig. 9B, right).

This is because AB constrains the past and future of the system

ABC more than A and B separately. The amount of integrated

(irreducible) information a mechanism M specifies in its current

state s0 is quantified by Q, which measures the distance between

the whole and partitioned cause-effect repertoire. The partition

used to evaluate Q is the minimum information partition (MIP),

the partition that makes the least difference. Q is determined on

both the cause and the effect-side:

QCause(M~s0)~D PDM~s0ð Þ PDM~s0=MIPCauseð Þkð Þ

and

QEffect(M~s0)~D F DM~s0ð Þ F DM~s0=MIPEffect

� ���� �
,

where P and F denote a set of system elements in the past and

future, respectively. Differences D between distributions are

assessed via the earth-mover’s distance (EMD). Generally, EMD

quantifies the minimal cost of transforming one probability

distribution into another specified over a ‘‘ground distance’’

between system states [15,47–49]. Contrary to the commonly used

Kullback-Leibler divergence [31], the EMD is a metric. That is, it

is symmetric, bounded, and takes the distance between individual

system states into account, here measured by their Hamming

distance. The state ‘110’, for example, is more distant from ‘001’

(Hamming distance of 3) than from ‘100’ (Hamming distance of 1).

Transporting p = 0.25 from state ‘110’ to ‘001’ would thus

corresponds to an EMD of 0.25*3 = 0.75, while transporting it

to ‘100’ corresponds to an EMD of 0.25.

From the intrinsic perspective of the system, the amount of

integrated information specified by a mechanism in a state cannot

be more than either the cause or the effect integrated information,

so the minimum of the two is taken [15]:

Q(M~s0)~min QCause(M~s0),QEffect(M~s0)
� �

:

Finally, again from the intrinsic perspective, the mechanism’s

causal role within the system in its current state can only be a

single one—corresponding to the cause-effect repertoire that is

maximally irreducible (a mechanism cannot perform multiple

input-output functions over an overlapping set of elements, [15]).

Thus, Q must be calculated for all possible input and output

combinations of the mechanism. For the example mechanism AB

(Fig. 9C), the cause repertoire of AB = 10 over all past elements

ABC is the maximally irreducible cause repertoire, with QMax
Cause

= 0.33 (transporting p = 0.33 from state ‘010’ to state ‘000’). On

the effect side, the effect repertoire of AB = 10 over future

element C is the maximally irreducible one with QMax
Effect = 0.5

(transporting p = 0.5 from state ‘1’ to state ‘0’; compare to

Fig. 9B: the effect repertoire of AB = 10 over all elements ABC

only has QEffect = 0.25). The maximally irreducible cause and

effect repertoire with QMax(AB = 10) = min(QMax
Cause,QMax

Effect) defines

the mechanism’s ‘‘concept’’, the core causal role of the

mechanism in its current state from the intrinsic perspective of

the system itself. Following a principle of causal exclusion, all

other inputs and outputs of the mechanism are treated as

unconstrained.

System of mechanisms and main complex. At the system

level, the set of all concepts specified by a system of mechanisms in

its current state constitutes a conceptual structure (Fig. 9D). For

example, the system ABC = 101 specifies a conceptual structure

comprising 4 concepts: 3 elementary, or 1st order concepts of its

elementary mechanisms A, B, and C, and the 2nd order concept

AB.

As for a mechanism and its causal role, a system of mechanisms

forms a ‘‘causal entity’’ from its own intrinsic perspective only if

the conceptual structure it specifies cannot be reduced to that

specified by its parts. Specifically, each part of the system must

have both causes and effects in the other part (‘‘strong

integration’’, Fig. 9E, middle), otherwise some elements could

never influence the system or be influenced by it. Irreducibility at

the level of systems of mechanisms is quantified by partitioning the

system elements unidirectionally. This means that the inputs or

outputs of a subset of elements are rendered causally ineffective by

noise. Integrated conceptual information W (‘‘big phi’’) measures

the difference between the conceptual structure C of the whole

system S in state s0 and the conceptual structure CMIP of the

partitioned system:
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Fig. 9. The information, integration, and exclusion postulate applied at the level of mechanisms (A–C) and systems of mechanisms
(D–F). (A–F) Each node is a binary logic-gate mechanism that can be in either state ‘0’ (white) or ‘1’ (yellow). The logic-gates and their connections are
represented as neural circuits rather than electronic circuits: directed connections between the nodes indicate the inputs and outputs of the logic
gates. The mechanisms labeled A, B, and C correspond to system ABC = 101 shown in (D). (A) Information: Mechanism C in its current state ‘1’
generates information as it constrains its causes (the past states of its inputs AB) and effects (the future states of its outputs AB) compared to their
unconstrained distributions (gray distribution). Past and future nodes whose state is unspecified are shown in gray. (B) Integration: The elements X
and Y do not form an integrated higher order mechanism, since XY is reducible to its component mechanisms X and Y (Q= 0). However, the elements
AB in state ‘10’ do form a higher order mechanism, since AB specifies both, irreducible causes and irreducible effects (the minimum information
partition (MIP) on both, the cause and effect side leads to a loss of information). Integrated information Q of AB = 10 is evaluated as the minimum of
the cause and effect integrated information: Q= min(QCause, QEffect), here Q= QEffect = 0.25, taking all inputs and outputs of AB into account. The
overall MIP of AB over all its inputs and outputs is thus MIPEffect, labeled in red. (C) Exclusion: Of all input-output combinations of mechanism AB, the
‘‘concept’’ of AB = 10 is its maximally irreducible cause repertoire, here over all input elements ABC (QCause = 0.33, same as in (B)), together with its
maximally irreducible effect repertoire, here over output element C only (QEffect = 0.5). This means that AB has its maximally irreducible effect
repertoire specified on C, not on ABC or any other output combination. The concept’s integrated information is QMax = min(QCause, QEffect) = QCause

= 0.33, its overall MIP is MIPCause, labeled in red. (D) System information: The system ABC = 101 gives rise to a conceptual structure with 4 concepts. (E)
System integration: The system WXYZ is reducible into the subsets WX and YZ. WXYZ cannot exist as a system from the intrinsic perspective. By
contrast, system ABC is irreducible. Its minimum information partition (MIP) leaves the concepts of A and B intact, but destroys concepts C and AB.
Integrated conceptual information W(ABC) is evaluated as the difference between the whole conceptual structure C and the partitioned conceptual
structure CMIP (see Text S2 in [15]). (F) System exclusion: Of all sets of elements in this larger system, the set ABC has WMax and thus forms the main
‘‘complex’’. ABCD, for example, also specifies integrated conceptual information W, but cannot form another complex since it overlaps with ABC and
W(ABC). W(ABCD) (see Fig. 2).
doi:10.1371/journal.pcbi.1003966.g009
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W(S~s0)~D C(S~s0) CMIP(S~s0)kð Þ:

The difference D between two conceptual structures is

evaluated using an extended version of the earth-mover’s distance

(EMD), which quantifies the minimal cost of transforming the

conceptual structure C of the whole to the conceptual structure

CMIP of the partitioned set of elements. Instead of probabilities, in

the extended EMD it is the Q values of the concepts that are

redistributed from conceptual structure C to CMIP. Instead of the

Hamming distance, the ‘‘ground distance’’ between the concepts

of C and CMIP is given by the EMD distance of their cause-effect

repertoires. Since SQMax of all concepts of C is usually higher than

that of CMIP, any residual QMax is transported to the ‘‘null’’

concept (the unconstrained distribution). For more details and an

explicit example see Text S2 in [15].

Within a system, many sets of elements can potentially give rise

to integrated conceptual structures. However, from the intrinsic

perspective of a system, there can only be a single conceptual

structure over a set of elements, with no overlap with other

conceptual structures, barring a multiplication of causes and effects

(causal exclusion). Once again, the relevant conceptual structure is

the one that is maximally irreducible (WMax), and the correspond-

ing set of elements constitutes a ‘‘complex’’ – a self-defined causal

entity within the system. The complex with maximal W in the

system is called the ‘‘main complex’’ (MC). Note that, in principle,

WMax should be evaluated over the spatio-temporal scale at which

causal interactions are strongest [50]. Since an animat’s MC is

comprised of maximally 4 hidden Markov elements, we assume

these micro elements to be the relevant spatio-temporal scale.

In the system shown in Fig. 9F, ABC forms the main complex

(see also Fig. 2D). Note that, if the subset of a system is analyzed,

such as ABC in Fig. 9F, the remaining elements act as background

conditions (fixed external constraints). The number of elements,

the number of concepts, and the W value of a main complex are

measures of integration in a system (Fig. 9F: 3 MC elements,

4 MC concepts, and WMax = 0.92). Note that a complex always

consists of at least 2 elements, since a single element, even if it has

memory in form of a self-loop, cannot be partitioned. Moreover,

feed-forward structures cannot give rise to a complex and have

W = 0. For the same reason the whole system S1S2 ABCD M1M2,

as well as every subsystem that includes a sensor or motor element

is not integrated and has W = 0.

Modular mechanisms (feed-forward chains, self-loops, and

mechanisms outside the main complex) can of course also

contribute to the evolutionary success (fitness) of an organism.

The number of concepts in the whole system, here S1S2 ABCD

M1M2, provides a measure of all causal relations in the system,

modular and integrated, and the sum of their QMax values is a

measure of their combined strength (see Fig. 3B: 6 concepts: A, B,

C, D, AB, AC, SQMax = 1.08).

Statistics
Table 1 shows the average (nonparametric) Spearman rank

correlation coefficients across all 50 LODs for all evaluated IIT

measures in Task 1-4. In S1 Fig. complementary histograms are

shown of the correlation coefficients of all individual LODs.

Correlation coefficients were calculated based on ranked variables

(i.e., using Spearman’s instead of Pearson’s correlation coeffi-

cients), since the amount by which fitness increases is not expected

to depend linearly on any of the causal measures. Initial increases

in fitness can be large, simply because initially there is more room

for large improvements than at later generations where the animat

already has a high percentage of fitness.

Error margins throughout this article denote SEM.

Since none of the measured variables was found to be normally

distributed for all task conditions (Kolmogorov-Smirnoff test for

normality) and variances between tasks differed for some of the

measures, statistical differences were evaluated using a Kruskal-

Wallis test, the non-parametric equivalent of a one-way ANOVA.

For all statistical tests across task conditions after adaptation,

measures were averaged over the last 3,000 generations (6 data

points).

Task 1–4 were compared (see Fig. 3), first, taking all 50

independent LODs of each task into account, despite the lower

average fitness reached in Task 3 and 4. In this set, statistical

differences were found for the number of concepts, SQMax, and

WMax (p = 0.001/0.002/0.016), but not for the number of MC

concepts and MC elements. Second, Task 1–4 were compared at

the same level of fitness, taking only a subset of LODs with high

final fitness into account in Task 3 and 4 (9 and 7 fittest LODs,

respectively). The respective subsets of LODs were selected as the

set of fittest LODs in Task 3 and 4, whose average fitness across

the last 5,000 generations was closest to that achieved on average

in Task 1. Compared at the same level of fitness, all IIT measures

showed statistical differences (p = 0.000/0.000/0.003/0.003/

0.000 for #concepts/SQMax/#MC elements/#MC concepts/

WMax).

Moreover, the standard Task 1 was compared to Task 1 with

one sensor only, one motor only, and 1% sensor noise (Fig. 6–8).

All measures showed significant difference (p = 0.000) when all

50 LODs of each condition were taken into account and also

when a subset of LODs with high fitness was compared (again,

p = 0.000 for all measures).

Differences between pairs of task conditions reported in the

results section were assessed by post-hoc Mann-Whitney U tests.

Custom-made MATLAB software was used for all calculations.

The program to calculate the complex of a small system of logic

gates and its constellation of concepts is available under [51].

EMD calculations within the IIT program were performed using

the open source fast MATLAB code of Pele and Werman [49].

The IBM SPSS software package was used for statistical analysis.

Supporting Information

S1 Fig Distribution of correlation coefficients with
fitness in the four different Task conditions for all 50
individual LODs. For each LOD, Spearman’s correlation

coefficient between fitness and each of the displayed causal

measures was calculated across the evolved 60,000 generations. In

the histograms, shaded bars denote number of significant

correlations with fitness (positive and negative). White bars show

additional numbers of non-significant correlation coefficients. Blue

lines indicate the overall average of correlation coefficients ,R.

listed in Table 1 (main text). For all measures, the number of LODs

that correlated positively with fitness increased from Task 1 to Task

4. In all tasks, the number of concepts in the whole animat brain and

their SQMax values showed higher correlation with fitness.

(PDF)

S2 Fig Dissociations between causal measures of IIT.
For each Task 1-4, an individual example LOD is shown, in which

a dissociation between the different IIT measures can be observed

(indicated by the red vertical lines). In the LOD of Task 1, at the

indicated jump in fitness, WMax decreases, while all other measures

increase. In the example LOD of Task 2, the jump in fitness is

accompanied by an increase in the overall number of concepts and
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their SQMax, while the MC measures decrease. Note that initially,

for low fitness, the animat brains tend to first develop modular

concepts that are not integrated (WMax = 0, see also Fig. 4A, main

text). In the 3rd LOD (Task 3), SQMax and WMax both increase

during the indicated rise in fitness, while the number of overall

concepts stays constant and the average number of MC concepts

and MC elements decreases. In the 4th LOD (Task 4) the overall

number of concepts and their SQMax increase with fitness, while the

MC concepts and MC elements decrease, and WMax stays constant.

Since in the animats the maximum number of MC elements is 4, the

number of MC concepts here is closely linked to the number of MC

elements. Nevertheless, in general, for larger systems, the number of

MC concepts can far exceed the number of MC elements (2N-1,

where N is the number of MC elements) and will thus be much

more variable for a fixed number of MC elements.

(PDF)

S3 Fig Variability of TPMs across generations for two
representative Task 1 example LODs in which the
animats evolve perfect fitness with a modular or
integrated brain structure. The upper panels show the

evolution of fitness in the two LODs with WMax = 0 (left) and

WMax.0 (right) at the end of the evolutionary run. The lower

panels show the Hamming distance of the animats’ TPMs between

consecutive generations as a measure for the variability of the

causal structure of the animats’ brains during adaptation. The

Hamming distance counts the number of TPM entries (0s or 1s) in

which two TPMs differ from each other. Note that for this

purpose, the TPMs were permuted into a normal form that allows

comparing the causal structure independent of the element label.

This means that if the causal structure stays the same, but e.g. two

hidden elements switch their causal roles the measured Hamming

distance between them is still 0. With WMax = 0 the LOD’s TPMs

do not vary much once perfect fitness is reached. When perfect

fitness is maintained with WMax.0, however, the LOD’s TPMs

still vary considerably between consecutive generations. This can

be explained by the higher degeneracy of animats with perfect

fitness and WMax.0 (see main text), which allows for neutral

mutations in the population and also more heterogeneous

populations with the same probability of being selected into the

next generation.

(PDF)

S4 Fig Evolution of sensory-motor mutual information
and predictive information in Task 1-4. The sensory-motor

mutual information (ISMMI) was evaluated between the distribu-

tion of sensor states at t0 and the distribution of motor states at t+1.

The predictive information (IPred) corresponds to the mutual

information between brain states at t0 and t+1, including sensors,

hidden elements, and motors. Calculating the two measures across

2 time-steps, i.e., between t0 and t+2, results in qualitatively similar

results with somewhat lower values (data not shown). The

terminology used here corresponds to that in [7]; different from

[6,13] where ISMMI was termed predictive information, while IPred

was termed Itotal in [6]. As observed in [13], ISMMI is initially high

in Task 1 and decreases with adaptation. This is because, initially,

direct connections between sensors and motors can increase fitness

in Task 1. Once memory is evolved, however, ISMMI decreases.

The drop in ISMMI from generation ,0 to 20,000 thus indicates

that the motors become less dependent on sensor inputs and are

driven more by the hidden elements. In Task 4 direct connections

between sensors and motors alone cannot increase fitness, and thus

are not evolved in the early generations, which leads to an increase

in ISMMI from low values to the level observed in Task 1. Task 2

and 3 are intermediate in this respect. ISMMI is bounded both by

the entropy of the sensors (HSen) and the entropy of the motors

(HMot). HSen depends mostly on the respective task (size of blocks),

as can be seen from the different initial values across Task 1–4. In

Task 2 HSen is particularly low, because sensor state S1S2 = 11 is

impossible. Interestingly, HMot increases during adaptation and

reaches the same level in all tasks for the same level of fitness. IPred

quantifies the amount of information that the current system state

contains about the next state of the system. Note that the animats’

brains are comprised of deterministic Markov elements. IPred

should thus be maximal across one time-step. IPred is bounded by

the entropy of system states (HState) and follows it closely. While

IPred and HState are the same for Task 1 and 2, the higher values

for Task 3 and 4 can be explained by the higher number of hidden

elements, and thus higher potential entropy, evolved in the more

difficult tasks. In summary, neither ISMMI, nor IPred capture the

increasing complexity of Task 1–4 for the animat in terms of

requirements for sequential memory, but rather depend on

external task characteristics (entropy of sensor input) and the

number of evolved hidden elements.

(PDF)

S5 Fig Sensory-motor mutual information and predic-
tive information for two Task 1 example LODs in which
the animats evolve brains with a modular or integrated
structure. ISMMI, IPred, and the sensor, motor, and state entropy

are displayed for two Task-1 example LODs that reach perfect

fitness (compare Fig. 4, main text). For details on the measures see

S4 Fig. and [7]. The sensory-motor mutual information ISMMI

decreases with fitness in both LODs, following the decrease in

entropy of the sensor inputs (HSen). The predictive information

(IPred) evolves to similar values in the LOD that evolves a modular

structure (Fig. 4B) and the one that evolves an integrated structure

(Fig. 4C). IPred thereby follows HState, which also reaches similar

values in both cases. Note that in both LODs the animats evolved

brains with 2 hidden elements, which can partly explain why they

show similar values of HState.

(PDF)

S6 Fig Evolution of sensory-motor mutual information
and predictive information in Task 1 with sensor or
motor restrictions. For details on the measures see S4 Fig. and

[7]. While for only one functional sensor and noisy sensor inputs

the sensory-motor mutual information ISMMI does not differ much

from standard Task1, ISMMI for only one functioning motor is

greatly reduced. ISMMI thus seems to depend more on the entropy

of the motor units, HMot. The predictive information (IPred) evolves

to similar values, regardless of sensor or motor constraints, as does

the entropy of system states (HState), which can be explained by

similar evolved number of elements: the lower entropy due to a

missing sensor or motor is compensated by more hidden elements.

Neither ISMMI, nor IPred detect increases in the intrinsic complexity

of the animats due to sensor or motor constraints.

(PDF)

S1 Text Theoretical upper bounds for SQMax and WMax.
(DOC)
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