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Abstract

The correspondence between protein sequences and structures, or sequence-structure map, relates to fundamental aspects
of structural, evolutionary and synthetic biology. The specifics of the mapping, such as the fraction of accessible sequences
and structures, or the sequences’ ability to fold fast, are dictated by the type of interactions between the monomers that
compose the sequences. The set of possible interactions between monomers is encapsulated by the potential energy
function. In this study, I explore the impact of the relative forces of the potential on the architecture of the sequence-
structure map. My observations rely on simple exact models of proteins and random samples of the space of potential
energy functions of binary alphabets. I adopt a graph perspective and study the distribution of viable sequences and the
structures they produce, as networks of sequences connected by point mutations. I observe that the relative proportion of
attractive, neutral and repulsive forces defines types of potentials, that induce sequence-structure maps of vastly different
architectures. I characterize the properties underlying these differences and relate them to the structure of the potential.
Among these properties are the expected number and relative distribution of sequences associated to specific structures
and the diversity of structures as a function of sequence divergence. I study the types of binary potentials observed in
natural amino acids and show that there is a strong bias towards only some types of potentials, a bias that seems to
characterize the folding code of natural proteins. I discuss implications of these observations for the architecture of the
sequence-structure map of natural proteins, the construction of random libraries of peptides, and the early evolution of the
natural amino acid alphabet.

Citation: Ferrada E (2014) The Amino Acid Alphabet and the Architecture of the Protein Sequence-Structure Map. I. Binary Alphabets. PLoS Comput Biol 10(12):
e1003946. doi:10.1371/journal.pcbi.1003946

Editor: Erich Bornberg-Bauer, University of Muenster, Germany

Received June 7, 2014; Accepted September 26, 2014; Published December 4, 2014

Copyright: � 2014 Evandro Ferrada. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All data are available without restriction at:
https://sites.google.com/site/repositorypublications/home

Funding: I thank the postdoctoral Omidyar fellowship at the Santa Fe Institute for support. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported
by National Science Foundation grant number ACI-1053575.

Competing Interests: The author has declared that no competing interests exist.

* Email: eferrada@santafe.edu

Introduction

The implications of understanding the properties and organi-

zation of the sequence-structure map of proteins are broad, they

range from explaining the diversity of known protein folds in the

context of cellular physiology and their evolution [1], synthesize

molecules of biomedical or industrial interest [2], to engineer

polymers [3] and proteomes de novo.

From an evolutionary standpoint the relation between sequence

and structure is a particular case of a more general problem known

as the genotype-phenotype map (GP map) [4]. According to the GP

map framework, protein sequences correspond to genotypes and

structures to phenotypes [5]. By using a measure of distance (e.g.
the number of point mutations necessary to transform one

genotype into another), sequences can be thought as part of a

space of genotypes [6]. A graph theoretic representation of

genotype space provides a quantitative, unifying framework to

explore different properties of the sequence-structure relation,

while considering these properties on a broader evolutionary

perspective. In the following, I refer to this detailed characteriza-

tion of the sequence-structure map, as its architecture.

The study of the sequence-structure map of proteins unifies

three research programs. First, the structural biologist’s, seeking to

understand the limits of structural diversity and its relation to

sequences in the context of a universe of folds [7]. Second, the

evolutionary biologist’s program, focused on the role of selection

versus neutral forces shaping the architecture of the map [8,9], as

well as on the nature and role of mutational mechanisms on the

origin and evolution of biomolecules [10]. And third, the protein

engineer and synthetic biologist’s, interested on identifying regions

of genotype and phenotype space, amenable to in vitro search and

design [2].

Simple models of polymers, so called protein lattices or simple
exact models (SEMs) [11] have been used extensively to explore the

sequence-structure relation of proteins. These models were

originally developed to study the dynamics of polymers by

modeling key thermodynamic properties that govern folding

[12]. They consist of short sequences (e.g. 12 to 36 mers),

composed of a limited alphabet size, usually 2 to 20 monomers.

Sequences are folded onto a lattice of fixed dimensionality (i.e. 2 or

3-dimensional) and geometry (e.g. square, cubic, FCC, etc). The

most common SEM is the HP model, consisting of only 2

monomers (i.e. H, hydrophobic and P, polar). In the HP model

PLOS Computational Biology | www.ploscompbiol.org 1 December 2014 | Volume 10 | Issue 12 | e1003946

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003946&domain=pdf


only H-H contacts contribute to the stability of the conformation

[12]. Their main limitation relates to finite size effects. That is,

artifacts arising as a consequence of the model’s geometry,

dimensionality, and polymer length; which introduce biases on

the relation between surface versus core residues and long-range

interactions [13,14]. These limitations have been proven detri-

mental to the study of folding kinetics and the cooperative two-

state transition of globular proteins, for which the use of detailed

atomistic models is advised [15].

Despite these limitations and their simplified representation of

the geometric complexity of protein structures, SEMs have been

instrumental in understanding a variety of aspects of protein

biology [13]. They have been used to study theories and

mechanisms of protein folding [13]; the distribution of sequences

versus structures [16]; determinants of folding kinetics [17];

protein design [14]; recombination [18]; protein-protein interac-

tions [19]; misfolding and aggregation [20]; the study of energy

functions and their performance [21]; comparative modeling [22];

neutral networks and innovation [23] and protein evolution

[11,24], among others. In contrast to the study of natural proteins,

SEMs can be used to fully characterize the sequence-structure

map, that is, the relation of all possible sequences to all possible

structures. Their strength relies on the characterization of large

number of sequences and conformations, and therefore on the

study of phenomena for which the statistics predominate over the

details of folding [25].

A first relevant property of the sequence-structure map of

proteins is that not all possible sequences are equally likely to

encode a structure. Different criteria has been employed to decide

on the propensity of a sequence to fold. In general, these criteria

consider key thermodynamic determinants that distinguish

between the stability of a sequence across conformations. For

instance, the total stability of a sequence on its native conforma-

tion (Emin) [26], the energy difference (i.e. energy gap) between

Emin and the next stable conformation(s) [27], or the deviation of

Emin from the ensemble of all possible conformations (i.e.
foldability [28], see below).

Although all these criteria are approximations to the propensity

of a sequence to fold, the degeneracy (g) of a sequence have proven

a useful proxy to distinguish between foldable and random

polypeptides. Degeneracy corresponds to the total number of

conformations that a given sequence stabilizes at its minimum

observed energy. Under this criterion, a sequence is considered

foldable if it is non-degenerate (i.e. g = 1).

In the case of SEMs, the stability of a protein sequence, folded

onto a given conformation, can be approximated by the strength

of the interactions between non-adjacent residues along the

peptide chain. These interactions are encapsulated by a potential
energy function, or simply, potential.

The derivation and performance of potentials have been the

subject of a long research tradition [29]. The most successful

potentials are the result of statistical approximations that derive

propensities of interactions between monomers from a large set of

protein crystal structures (i.e. knowledge-based or statistical
potentials). The physical interpretation of these forms of energy

functions, however, remains a subject of debate [30]. One of the

reasons is that, statistical potentials ignore much of the details of

the interactions between residues in proteins. A major distinction

between statistical potentials is the use of different reference states.
The study of a diverse set of statistical energy functions derived

using different reference states shows that most of them describe

two putative stages during folding [30]. On the one hand, some

potentials characterize the hydrophobic collapse of globular

proteins [29,31–34]. On the other hand, they might reflect subtle

differences among residue interactions at the native or near-native

state [29,35–37]. Similar to the approximation employed by

SEMs, statistical potentials have been successfully used to score the

stability of protein crystal structures, and protein models, by only

considering the pairwise interactions of amino acids [38].

Similar to the concept of degeneracy, one may consider the

fraction of conformational space encoded by non-degenerate

sequences, or encodability [39]. Both, non-degeneracy and

encodability are closely related properties. They depend on the

amino acid alphabet size and composition, which in turn defines

the potential.

In 1996, Chan and Dill [39], studied the impact of properties of

the potential on degeneracy and encodability. They explored the

role of repulsive interactions and correlations between energy

values on well-known binary potentials and showed that the nature

of the potential affects the sequence-structure map and, in doing

so, it is as important as the size of the alphabet. Specifically, they

studied the HP model and a modified version, the AB model; and

showed that repulsive interactions reduce the average sequence

degeneracy and consequently, increase the fraction of foldable

sequences and encodable structures.

While non-degeneracy and encodability describe the fraction of

accessible sequences and structures, a full description of the

sequence-structure map should also account for the relative use

and distribution of sequences and structures in genotype and

phenotype spaces. The language of graphs has been used to

represent and study the distribution of sequences in genotype

space [6,40]. According to this paradigm, groups of non-

degenerate sequences that fold onto the same structure and can

be connected to each other by single point mutations, are known

as neutral networks [5]. The size of neutral networks has

consequences for the evolution of phenotypes. Arguably, sequenc-

es that are part of a large neutral network can undergo a

considerable number of mutations while still preserving their

phenotype. These phenotypes are found more frequently by a

random search on genotype space and because of their robustness

to mutations, represent good candidates for protein design

experiments [41].

Following Maynard-Smith’s concept of protein space [6],

Lipman and Wilbur used the HP model to explore the existence

Author Summary

If we were to design a proteome, what types and what
proportion of amino acids would we use in order to
optimize properties such as the diversity of sequences and
structures, their robustness to mutations, or their ability to
fold efficiently? Here, I use simple models to study the
sequence-structure map of proteins from a design and
evolutionary perspective. These models can be used to
explore all sequences and structures, as a function of the
types of interactions encoded by the sequence. I study the
range of possible binary interactions between monomers,
which include natural and artificial amino acids. The results
indicate that different amino acid compositions induce
vastly different sequences-structure maps. I classify and
study the properties of these maps and relate their
features back to the type of energy interactions. I compare
these observations to the types of interactions observed in
natural amino acids. My observations provide insights for
our current view of the sequence-structure map of natural
proteins, guiding principles for the construction of random
libraries of peptides, and suggests constraints for the early
evolution of the natural amino acid alphabet.

Architecture of the Protein Sequence-Structure Map
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and general statistics of neutral networks [40]. They observed that

sequences folding onto the same conformation, map to nearby

regions of genotype space and can be reached from various

mutational paths. Subsequent studies, inspired by analysis of the

RNA GP map, used SEMs to analyze the distribution of neutral

networks in sequence space. These studies showed that neutral

networks of the HP model distribute on isolated regions of

genotype space, with unfrequent mutational paths between

networks [42].

Other studies have explored the distribution of genotypes’

stabilities in neutral networks [42,43]. They showed that neutral

networks have a funnel-like organization, where the most stable

sequence usually corresponds to the network’s ‘average’, or

consensus sequence. The relation between structural stability and

consensus sequence has been explored experimentally [44]. These

authors have also compared the neutral networks between the HP

and AB models. They demonstrated that features of the potential

impact the number, size and longest paths of these networks

[25,43].

While sequences of a neutral network use nearby regions of

genotype space, sequences that preserve the same phenotype may

also occupy divergent regions of genotype space. These type of

sequences, that belong to disconnected neutral networks in

genotype space, are called neutral set [42]. Neutral sets are

usually characterized by their size, in number of sequences, or

designability [16].

Li et al (1996) used two and three-dimensional SEMs to show

that designability distribute slightly less than exponential over

conformations [16]. In other words, most conformations are

associated to a single or few sequences, while few conformations

use a large fraction of the available space of genotypes. At the

time, this was a remarkable observation, because it recovered the

biased distribution of the number of sequences per structure

observed from very sparse natural samples [45]. Since then, two

related hypothesis have been proposed to explain the origin of the

vast differences on the designability of protein structures.

One hypothesis relies on the requirement of structural stability

[46]. Structural stability correlates closely with the total number of

contacts of a conformation (or compactness). Since the contribution

to the total energy of a sequence folded onto a conformation is

given by the number of contacts between residues, the larger the

number of contacts, the more stabilized a conformation can get

and consequently, the larger the sequence variability. In other

words, compact conformations are intrinsically designable.

A second hypothesis concentrates on the propensity of

sequences to fold fast [27]. Folding can be seen as a competition

of a sequence for conformations. The diversity and stability of

conformations surrounding the native structure is a measure of a

sequence’s ability to fold efficiently. This property is called

foldability [28]. Different theoretical formalisms have been

proposed to quantify it. Intuitively, these formalisms consider the

energy gap, or difference in stability between the sequence folded

onto its native structure and the stability at the next(s) most stable

conformation(s). In other words, foldability is a measure of the

steepness of the energy landscape surrounding the native structure.

The concept of foldability does not aim to provide mechanistic

details on the protein folding path, but simply identify important

energetic features that distinguish natural proteins from random

polymers [47]. Similar concepts rely on the same principle, such as

the comparison of conditions for folding versus the conditions for

chain collapse [48], or the principle of minimal frustration [27].

Theory based mainly on the random energy model and extensive

simulation studies, have demonstrated the practical value of this

idea. Other studies have also shown that this criterion alone, does

not fully address the degrees of kinetic and thermodynamics

complexity of natural proteins [15]. However, in the context of

simple exact models, as it been studied before, the concept of

foldability remains a good approximation as to how protein-like a

polymer is [49], and as a requirement for protein design [14].

Designability and foldability capture different aspects of the

sequence and structural constraints imposed on folding. Govidar-

ajan and Goldstein showed that conformations have different

foldabilities and that optimally foldable conformations are also

highly designable [28,47]. Buchler and Goldstein [50] used 25

mer, a two-dimensional, maximally compact SEM, to explore the

distribution of designabilities under a range of amino acid

alphabets and foldability requirements. They observed that, under

these large variety of parameters, the distribution of designabilities

remain strongly biased across conformations. This finding let them

to suggest that designability is a general property of the protein GP

map. The distribution of designability across structures, however,

is highly dependent on the size of the amino acids alphabet, as is

the identity of the most designable structures [50]. From an

evolutionary standpoint the designability of a network of

sequences, as well as their foldability, are important determinants

of the mutational robustness of a phenotype [51].

In addition to the properties of isolated networks of sequences, a

full description of the protein sequence-structure map should

account for the distribution of neutral networks across genotype

space relative to other networks and to the phenotypes that they

map onto. Similar to the concept of designability, in revealing

aspect of the mutational robustness of a phenotype, a sequence’s

accessibility to different phenotypes is a property of evolutionary

relevance. This is because, the larger the phenotypic diversity in a

neighborhood of sequence space; the larger the capacity of a

sequence to innovate upon mutation [52,53]. Because the amino

acid alphabet, and therefore the potential energy function, impacts

the fraction of foldable sequences and the encodability of

phenotypes, arguably, it may affect the relative distribution of

phenotypes respect to other phenotypes across sequence space,

and consequently, impact both, the map’s constraints on the

accessibility to new phenotypes, as well as, its general ability to

innovate through mutation.

Recent advances in the de novo design and synthesis of polymers

[3], the synthesis and manipulation of entire chromosomes [55], as

well as, the introduction of new amino acids into the genetic code

[54]; has opened new perspectives and challenges that touch upon

these ideas. If we were, for instance, to choose the monomers to

engineer a proteome, what types and proportion of interactions

would we include in order to optimize mutational robustness, the

fraction of accessible genotypes and phenotypes, and/or their

foldability? This question suggests a sequence-structure map
problem, that is not concerned with the mechanisms of folding,

but with predicting the architecture of the map, given the

composition of the amino acid alphabet.

Similar questions exist in the field of protein design [2]. The

construction of large random libraries of polypeptides used in in
vitro search studies, would benefit of understanding what number
and types of natural or artificial amino acids may promote

sequence and=or structural diversity [56,57].

Yet another significant area of research relates to the origin and

establishment of the early genetic code [58]. What is the minimal

number and types of amino acids that allow the synthesis of a

primordial, protein-like sequence-structure map of proteins?

[58,59]. This is a question that has haunted a wide variety of

research fields since the late 60’s [60], and for which there are

partial theoretical and empirical insights [14,61]. Although a

thorough exploration of the myriads of factors involved in the

Architecture of the Protein Sequence-Structure Map
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early evolution of the genetic code is beyond the scope of the

present study, an understanding of the relation between amino

acid composition and the sequence-structure map, might provide

indirect evidence on fundamental constraints that affected the

establishment of the primordial amino acid alphabet of proteins.

In this work, I study the impact of the potential energy function

on the architecture of the protein sequence-structure map. I use

SEMs, sample the space of possible binary potentials, and study

the properties of the maps they induce. I analyse properties such as

non-degeneracy, encodability, designability and foldability, the

connectivity and relative distribution of neutral networks, as well

as the overall phenotypic diversity of the sequence-structure maps

induced by these potentials. I study the types of binary potentials

present in natural amino acids and compare them to a random

sample of the space of potentials. A detailed exploration of these

properties may first, provide an alternative view of the sequence-

structure map of natural proteins; second, help to explore the

limits imposed by the architecture of the sequence-structure map

on the evolution of proteins; and finally, may provide insights on

the construction of random libraries of peptides and the large-scale

design of sequence-structure maps with desired properties.

Models

Genotype space as a graph
A simple exact model (SEM) consists of three main parameters:

sequence length (L), monomer alphabet (A) and the potential (U).

Genotype space (G), is composed of aL sequences. Where a~DAD.
(D0D, is the cardinality of the set 0). The dimension of G, n, is defined

as the total number of single point mutant neighbors of a given

sequence, as: n~L(a{1). For aw2, G is called a generalized
hypercube (QL

a ). A sequence si[G, is composed of L monomers

gj[A. A hamming distance metric, h, over G, defines a n-cube or

hypercube, where h(si,sj ), corresponds to the number of point

mutations needed to transform genotype si into sj [62]. Similarly,

the space of phenotypes, P, corresponds to the set of all possible

conformations. The enumerable conformational space is indepen-

dent of a and growths exponentially as a function of L.

The potential energy function, U(gi,gj), specifies the energy

associated to the interaction between monomers gi and gj . The

total stability (E) of a sequence s [ G, folded onto conformation c [
P, is defined as:

E(s,c)~
PL
ivj

U(gi,gj)D(i,j) ð1Þ

The function D(i,j), adopts a value of 1 if monomers at positions

i and j are in contact and non-adjacent along the chain, 0

otherwise. The degeneracy (g) of sequence s corresponds to the

number of conformations adopted at Emin (Emin = min(E)).

According to the thermodynamic hypothesis of protein folding, a

sequence s folds onto a conformation c [ P, if and only if, s is non-

degenerate on c (i.e. gc = 1). In that case, c is called the native
structure of s.

Genotype neighborhoods and phenotypic diversity
The k- neighborhood of a sequence si is defined as the set of

sequences at a hamming distance equal or lower than k, respect to si

(h(si,s�)ƒk). The number of sequences of a k-neighborhood

increases as
Pk

i

L

i

� �
(a{1)i. For a~2 and L = 18; 1, 3, and 5-

neighborhood contain 18; 987; and 12,615 sequences, respectively.

In order to quantify the relative distribution of phenotypes

across sequence space, I consider the phenotypic diversity of a k-

neighborhood centered at a sequence si (ci
k). ci

k is simply defined as

the set of phenotypes encoded by sequences in the k-neighborhood

of si. ck for small k values, informs on the fraction of immediate

accessible phenotypes, those expected to be available after few

point mutations; whereas larger k values, tell us about the overall

diversity of phenotypes across sequence space.

Sequences, networks and components
By applying Eq. 1 over all sequences in G, a given potential Ui,

induces the folding (i.e. mapping) of a set of non-degenerate

sequences (Si), which represents a fraction of genotype space (Si

( G); into the set Ci, a fraction of phenotype space (Ci ( P). We

say that Ci is the accessible conformational space induced by the

potential Ui on G. The total fraction of non-degenerate sequences

induced by Ui, is called non- degeneracy (ni = DSi D=DGD = DSi D=aL).

Similarly, encodability can be defined as: ci = DCi D=DPD.
The non-degenerate fraction of sequence space induced by U,

can be treated as a network of genotypes (N G ) (Figure 1).

Sequences are nodes, and edges are formed between pairs of

sequences that differ in one point mutation (h(si,sj ) = 1). When two

nodes in N G can be connected by a series of single point

mutations, we say there is a mutational path (mij ) between them.

The diameter of a graph corresponds to its largest mij .

A connected component of a genotype network, or genotype
component (XG ), is a subset of nodes in N G, for which there is at

least one mij between every possible pair of sequences (si,sj ). A

genotype network can be composed of one or more than one

genotype component (X i
G(N G ); and the total number of

sequences in the network is the sum of the number of sequences

in each component (DN G D~
P

i DX i
G D). Note that XG represents the

set of genotype components, DXG D represents the number of

genotype components, whereas DX i
G D, the size, in number of

sequences, of genotype component i. For instance,N G in Figure 1,

is composed of three XG :N G~X a|Xb|X c. (I drop the subscript

G, since all genotype components are necessarily part of N G ).

The distinction of genotypes according to the phenotypes they

map onto, induces subgraphs, whose properties have important

consequences for the architecture of the map and can be

characterized quantitatively in terms of the statistics of their

expected size, diameter and distances. Sequences that fold onto

the same phenotype are called neutral sets (N P) and are, by

definition, subsets of the genotype network (N Pj
(N G ). Note that

the number of N P is equivalent to the number of accessible

phenotypes (DCD~DN PD). For instance, in Figure 1,N G is composed

of 5 N Pj
, represented by different colors.

Sequences are known to distribute heterogeneously over

conformations and this property of a phenotype, traditionally

called designability (Cdes) [16], has important implications for

evolution and design. The designability of a phenotype j is

equivalent to the size, in terms of number of sequences, of the

neutral set associated to phenotype j (C
j
des = DN Pj

D).
As in the case of N G , a neutral set (N Pj

) can also be composed

of more than one connected component. These connected subsets

of non-degenerate sequences, that map to the same phenotype, are

called neutral networks (YP). Note the subscript distinction. G

refers to genotype, as in genotype network (N G ) and genotype

component (XG ). P refers to phenotype. However, instead of using

phenotype network (N P) and phenotype component (YP), I stick to

the terms traditionally used in the literature: neutral sets and

neutral networks, respectively [5,42].

Architecture of the Protein Sequence-Structure Map
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A neutral set can be composed of more than one neutral

network (Yi
Pjk
(N i

Pj
(N Pj

). Yi
Pjk

refers to the k neutral network in

the neutral set of phenotype j (N Pj
); and genotype component i.

As is the case of XG , all pairs of sequences in YPjk
are connected

by at least one mutational path. For instance, Figure 1, shows 9

YP. The largest genotype component in N G (X a), is composed of

4 N P and 5 YP.

Similar to the idea of designability (Cdes), here I define a

network’s neutrality as the size, in number of sequences, of a

neutral network, as: Ck
neut = DYi

Pjk
D. Whereas the neutrality of a

single sequence si[YPj
(lij ), is defined as the fraction of mutants in

the 1-neighborhood of si, that are part of YPj
.

A genotype component (X i) in N G, can be composed of more

than one neutral network (Yi
Pj
(X i). But, note that not all neutral

networks (YPj
) of a given neutral set (NPj

), are necessarily part of

the same genotype component (X i). Sequences in N Pj
are the sum

of sequences in neutral networks (YPjk
) that can be part of different

genotype components: DN Pj
D~
P

i

P
k DYi

Pjk
D. For instance, N P1

(Fig. 1, in blue), can be expressed asN P1
= (Ya

P1
|Yb

P1
). (See Table

S2 in Text S1 for a summary of symbols and abbreviations).

Ideal and excess parts of a potential
A binary potential can be represented as a vector composed of 3

values, that describe 2 types of interactions (Figure 2A). First, those

between the same type of monomers, or homomonomeric (i.e. Eii,

Ejj ); and second, the heteromonomeric interaction (i.e. Eij ). The

heteromonomeric interaction of a binary potential can be

decomposed into ideal and excess parts [12,30]. These parts

describe the extent to which the potential favors two different

hypothetical stages of the folding process. The ideal part represents

an heteromonomeric interaction as in an ideal liquid. That is, as if

there was no energetic contribution by the heteromonomeric

interaction, and therefore it could just be approximated by the

arithmetic mean of their homomonomeric E values, as:

Eideal = (Eii+Ejj )/2. In contrast, the excess part (Eexcess = Eij -

Eideal ), aims to capture the contribution of the heteromonomeric

interaction, and describe the extent to which the native

conformation differs from an ideal mixture of amino acids, its

additivity (h). Here, I quantify the additivity of a given potential as:

h = [Eexcess/Eideal]+1 = Eij/Eideal .

The L18 model
In this study I use a two-dimensional SEM of sequence length

18 mer. In the following I refer to this model as L18. The

motivations for using this model, are fourfold. First, L18 represents

a good compromise in relation to the number of sequences versus

the number of conformations. Second, inspired by globular

proteins, some previous studies assume that foldable sequences

must adopt a maximum number of contacts. Because the

restriction of phenotype space to maximally compact conforma-

tions introduces artifacts, as inflated values of designabilities [50],

here I consider sequences folding onto any possible conformation,

as long as, the thermodynamic criterion is met. Third, compared

to three-dimension, two-dimension SEM show a surface-core ratio

more similar to natural proteins [13]. Finally, the L18 model has

been extensively used to evaluate different alphabets and potentials

[42,43], which will allows us to compare our results to previous

findings.

In the case of L18, P is composed of 5,808,335 total

conformations, and Q18
2 , of 262,144 sequences. Because the

energy of a sequence folded onto a given conformation is here

approximated by the contact of non-adjacent monomers along the

chain, conformations in a lattice are usually represented as contact
sets, a binary symmetric L by L matrix that describes the

Figure 1. A two-dimensional caricature of a genotype network (N G). Sequences are represented as nodes. Edges are drawn between
sequences that differ in 1 mutation. Degenerate sequences (gw1) are in grey, open squares. In this example, DGD = 192 nodes; DSD~DN G D = 84 nodes;

n = 0.43. N G is composed of 3 genotype components (N G = (Xa|Xb|X c)). Top left, DXaD = 53; top right, DXbD = 24; bottom, DX cD = 7. Non-degenerate
sequences in this example, fold onto 5 phenotypes represented by the neutral sets in colors blue, DN P1

D = 12; green, DN P2
D = 19; orange, DN P3

D = 15;

magenta, DN P4
D = 23; and yellow, DN P5

D = 15. Genotype components Xa and Xb are composed of more than 1 neutral network.

Xa = {Ya
P1
|Ya

P2
|Ya

P3
|Ya

P4,1
|Ya

P4,2
} and Xb = {Yb

P1
|Yb

P2
|Yb

P5
}. Phenotype 1 (blue) can be found in genotype components a and b:

N P1
= {Ya

P1
|Yb

P1
}. Phenotype 2 (orange) can be found in all three genotype components: N P2

= {Ya
P2
|Yb

P2
|Yc

P2
}. Genotype component c, is

also a neutral network: X c~Yc
P3

.

doi:10.1371/journal.pcbi.1003946.g001
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interactions of non-adjacent monomers [63]. Due to the larger

degrees of freedom of conformations with few contacts, different

conformations may correspond to the same contact set. The total

5,808,335 conformations of the L18 model, can be described by

170,670 non-redundant contact sets. Only 77,635 out of the

170,670 contact sets, are unique (ie. each one of them correspond to

a single conformation) and therefore potentially encodable (Pu)

under the thermodynamic hypothesis criterion [39]. The accessible

conformational space of a sequence-structure map, represents a

subset of the uniquely encodable set of conformations (C(Pu5P).

Foldability
A sequence’s foldability (F ), is mathematically described as the

deviation of the energy minimum from the energy distribution of

the ensemble of all possible conformations in P [50]:

F (sk,P)~
SEkT{Emin

sk

ð2Þ

SEkT is the expected stability of sequence sk, over all possible

conformations in the ensemble; sk, the standard deviation over the

same distribution; and Emin, the minimum observed energy of sk

folded onto ck. A more negative F value describes a steeper

folding funnel and therefore protein-like behavior.

Results

In order to explore the impact of the potential on the

architecture of the sequence-structure map of natural proteins, I

concentrate on the L18 model and binary alphabets. The

computational tractability of this model allows us to study exact

statistics of a large sample of potentials.

Types of binary potentials and the space of phenotypes
The potential of a binary alphabet is described by three values:

Eii, Ejj and Eij (with Eij = Eji, see Figure 2A). E values are real

numbers. If negative, they correspond to attractive interactions. If

positive, repulsive. Neutral interactions (E~0) do not contribute to

stability. Because of the symmetry (Z2) of the cube (QL
2 ),

homomonomeric interactions (Eii and Ejj ) are interchangeable. In

other words, if all gi monomers were exchanged by gj monomers,

properties of genotype space would remain the same.

The first protein lattice model ever studied was the HP model

[12]. It is composed of two types of amino acids, polar (P) and

hydrophobic (H). The potential is detailed in Fig. 2B. Only

homomonomeric hydrophobic interactions (EHH ) contribute to the

stability of a folded sequence.

An alternative to the HP model, the AB model, was introduced

in order to explore the impact of the potential on protein design

[64]. The AB potential introduces equivalent interactions between

homomonomers (EAA = EBB = 21.0) and a repulsive interaction

(EAB = 1.0), (Fig. 2C). The HP and AB potentials have been

modified (the so called shifted potentials) to study explicitly the

impact of repulsive interactions [39]. Figures 2D and 2E show the

shifted versions of HP and AB potentials. I refer to these 4

potentials as canonical.
In order to investigate the impact of the potential on the

sequence-structure map, I begin our analysis by sampling the space
of possible binary potentials, with E [ f21.00, 20.75, 20.50, 2

0.25, 0.00, 0.25, 0.50, 0.75, 1.00g; of which, canonical potentials

are a small subset. Since a binary potential is composed of three E
values, our sample produces a total of 93 possible U. From these

total possible combinations one must ignore potentials with no

relative favorable interactions (Eii = Ejj = Eij ), potentials with only

repulsive or neutral interactions (Eii, Ejj , Eij § 0.0), scaled potentials

of the form aEii, aEjj , aEij (with a [ Rz), take into account the

symmetry at homomonomeric interactions (i.e. Eii,Ejj ,Eij = Ejj ,Eii,Eij ),

and, the symmetry between homo versus heteromonomeric

interactions (i.e. if Eii = Ejj=Eij ; then, Eii, Ejj , Eij:Eij , Eij , Eii:Eij ,

Eij , Ejj ). These considerations result on a total of 245 potentials.

Potentials can be represented as vectors. Due to the symmetry of

the cube (QL
2 ), half of the space contains all possible non-

redundant binary potentials. As suggested by previous studies,

many properties of the potential energy function are determined

by the proportion of repulsive, attractive and neutral interactions

[39,50]. I use this criterion to distinguish among 7 types of

potentials, that correspond to the 6 non-redundant octants in the

3d E-coordinates representation, plus any potential with at least

one E~ 0 (Table 1, Figure 3). The octant in black (Fig. 3), that

corresponds to all-repulsive interactions (Eii, Ejj , Eij § 0.0); is

defined as potential type VII and, by definition, does not stabilize

any conformation (see Eq. 1). The 245 potentials described above

are an homogeneous sample from this space.

For each of the 245 potentials I proceed as follows. I enumerate

all possible sequences. I fold each sequence onto every contact set

and calculate its stability and foldability using equation 1 and 2,

respectively. (The raw data of the 245 sequence-structure maps

studied here, is available at: www.santafe.edu/*eferrada, see

Table S1 in Text S1.).

In order to compare different potentials and their impact on

properties of the sequence-structure map, I use hierarchical
clustering (see Supplementary Methods). The Jaccard similarity
index, between the sets ka and kb (JKab), (with ka, kb(K; a=b), is

defined as: JKab = Dka

T
kb

D=Dka

S
kb

D. JPab, measures the similarity

between the sets of conformations Ca and Cb (with Ci ( P),

induced by the potentials Ua and Ub, respectively. Similarly, JGab,

compares sets of sequences Sa and Sb (with Si ( G) (see

Supplementary Methods).

Figure 4 presents a hierarchical clustering of phenotype space

based on JPab (and JGab), for all possible pair combinations of binary

potentials Ua and Ub (a, b [ f1,…, 245g). Here I arbitrarily

choose to focus on JPab, however, similar conclusions arise from the

analysis of the Jaccard index on genotype space (JGab) (Figure S1).

Figure 2. Potentials for the canonical HP and AB models. (A) General structure of a binary potential, composed of monomers gi and gj .
Potentials of the HP model (B), AB model (C), HP shifted (D), AB shifted (E).
doi:10.1371/journal.pcbi.1003946.g002
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Each tip of the tree represents an independent sequence-structure

map. Maps that cluster closely in this tree have similar sets of

accessible phenotypes (Ci), that is, JPab values close to 1.0. E values

that compose each potential are specified on a color scale at the

branches’ tips, with Eij , specified at the outermost value. Branches

are colored according to the potential, as described above

(Table 1, Figure 3). Green and blue stacked bars following the

color-coded potentials, correspond to non-degeneracy and encod-

ability values, respectively. Boxplots, in black, represent the

distribution of foldability over all non-degenerate sequences of

each map.

A first observation from Figure 4 is the impact of the potential

on non-degeneracy, encodability and foldability, as well as the

overall consistency of these properties across potentials with similar

E values. The potential can induce considerable differences in non-

degeneracy and foldability. Confront, for instance, potentials type

IV and potentials type II (green and orange branches, respective-

ly). A similar observation applies in the case of clustering based on

JGab. In both cases, results are independent of the clustering method

(Fig. S2, and Supplementary Methods).

A second general observation regards the abrupt changes in the

use of phenotype space between some of the maps with potentials

of the same type. While potentials type I, II and V (blue, orange

and red branches, respectively) are highly clustered, potentials type

III and IV (magenta and green branches, respectively), distribute

across different clusters.

Figure 4 also reveals that canonical potentials are part of a

larger family of potentials, which represent only 3 out of the 7

different types described above (Table 1; Fig. 3 and 4). Most

notably, other combinations of E values, in particular, potentials

type I and II; induce sequence-structure maps that are as protein-

like as the HP model (see below, section Foldability). Moreover,

potentials that induce similar fractions of sequences and structures,

present considerable variation in their average foldability.

I now turn to a closer look at these differences.

Non-degeneracy and encodability
Non-degeneracy (n) is the fraction of genotype space that yields

viable, folding sequences. It ranges from 2 to 28% across maps

generated by the binary potentials sampled in this study (green

bars in Fig. 4). Similarly, encodability (c), the fraction of accessible

phenotypes, varies from 1 to 19% (Fig. 4, blue bars). Both, c and n
vary considerably across types of potentials (Fig. S3).

n and c are not independent and overall, correlate positively.

Their association, however, depends on the type of potential

(Fig. 5). In the case of potentials type I, II and IV, an increase in n
leads to larger c values. Potentials type III, however, preserve

similar c despite large variation in n. With the exception of few

potentials type I and VI, maps induced by binary potentials, use a

larger fraction of sequence than structure space (dashed line,

Figure 5).

Two main features of the potential account for n and c. First,

low negative values of Eideal , that is, average attractive homo-

monomeric interactions (Eii,Ejj%0.0), promote both increasing n

and c (see Fig. S4). The lowest values of Eideal are observed in the

case of potentials types II and III. Second, positive Eij values seem

to be sufficient to promote c, but not n (Fig. S4 and S5). Potentials

type I and II are the only potentials with positive Eij values. They

present encodabilities that are on average one order of magnitude

larger than the rest of the potentials sampled in this study.

These two features provide some intuition as to why potentials

type II and III reach large values of n, but only type II present also

large values of c (Fig. 5); whereas potentials type V show low and

conserved values of n and c. The Eexcess component of the

potential does account for both Eijw 0.0 and Eideal % 0.0.

Therefore, n and c are expected to correlate positively with Eexcess

(Fig. S4B, S4D).

Table 1. Type of potentials for binary alphabets.

Type EEii EEjj EEij Color code

I v0.0 w0.0 w0.0 Blue

II v0.0 v0.0 w0.0 Orange

III v0.0 v0.0 v0.0 Magenta

IV v0.0 w0.0 v0.0 Green

V w0.0 w0.0 v0.0 Red

VI ƒ§0.0 ƒ§0.0 ƒ§0.0 Grey

VII w0.0 w0.0 w0.0 Black

doi:10.1371/journal.pcbi.1003946.t001

Figure 3. Binary potentials as vectors of E values. Figure show a
graphic representation of the 7 types of potentials described in Table 1.
These potentials (type I-V, VII), correspond to the 6 non-redundant
octants in the 3d representation of E coordinates. Potentials type VI,
those with at least one E= 0.0, are represented by grey planes between
octants.
doi:10.1371/journal.pcbi.1003946.g003
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As observed before, repulsive interactions reduce the average

sequence degeneracy, increasing n and c [39]. However, our

analysis of a large sample of potentials shows that not any type of

repulsive interaction possess this effect, but only the heteromono-

meric component of the potential, and that the effect is favored in

the context of overall attractive Eideal .

Most notably, these observations suggest that, by controlling

for the components of the potential, both, the fraction of

sequence and structures can be increased and furthermore,

optimized independently of one another. For instance, the

average number of sequences per conformation (i.e. designability)

can be optimized by increasing n while keeping c constant, as is

the case of potentials type III (i.e. increasing attractive

interactions in both, homo and heteromonomeric components,

Fig. 3 and 5).

The use of sequence and structure space
Although n can be seen as the probability of finding a viable

sequence, the distribution of sequences in genotype space is not

uniform, and depends on their monomer composition.

Figure 4. Hierarchical clustering of phenotype spaces generated by the sequence-structure maps of binary potentials. Potentials are
sampled by considering E[ f21.00, 20.75, 20.50, 20.25, 0.00, 0.25, 0.50, 0.75, 1.00g (see main text and Table S1 in Text S1). Hierarchical clustering
was carried out using similarity measure JPab and the group-average method. E values of each potential are specified on a color scale at the branches’
tips, with Eij specified by the outermost value. Branches are colored according to the 7 different potentials described in Fig. 3 (see also main text and
Table 1). Green and blue stacked bars following the color-coded potentials, correspond to non-degeneracy and encodability, respectively. Boxplots,
in black, represent the distribution of foldability values over non-degenerate genotypes for each map. Canonical potentials are the HP and AB models
and their shifted versions (Fig. 2). They are highlighted with red dots.
doi:10.1371/journal.pcbi.1003946.g004
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Sequences can be classified according to their composition into

classes. Compositional classes correspond to the frequency of the

relative fraction of monomers across non-degenerate sequences

induced by a given potential. In the case of maps composed of

binary potentials, compositional classes distribute binomially. If all

218 sequences in the L18 model were non-degenerate, there would

be 19 compositional classes, ranging from the unique two

sequences composed of only one of the two monomer types

(compositional classes 0 and 18 in Fig. 6; with 0 and 100% of

monomer i, respectively) to 48,620 sequences composed of 50% of

each monomer (compositional class 9).

In order to study the distribution of non-degenerate sequences

across genotype space, I compare observed versus expected

frequencies of different compositional classes. Expected composi-

tional classes are estimated for a given potential Ui, by sampling

nia
L random sequences from genotype space, assuming that every

sequence is equally likely to be non-degenerate.

Potentials present considerable biases toward certain composi-

tional classes (Fig. 6). In particular, genotype spaces of potentials

type I are enriched in i monomers, with compositional classes near

61%. In contrast, potentials type IV show significant deviations

toward j monomers. In addition, consistent with the abrupt

transitions between similar potentials (JG, Fig. S1), potentials type

III, IV and VI show considerable variation (error bars, Fig. 6).

HP

AB

Figure 5. Association between non-degeneracy and encod-
ability. For each potential sampled in this study, the plot shows non-
degeneracy (n) versus encodability (c). Non-degeneracy corresponds to
the fraction of genotype space that yields viable sequences; encod-
ability, to the fraction of accessible conformations (see Models). Colors
match the potentials types described in Fig. 3 and Table 1.
doi:10.1371/journal.pcbi.1003946.g005

Figure 6. Observed versus expected compositional classes of potentials types I to VI. Compositional classes correspond to set of
sequences with a given fraction of i and j monomers. A given compositional class contains 18-i monomers type j. Expected number of sequences per
compositional class are estimated by sampling, for a given potential Uk , nkaL random sequences from genotype space. Error bars represent one
standard deviation from the mean. Colors code each potential type according to Fig. 3 and Table 1.
doi:10.1371/journal.pcbi.1003946.g006
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Deviations from expected distributions can be explained by the

proportion of attractive and repulsive values at homo versus

heteromonomeric interactions (Fig. 3, Table 1). In the case of

perfectly symmetric interactions between homo and heteromono-

mers, as is the case of potentials type II and V (Fig. 3, 6), there are

no major deviations toward compositional classes enriched in

either of the monomers. In these two cases, the diversity of

repulsive and attractive interactions do not favor any composi-

tional class. In the case of potentials type I and IV, however, one of

the homomonomeric interactions breaks the symmetry of the

potential, favoring the monomer that better counteracts stability

respect to Eij , increasing the diversity of competing interactions.

Thus, potentials type I favor monomers type i (Eiiv0 and Eijw0);

whereas potentials type IV, j monomers (Ejjw0 and Eijv0).

Similarly, deviations in structural space can be estimated by

considering the distribution of number of contacts across the

conformations induced by a potential (i.e. compactness). The

distribution of expected number of contacts can be estimated by

assuming that every uniquely encodable conformation is equally

likely to be accessed by non-degenerate sequences. Therefore, for

a given potential (Ui), I sample ci DPuD conformations and calculate

their number of contacts. Where ci, is the encodability of

sequence-structure map i, and Pu, the set of uniquely encodable

conformations of phenotype space (see Models).
All types of potentials deviate significantly from the expected

distributions and in particular, compact conformations are more

underrepresented than open ones (Fig. S6). Error bars indicate

that deviations from expected distributions of contacts, are more

consistent across potentials type I, V and VI. This is not the case of

potentials type II, III and IV (Fig. S6).

Potentials type I favor structures with less number of contacts

(i.e. open conformations), and types II deviate toward compact

conformations. Figure S7 shows examples of the most and least

common structures per type of potential. Notice the reduced

number of contacts in potentials type I, even for the most common

conformation (Fig. S7A). As shown before, repulsive heteromono-

meric interactions (Eijw0) promote c (Fig. 3 and 5). In the case of

an additional repulsive homomonomeric interaction (Ejjw0 in

potentials type I), the distribution of conformations shifts

considerably towards open conformations (Fig. S6, I & II). A

similar effect is observed by comparing potentials type III, IV and

V. The addition of repulsive interactions in potentials type IV and

V, have a slight impact on the unfavored open conformations

observed in potentials type III (Fig. S6, III).

In summary, the potential energy function affects the monomer

composition of non-degenerate sequences and the compactness of

conformations. The symmetry of the potential, defined as the

proportion of attractive and repulsive forces in homo versus

heteromonomeric interactions, favors the unbiased use of geno-

type space and viceversa. Moreover, the relative increase of

repulsive over attractive interactions, favors open conformations.

The designability of phenotypes
In the previous sections I observed that first, potentials vary in

their propensity to induce the folding of sequences and structures.

Second, potentials favor the viability of regions of sequence and

structure space with biased sequence composition and compact-

ness. Here I turn more closely to the relation between sequence

and structure across maps. In particular, the relation between the

number of sequences per structure, or designability (see Models).
Designability (Cdes) is known to distribute heterogeneously over

conformations [16], and this property of a phenotype, has

important implications for protein evolution and design. Desig-

nable structures, those that map to many sequences, are more

likely to be found by a random search across genotype space and

are, by definition, more resistant to mutations.

In order to study Cdes across the phenotype space of a sequence-

structure map, I calculate the probability of finding, among non-

degenerate sequences, a genotype that folds onto a phenotype with

designability Cdes or larger. Figure 7 shows such probabilities as

logarithmic cumulative distributions for different types of poten-

tials. As studied before, in the case of the HP model, the

probability of finding a phenotype with §Cdes, distributes

approximately exponential in the 2D lattice [16,50]. I confirm

this trend for potentials type I and II. Other potentials, however,

deviate strongly from an exponential distribution.

In the case of potentials type I and II, the probability of finding

sequences that map to increasingly designable phenotypes

decreases fast compared to the rest of the potentials and is similar

to the HP model (black dashed line, Fig. 7). The opposite is true

for potentials type III and VI. For instance, in the case of

potentials type I, the probability of finding a non-degenerate

sequence that maps to a phenotype with Cdes§ 10, is approxi-

mately 0.05; while in the case of potentials type III, with the same

probability, one finds maps with Cdes& 110 sequences. Potentials

type V, on the other hand, distribute narrowly and with

probability 0.05, presents neutral sets of at least 40 sequences.

Different degrees of variation across potentials of the same type

(e.g. contrast potentials type V and III), are the result of the

differential distribution of n and c. For instance, potentials type III,

that show increasing n, while keeping relatively constant values of

c, present the broadest Cdes distributions. In contrast, potentials

type I, with c increasing almost linearly with n, the probability of

finding larger Cdes, decreases rapidly. In contrast, potentials type

V present conserved values of n and c, which translates on

narrower probability distributions (confront Fig. 5 and 7).

As suggested by a previous study, the identity of designable

phenotypes is largely influenced by the potential [50]. As noted

above, there is considerable overlap among the phenotypes induced

by the potentials studied here. In order to explore this observation

Figure 7. Cumulative probability distributions of the desig-
nability of neutral sets for potential types I-VI. For each
sequence-structure map I calculate the probability of finding, among
non-degenerate sequences, a genotype that folds onto a phenotype
with designability Cdes or larger. Here, designability is defined as the
number of sequences per neutral set: Ci

des = DN Pi
D (see Models). Color

codes according Fig. 3 and Table 1. Dashed black line, HP potential.
doi:10.1371/journal.pcbi.1003946.g007
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further, I group potentials according to their type, rank phenotypes

by designability and consider the top and bottom 1 percentiles.

There are only 122 conformations (2% of the average number of

conformations per potential) encoded by every potential. There are

no universally designable phenotype across the potentials studied in

this work. I observe that with the exception of potentials type V, the

most and least designable phenotypes are unique to each type of

potential. Figure S7 shows examples of these phenotypes.

Recall that genotypes of the same neutral set (N P) are not

necessarily connected (see Models). Therefore, from an evolution-

ary standpoint, instead of N P and Cdes, one should rather look at

the size of neutral networks (Cneut). The reason is that the

connectivity of genotypes that are part of the same Yi
Pjk

, allows

them to mutate while preserving the same phenotype (Pj ). Here,

the super and subscripts, stand for the neutral network k of

phenotype j, in genotype component i (see Models). Figure S8

shows the cumulative probability distribution of Yi
Pjk

size, across

maps. As expected, the probability of finding DYi
Pjk

D§Ck
neut, decays

faster compared to Cdes of neutral sets. This trend is particularly

clear for potentials type II, III and V. In the case of potentials type

III, for instance, the probability of finding neutral sets with 10 or

more sequences, reaches values of 0.8; whereas finding neutral

networks of similar size, only occurs at probabilities of 0.25. The

trend is also evident for potentials type II and V. For instance, with

probability of 0.05, one finds neutral sets of 20 and 40 sequences,

respectively; whereas, with the same probability, one finds on

average neutral networks of only 6 and 8 sequences, respectively.

In contrast, the probability distributions of neutral networks and

sets, are very similar in the case of potentials type I (see below). In

both cases, with probability of 0.07, one finds cluster of sequences

of approximately 10 sequences or larger.

These observations suggest that, in addition to variation on the

available fraction of sequences and conformations (i.e. n and c),

there are considerable differences in Cdes and Cneut across

potentials. Although different types of potentials induce similar

sets of phenotypes, the identity of the most and least common

phenotypes vary considerably. Additionally, potentials induce

differential allocation of sequences across connected components

(Yi
Pjk

), which suggests influences on the size and distribution of

neutral sets and neutral networks across genotype space. In the

next section, I explore this aspect in more detail.

Networks of sequences and connected components in
genotype space

As described in Models, non-degenerate sequences in genotype

space can be construed as graphs. In order to investigate the

impact of the potential on the distribution of sequences in

genotype space from a network perspective, I look at the expected

size of connected components (XG ), neutral sets (N P) and neutral

networks (YP) across different maps. I calculate the expected size of

a cluster of sequences (xi) from a collection of sets, x, as:

Ox~
1

DN G D

X
i
Dxi D2; where xi are particular instantiations in the

set x: XG ,N P or YP. Ox simply computes the weighted average of

sequences by their corresponding component size. Because every

sequence is multiplied by its component’s size; Ox is equivalent to

sum over the squares of the size of each component. If we were to

choose a random non-degenerate sequence, from genotype space;

OXG
would represent the expected size of the genotype component

to which si belongs; ON P
, the expected designability of its

phenotype and OYP
, the expected neutrality of the neutral

network associated to the same phenotype.

Figure 8 shows the distributions of OXG
and OYP

per type of

potential. In order to compare maps generated by different

potentials, I scale expected size by non-degeneracy (see legend of

Fig. 8). Potentials type I, II and V, show genotype components

that span on average 97, 99 and 93% of non-degenerate

sequences, respectively (insets Fig. 8I, II, V). Note, however, that

these distributions of expected size are generally due to the

presence of a large genotype component. Figure S9 shows the

distribution of the diameter (D) of genotype components per type

of potential (see Models). While 60 to 90% of genotype

components of potentials are composed of a single sequence

(D = 0), all types of potentials show at least one large spanning

genotype component (D = 18) (Fig. S9).

In addition, potentials type I, II and V, as confirmed by

designability of neutral networks in the previous section (Fig. S8),

present small neutral networks mostly composed of 2 sequences

(Fig. 8). Figure S10 shows the distribution of neutral networks

diameter across potentials. Potentials type I and V do not show

neutral networks with Dw9. Maximum diameter observed for

potentials type II is 11.

In contrast to potentials type I, II and V; III, IV and VI, present

genotype components and neutral networks that deviate towards

smaller and larger expected size, respectively (Fig. 8, S9, S10).

Although giant components dominate in the case of potentials type

III and IV (Fig 8), they also show cases where genotype

components’ expected sizes reduce to 60 and 40% of non-

degenerate sequences, respectively. In both cases the expected size

of neutral networks increases up to 120 and 60 sequences,

respectively (without scaling by ni). Potentials type IV and VI

present neutral networks of diameters up to 14 and potentials type

III show cases of neutral networks that cross genotype space

(D = 18).

Random graph theory predicts that the diameter of a neutral

network (D(YPj
)) is a function of the average neutrality of

sequences that compose the network (see Models). The theory

predicts the existence of a critical value l�~1{
ffiffiffiffiffiffiffiffi
a{1a{1
p

[65]. If

the average neutrality of sequences in a network of phenotype j

(�llj ), is larger than the critical value (�lljwl�), then, sequence in YPj
,

percolate across genotype space and form a giant component. For

a binary alphabet, l� = 0.5.

Overall, potentials sampled in this work show low �ll

(�llmax = 0.33) (Figure S11); and, the maximum diameter of

neutral networks for potentials type I, II, IV, V and VI; are 9,

11, 14, 9, and 14, respectively (Fig. S10). Five potentials type III,

however, present at least one neutral network with D = 18.

Moreover, the average neutrality of these neutral networks is
�llj&0.15–0.19. There are at least 2 reasons for this disagreement

with the theory. First, random graphs may not be a good

approximation for neutral networks in the L18 model and/or

potentials type III. Results presented in a previous section (i.e. the
use of sequence and structure space), support this hypothesis.

Second, it might be the result of finite size effects in the L18

model. In order to test the second hypothesis, �ll should be

calculated at the asymptotic limit [65], an analysis that is beyond

the scope of this work.

Relative distribution of genotype components and
networks

As explained in Models, sets of sequences that fold onto the

same conformation (i.e. neutral set) can be composed of more than

one neutral network (YP(N Pj
). Similarly, genotype components

can be composed of more than one neutral set (N i
Pj
(X i

G ) (Fig. 1).

Architecture of the Protein Sequence-Structure Map
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In order to explore these differences on the architecture of

sequence-structure maps from a broader perspective, I look at

ON P
and OYP

as a function of the number of genotype

components (XG ) and number of neutral sets (N P), respectively

(Figure 9). Each point in Figure 9 is a sequence-structure map

induced by a potential of a given type (color code, Fig. 3, Table 1).

The number of XG and N P, vary approximately one order of

magnitude across different potentials. However, compared to XG,

there are ten times more N P (Fig. 9). As the number of XG

increases, the space gets partitioned into more components and

the expected designability of phenotypes (ON P
) decreases propor-

tionately (Fig. 9A). Potentials type I show few number of

components (*100–400) that contain on average, a large number

of neutral sets (*5,000–10,000 - Fig. 9B), of small expected size

(*10 sequences - Fig. 9A). Similarly, potentials type II (and V),

induce maps with fewer (and larger) XG , with relatively larger (and

smaller) N P, respectively (Fig 9B). Potentials type I, II and V

show, on average, small YP (i.e. low neutralities).

In contrast, potentials type III and IV show genotypes

components of vastly different sizes. These potentials are enriched

on sequences of the same phenotype and consequently, their maps

show low encodabilities (x-axis, Fig. 9B). Strikingly, the expected

designability of some potentials type III, decreases almost linearly as

function of the decimal logarithm of DXG D, approximately as 15%

per order of magnitude (Fig. 9A). The number of YP decreases

rapidly once encodability reaches values of *5,000 phenotypes

(Fig. 9B).

The ratio of the expected size of different sequence clusters

shows that genotype components are approximately 1,000 to

3,000 fold larger than the expected size of an average neutral set

across potentials (OXG
/ON P

&1,000–3,000) (Figure 10A). Al-

though in general the expected size of an average neutral network

follows a similar proportion, potentials type II and V, show large

deviations, with genotype components: OXG
/OYP

& 9,000 to

12,000 fold larger than the expected size of neutral networks.

These ratios are particularly well conserved across potentials type

V (Fig. 10A).

A similar analysis comparing the expected sizes between neutral

sets and neutral networks, shows major differences across

potentials (Fig. 10B). Strikingly, and as anticipated (see section

the designability and neutrality of phenotypes), potentials type I

show exclusively fully connected neutral sets (ON P
/OYP

& 1). In

contrast, potentials type V present neutral sets on average 5 to 6

times consistently larger than the expected neutral network. With

the exception of potentials type II, that shows on average 4 to 5

neutral networks per phenotype (Fig. 10B); the rest of the

potentials show large variation with predominantly 1 to 2 neutral

networks per phenotype.

In summary, potentials type I, II and V, induce sequence-

structure maps of relatively similar organizations. These potentials

show large genotype components and on average few sequences

per phenotype. With the exception of potentials type V, however, I

and II show on average few genotype components.

Potentials type I show neutral sets composed of a single neutral

network and on average, 3,000 networks per genotype compo-

nents. As seen before, these networks possess short diameters.

Similar to potentials type I, type II show approximately 3,000

neutral sets per genotype component. These types of potentials,

HP

AB AB

HP

Figure 8. Distribution of expected size of clusters of sequences in genotype space for potentials type I-VI. For each sequence-structure
map i, generated by potential Ui , plots present the expected size of sequence clusters xi[x (Ox), where x is: XG or YP (see main text). Panels present
the relative distribution of niO

i
Yp

for potentials type I-VI. Distributions are normalized by ni , the non-degeneracy of sequence-structure map i. Color

code according to Fig. 3 and Table 1. Insets, relative distribution of expected size of genotype components (OXG
), normalized by the total number of

non-degenerate sequences (nia
L = DSi D).

doi:10.1371/journal.pcbi.1003946.g008
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however, show on average, neutral sets 4 times larger than the

expected size of a neutral network. Potentials type V, on the other

hand, show on average, 1,800 neutral sets per genotype

component and these neutral sets are consistently composed of

5.5 to 6 times more neutral networks.

In contrast, potentials type III, IV and VI, induce sequence

structure maps with genotype components and neutral sets of a

wide variety of sizes. These potentials show long-tailed distribu-

tions of neutral networks per phenotypes, with on average 1 to 2

networks per neutral set. In addition, they show approximately

1,000 to 2,000 neutral sets per genotypes component. While

potentials IV and VI reach neutral sets and networks of expected

size up to 70 sequences, potentials type III shows neutral networks

of up to 120 sequences.

The phenotypic diversity of genotype neighborhoods
Although the distribution of sequences in genotype space, and in

particular of neutral networks, informs on the abundance of

phenotypes and their expected mutational robustness, it does not

tell us about the mutational divergence between different

phenotypes. The differential accessibility to phenotype variants

across genotype space has a profound impact on the ability of

sequences to produce new, unobserved phenotypes.

In order to study the relative accessibility of sequences to new

phenotypes, I consider the phenotypic diversity of a pair of k-

neighborhoods centered at si and sj (ci
k, cj

k) (see Models). I

calculate the overall fraction of phenotypes unique to each of the

two k-neighborhoods at distance h(si,sj)~d , and constant k, as:

Fk(d)~
Dci|cj D{2Dci\cj D

Dci|cj D
. Fk(d) measures the overall diversity of

two phenotype neighborhoods as a function of their divergence in

genotype space. Note that non-overlapping k-neighborhoods only

occur at d§2kz1 [8,66].

Figure 11 presents F2 and F4 as a function of distance for

potentials type I-VI. At very short distances (with even overlapped

neighborhoods), F2 shows 50 to 70% of unique phenotypes

(Fig 11A). As expected, at short d and larger k, Fk decreases as a

function of d (Fig. 11B). In the case of 2-neighborhoods, the

fraction of unique phenotypes increases rapidly with distance and,

at short d, there are only slight differences between types of

potentials. At the overlapping threshold of F2 (d~5, dashed line

Fig. 11), approximately 85 to 95% of phenotypes are unique to

pairs of neighborhoods. At larger distances, however, F2 differ

considerably across potentials. For instance, at d§9, potentials

type I access 2-neighborhoods with 100% new phenotypes;

whereas, distant 2-neighborhoods of potentials types II, III, IV

and VI, share from 10 to 15% phenotypes. This trend intensifies in

the case of potentials type V, that reach similar F2 values

compared to 2-neighborhoods at short distances (Figure 11A).

In the case of larger k-neighborhoods, differences between

potentials discussed above become more evident (Fig. 11B and

S12). Strikingly, potentials type I consistently find unique

phenotypes at d§(2kz1). In stark contrast, potentials type V,

recover completely the levels of Fk observed at short distances in a

fairly symmetric pattern (Fig. 11B, S12).

In order to further explore these differences I look at maximal

distances (dmax) between sequences that are part of the same

neutral set, that is, sequences that fold onto the same phenotype.

Figure S13 shows such distributions per type of potential. As

expected, potentials type I show short maximal distances, with

dmax hardly larger than 7 point mutations. In contrast, all other

potentials show phenotypes at varying distances and sequences at

opposite sides of genotype space (dmax = 18). In particular,

potentials type II, IV and VI show 40 to 60% of phenotypes

with dmax = 18. Consistent with the patterns observed in Fig. 11

(and S12), potentials type III and V show on average, 70 and 97%

of phenotypes with dmax = 18, respectively (Fig. S13).

The existence of sequences at dmax can be explained by the

degree of symmetry between attractive and repulsive interactions

in the potential. A sequence folds onto its native conformation by

stabilizing a set of contacts (2 to 10 in the case of the L18 model).

In the case of a completely symmetric potential (as type V),

HP

o o|      | |       |

AB

HP
AB

Figure 9. Number of genotype components and neutral sets versus the expected size of neutral sets and neutral networks. (A)
Number of genotype components versus the expected size of neutral sets. (B) Number of neutral sets versus the expected size of neutral networks.
Expected size of N P (ON P

) and YP (OYP
), are calculated as the weighted average of sequences across neutral sets and neutral networks, respectively

(see main text). Color code according to Fig. 3 and Table 1
doi:10.1371/journal.pcbi.1003946.g009
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sequences in opposite sides of genotype space, those with every i
position mutated by the opposite monomer, would preserve the

same fraction and type of interactions, and therefore stabilize the

same phenotype. In contrast, an asymmetric potential, as

potentials of type I, with a single homomonomeric attractive

interaction, will populate phenotypes at biased compositional

classes. As these observations predict, potentials type III, a fully

symmetric potential with no competing interactions, stabilizes

sequences at a varying range of distances (Fig. S13).

In summary, potentials induce maps with variable degrees of

phenotypic diversity and divergence between neighborhoods. At

short mutational distances, there is a large fraction of phenotypic

diversity and these values are consistent across types of potentials.

At moderate and long distances, however, potentials differ

extensively in the distribution of unique phenotypes and those

differences are due to the symmetric distribution of the potential’s

attractive and repulsive forces in homo versus heteromonomeric

energy terms.

Foldability
Not all non-degenerate sequences are guaranteed to fold readily

onto their native conformations. The propensity of a polypeptide

to fold fast is an important determinant of how protein-like is a

random sequence [67]. Next, I look at the impact of the potential

on foldability (F ), a measure of a sequence’s propensity to fold (see

Models).
Foldability is very sensitive to parameters in the potential. As

shown in Figure 4, F varies extensively across sequence-structure

maps, even among those induced by potentials of the same type

(see Fig. S14). Min and max median values are 28.2 and 22.3,

respectively (the lowest the foldability, the faster the folder - see Eq.

2). Similar values of foldability are also observed to correlate very

well with the accessible set of genotypes (Figure S1). The canonical

potential HP has a notorious long-tailed distribution biased

towards fast folders. This is however not a peculiarity of the HP

model, and similar protein-like sequence-structure maps are

observed in the case of potentials type I, II and other potentials

type VI (Fig. 4 and S1). In addition, variation on the foldability of

maps induced by the same potential type, suggests that foldability

is highly sensitive to changes on the potential (confront for

instance, potentials type I or II in Fig. 4 and S14).

Evidence from the theory of protein folding relates foldability to

cooperativity or the non-additivity of interactions [15]. In the

context of binary potentials, I measure additivity (h) as deviations

of excess from the ideal part of the potential (see Models). Figure 12

presents the median F across all non-degenerate sequences of

each sequence-structure map, as a function of h. In the case of a

completely additive potential: Eij~Eideal (dashed lined at h~+1).

The association between h and F for potentials type I-V is

delineated by the foldabilities of potentials type VI (black dots in

Fig. 12). This is due to the fact that transitions between types of

potentials occur whenever E? 0.0 (grey planes in Fig. 3).

Sequence-structure maps that favor foldability are induced by

HP-like energy functions, which include potentials type I, II and

VI.

Not every potential that deviates significantly from additivity

ensures a foldable map. Figure 12 shows that the extent to which

additivity dictates the overall F of a map, is a function of the type

of interactions present in the potential. For instance, potentials

type II and III reach better F as Eij?0; whereas in the case of

potentials type V, when Eij?{?.

In summary, our observations confirm the impact of a

potential’s non-additive interactions on favoring protein-like

sequences. I observe that the role of non-additivity is highly

dependent on the form of the potential and that different

potentials can induce maps as protein-like as the canonical HP

model. HP-like sequence-structure maps are particularly induced

by potentials type I and II. Most notably, this analysis suggests that

by controlling for the form of the potential, it is possible to design a

map with a desired fraction of protein-like sequences.

The binary potential energy functions of natural amino
acids

How random are the pairwise interactions observed in the

natural amino acid alphabet? I assess this question by comparing

the pairwise interactions of amino acids in the Miyazawa-

Jerningan (MJ) potential (Table VI in [29]), to the unbiased

random sample of potentials studied in previous sections.

I start by counting all pairs of natural amino acids in the MJ

potential (i.e. 190), and classify them according to the definition in

Fig.3. The MJ potential presents all 7 types of potentials analyzed

in this work. Because of its continuous energy values, there are

Figure 10. Ratio between expected size of sequence clusters
for different types of potentials. (A) Ratio between the expected
size of genotype components (OXG

) and neutral networks (OYP
) in

black. Ratio between the expected size of genotype components (OXG
)

and neutral sets (ON P
) in blue. (B) Ratio between the expected size of

neutral sets (ON P
) and the expected size of neutral networks (OYP

).
Color code as in Fig. 3 and Table 1. The expected size of a cluster of
sequence is calculated as the weighted average of sequences per
cluster size (see main text).
doi:10.1371/journal.pcbi.1003946.g010
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only six binary potentials with neutral interactions (i.e. type VI),

and for convenience, I neglect them in this analysis.

According to Fig. 3, an homogeneous sample from the space of

binary potentials produces potentials type I:II:III:IV:V:VII in the

ratio 2:1:1:2:1:1. The histogram in Fig. 13, shows a comparison

between expected versus observed types of binary potentials in the

MJ energy function.

This analysis shows that natural amino acids tend to avoid

purely repulsive potentials (type VII) as much as they promote HP-

like potentials (type I and II). Strikingly, there is a strong

overrepresentation of potentials type III, approximately equivalent

to the overall underrepresentation of potentials type IV and V.

In order to gain further insights on the properties of binary

combinations of natural amino acids, I perform a similar analysis

as the one reported in Figure 4 (see Figure S15).

In contrast to Fig. 4, the clustering of sequence-structure maps

of binary potentials of natural amino acids seems more homoge-

neous. Similar to our previous observations, non-degeneracy

ranges from 2 to 34% and encodability, from 1 to 21%. Several

sequence structure maps reflect good foldabilities. These maps

usually involve strong interactions such as Cys. Sequence-structure

maps with different degrees of protein-likeness are observed in the

case of potentials type I, II, IV and VI.

The purpose of this analysis is not to argue that these binary

potentials reflect the architecture of the sequence-structure map of

natural proteins; but to suggest that, if the combination of

potentials can be approximately considered additive, then

combinations of these binary interactions may indeed reflect some

of the properties of sequence-structure maps induced by larger

alphabets. Indeed, random libraries composed primarily of 3

amino acids, such as AEK [68] and QLR [57], can be

decomposed into potentials type I, II, IV; and I, I, V; respectively.

In summary, these results show that the types of binary

potentials observed in an unbiased sample of the space of energy

functions, are represented in the interactions of natural amino

acids, as described by the MJ potential. The types of potentials

overrepresented in proteinaceous amino acids are potentials

characterized as HP-like. Furthermore, these analysis suggest that

random libraries enriched in HP-like potentials, are likely to favor

protein-like sequence-structure maps.

Discussion

A graph theoretic approach, inspired on the concept of

genotype-phenotype map, provides a common quantitative

framework to investigate the sequence-structure relation. Accord-

Figure 11. Fraction of new phenotypes across k-neighborhoods at distance d. For each of the 245 potentials analysed in this study (Table
S1 in Text S1), I draw 1,000 random non-degenerate sequences and for each pair of sequences (si,sj ), calculate ci

k , c
j
k and Fk(d), at constant k and

variable distances d. I average F k(d) values according to their type of potential (I-VI) (color code, see Fig. 3 and Table 1). (A) k = 2. (B) k = 4. Error bars
represent one standard deviation from the mean. Grey dashed lines illustrate the overlapping threshold: d~2kz1.
doi:10.1371/journal.pcbi.1003946.g011

Figure 12. Foldability as a function of a potential’s additivity.
Foldability was calculated using Eq. 2. Additivity, as described in Models.
Values refer to the median foldability across non-degenerate sequences
for a given potential. Shaded circles correspond to a single potential
colored as defined in the legend (see Fig. 3 and Table 1). Black dots
represent potentials type VI. Dashed lines illustrate additive potentials
(Eij~Eexcess ; h~+1).
doi:10.1371/journal.pcbi.1003946.g012
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ing to this framework, viable genotypes are represented as nodes,

and edges connect genotypes that differ in a single position along

the sequence. The distinction of genotypes according to the

phenotypes they map onto, induces subgraphs whose properties

and distribution have important consequences for biology. These

subgraphs can be characterized quantitatively in terms of the

statistics of their expected sizes, diameters and distances. I refer to

this detailed characterization of the sequence-structure map, as its

architecture.

In this study I showed that the potential affects the architecture

of the sequence-structure map and, that its impact on some of the

map’s properties is highly predictable based on features of the

potential.

First, the balance between attractive versus repulsive interac-

tions in the potential, affects the available fraction of sequences

and structures, and also induces biases towards compositional

classes and the compactness of conformations. Second, although

potentials induce similar sets of phenotypes, the identity of the

most and least common phenotypes, differs. Third, potentials

affect both the number, expected size, and the relative distribution

of genotype components, neutral sets and neutral networks.

Fourth, the overall symmetry of the potential, defined as the

distribution of attractive and repulsive forces in homo versus

heteromonomeric interactions, predicts the phenotypic diversity of

genotype neighborhoods across divergent regions in sequence

space. Fifth, foldability varies considerably across both potentials

of different type, and potentials of the same type that preserve

similar non-degeneracies and encodabilities. I observed that the

predictability of a potential’s non-additive interactions on the

average foldability of a sequence-structure map, depends on the

type of potential. Sixth, binary potentials of natural proteins, as

defined by the MJ energy function, present biases that over-

represent HP-like potentials.

In order to interpret these results in the context of the sequence-

structure map of real peptides, one should be aware of the

limitations of SEMs and the meaning of the energy terms in the

Figure 13. Hierarchical clustering of phenotype spaces generated by binary sequence-structure maps of a statistical potential
derived from natural proteins. Values of the pairwise potentials for natural amino acids were obtained from the Miyazawa-Jernigan potential,
Table VI [29]. (See legend of Figure 4 and main text).
doi:10.1371/journal.pcbi.1003946.g013
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potential. In the following, I discuss these limitations and evaluate

critically the results presented in this study.

Previous explorations of binary alphabets showed that repulsive

interactions reduce the overall degeneracy of sequences, increasing

the available fraction of viable genotypes and phenotypes [39].

The results in the present study confirm this observation and by

distinguishing between homo and heteromonomeric interactions,

show that non-degeneracy is promoted by potentials with

predominantly attractive interactions (type II and III, Fig. 3 and

Table 1), whereas encodability is only promoted by a combination

of attractive homomonomers and repulsive heteromonomers (type

II).

A second observation anticipated by SEMs is the effect of

repulsive interactions on the compactness of conformations [39].

Repulsive interactions tend to induce conformations with less

number of contacts. The results in the present study reveal that not

every repulsive interaction induces this effect. Indeed, only a

combination of repulsive interactions at both homo and hetero-

monomeric interactions, reduces compactness (type I). In the case

of repulsive homomonomer or heteromonomer interactions only,

the effect is either none or opposite, respectively (type V and II).

Previous studies pointed out that the effect of repulsive

interactions is due to the avoidance of local energy minima and

the distinction between conformations, by the induction of larger

energy gaps [39]. The results in the present work confirm this

intuition. Potentials with a larger average fraction of repulsive

interactions show better foldabilities (see below).

Several studies using different alphabet sizes, potentials, and

polymer lengths, suggest that designability arises under a large

variety of parameters [50,69,70]. Some of these studies, using

maximally compact conformations, have shown that designability

is affected by the potential and that, although different potentials

induce a similar set of phenotypes, the most and least common

phenotypes vary considerably across potentials [50]. The results

presented here confirm these observations in the L18 model, with

a full enumeration of the conformational space; and show that due

to the differential induction of non-degenerate sequences and

encodable conformations, potentials induce maps with variable

degrees of designabilities. Similarly, I showed that the neutrality of

networks presents analogous trends compared to the designability

calculated over entire neutral sets. I showed that their relation

depends on the type of potential.

In the present study I explored three additional properties of

sequence-structure maps, and their dependence on the potential

energy function. Firstly, by considering the expected size of

genotype components, neutral sets and neutral networks; I

observed that potentials induce a large variation on the relative

distribution of sequences and structures in genotype space.

Strikingly, there are significant differences on the number of

neutral networks per phenotype and the fraction of networks per

genotype component across potentials.

Secondly, as a consequence of different non-degeneracies and

encodabilities observed across maps, as well as the variation of

expected size of neutral sets and neutral networks, sequence-

structure maps show considerable differences on the phenotypic

diversity at divergent distances on genotype space.

Thirdly, I used previous definitions of foldability, based on the

energy gap, as a proxy to estimate the extent of protein-likeness

across non-degenerate sequences. I observed that not every

potential is equally likely to induce good folders. Most notably,

non-additive potentials induce lower values of foldability. Howev-

er, this prediction depends on the type of potential. Among these,

are potentials that also show optimized levels of non-degeneracy

and encodability (i.e. type I and II).

Altogether, these results support previous observations on the

distribution of sequences across genotype space based on the HP

model [42]. HP-like potentials (i.e. type I and II), show on average

small neutral networks that hardly reach diameters larger than

50% of genotype space. However, in contrast to the HP model,

HP-like potentials are not always isolated in genotype space, but

part of genotype components of large expected sizes. In part, this is

due to the symmetry of the potential, that is, the proportion of

attractive and repulsive interactions on homo versus heteromono-

meric interactions. In practice, a symmetric potential is one in

which interactions can be realized by more than one combination

of monomers (i.e. redundant). Because the chemistry of the natural

amino acid alphabet is known to be redundant, these observations

imply that, as long as types of amino acid interactions in the

structure are preserved, neutral networks (or at least, neutral sets)

are likely to extend over divergent regions of genotype space.

Previous, in silico analysis, support this observation [71], as do

protein design strategies based on conservation patterns of

hydrophobic-polar interactions [72].

The results presented here provide a rationale based on the

proportion and types of interactions resulting from the monomer

composition of sequences. As shown, this rationale makes

predictions on the expected phenotypic diversity and the relative

distribution of clusters of sequences. In addition, this framework

makes further predictions about the distribution of sequences in

genotype space and the role of structural determinants of sequence

variation. For instance, it predicts the existence of larger neutral

networks/sets in the case of structures with high degrees of

symmetry. Indeed, studies exploring structural determinants of

sequence variation show that designable folds are more symmetric

than expected [73,74]. Moreover, such a framework, suggests a

strategy to improve fold assignment, a common task in compar-

ative modeling [75] and in the identification of divergent

homologous sequences [76]. This and similar predictions can be

tested systematically in the case of proteins with long evolutionary

histories, that encompass large superfamilies spanning divergent

regions of genotype space (e.g. globins [77]; b-barrels [78]).

In extrapolating these observations to natural polypeptides one

should take into account two relevant features of the potential, and

evaluate how these features scale with the size of the potential.

First, as suggested by previous studies, alphabet size has a

fundamental impact on the fraction and diversity of accessible

phenotypes [14,79]. The observations presented here, suggest that

a more accurate definition of alphabet size should account for the

number and types of non-equivalent monomeric interactions. One

might consider an effective alphabet size as the total number of

chemically non-redundant pairwise interactions. Such a measure

should account for differences between homo versus heteromo-

nomeric interactions, and attractive versus repulsive. This

represents a natural distinction between the types of potentials

analysed in this work (Fig. 3, Table 1).

In the case of binary potentials, hetero versus homomonomeric

interactions are in a 1:2 ratio. In general, with an alphabet size a,

hetero to homomonomeric interactions are in an (a-1):2 ratio.

Thus, in the case of natural proteins, there are approximately 9

hetero per each homomonomeric interaction. In addition, some of

the types of potentials studied here, are more diverse in terms of

attractive versus repulsive forces. Overall, because of the diversity

of energy values, the alphabet of HP-like potentials must present

indeed, large effective sizes.

A second important aspect is to what extent, potentials

composed of aw2, can be considered simply as the additive

contribution of independent binary potentials. Observations from

simulation and empirical results, suggest that some of the
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properties presented above, for independent pairwise potentials,

may apply to sequences composed of larger alphabets.

Firstly, successful energy functions used to distinguish between

native and non-native conformations, are based on the additive

contribution of pairwise interactions [80].

Secondly, in silico mutational studies, show that changes in

stability across different types of folds, are normally distributed

[81]. This observation implies that most perturbations to the

stability of protein structures, are additive.

Thirdly, natural amino acids, as analyzed according to the MJ

potential, overrepresent binary energy functions with HP-like

features, as do natural sequences (unpublished data). A three-

monomer alphabet may involve up to 3 different types of

potentials; and a 4- and 5-monomer alphabet could, in principle,

encompass up to 6 and 10 different types of potentials,

respectively. Considering this observation, it is tempting to suggest

an explanation as to why random libraries of polypeptides and

protein folds designed using small alphabets, favor some types of

potentials. For instance, libraries composed of mainly 3 amino

acids such as AEK [68] and QLR [57], present I, II, IV and I, I, V

potentials; respectively. Similarly, random libraries constructed of

5 amino acids, such as VADEG, composed of potential types: I, II,

III, IV; in a 1:2:1:1 ratio; show high levels of solubility and

evidence of secondary structure formation [82]. A related

empirical observation comes from the synthesis of protein folds

using reduced alphabets. Riddle et al. [83], synthesized the SH3

fold using an alphabet of size 5: AIGEK. This alphabet includes

potential types: I, II, III, IV; in a 3:4:2:1 ratio, respectively.

Fourthly, its has been recognized that non-native interactions

play an important role during folding [84]. This suggests that

although dominant, HP-like interactions would not be the only

force required for successful folding, and would explain the relative

lower representation of other types of potentials in reduced

alphabets and in natural proteins. Other types of protein

sequences may serve to test this hypothesis. Indeed, disordered

proteins are known to be enriched in interactions that differ

considerably to those commonly found in globular proteins [85].

Two sources of bias may appear when comparing the actual

natural pairwise potentials to a random sample from the space of

energy values.

First, the chemistry of natural amino acids might cause an

overrepresentation of pairwise potentials of certain types. Such

bias might be explained by either biochemical constraints on the

synthesis of a limited amino acid chemistry, or by the influence of

natural selection on the amino acids introduced into the genetic

code. A second source of bias, due to natural selection, is the

differential usage of amino acids in natural proteins. From the

proteinaceous amino acid pool, natural sequences might tune their

composition and favor types of interactions that promote folding.

Since the MJ potential was derived from the propensity of pairwise

amino acid interactions in crystal structures of proteins, it might

contain a mixture of these biases.

The predominance of some types of potentials in natural

proteins, as well as the empirical evidence of random libraries

listed above, suggest the existence of constraints on the establish-

ment of a primordial amino acid alphabet. Studies exploring the

average solubility of random libraries have demonstrated a strong

variation of protein-like features in these libraries, as a function of

amino acid composition. Indeed, the so called primordial amino

acids, have been shown to promote solubility and the formation of

secondary structure [82]. The analysis presented here can be used

to fully enumerate potentials that are likely to meet these

constraints. Such analysis may provide a quantitative method to

test the likelihood of reduced amino acid alphabets.

Conversely, conjectures about the use of larger alphabets

suggest the expansion of phenotype space [61]. In a forthcoming

publication I explore larger amino acid alphabets, and quantitative

ways of evaluating the effect of combinations of different types of

potentials on the architecture of the sequence-structure map of

natural proteins.

Supporting Information

Figure S1 Hierarchical clustering of genotype spaces
generated by the sequence-structure maps of binary
potentials. Artificial potentials were constructed considering E [
f21.00, 20.75, 20.50, 20.25, 0.00, 0.25, 0.50, 0.75, 1.00g (see

main text and Table S1 in Text S1). Canonical potentials are the

HP and AB models and their respective shifted versions (see Fig. 1

and main text). Hierarchical clustering was carried out using

similarity measure based on genotype space, JGab, and the group-

average method. E values of each potential are specified on a color

scale at the branches’ tips, with Eij specified by the outermost

value. Branches are colored according to the 7 different potentials

described in Fig. 3. Green and blue stacked bars following the

color-coded potentials, correspond to non-degeneracy and encod-

ability, respectively. Boxplots, in black, represent the distribution

of median foldability values over non-degenerate genotypes for

each map. Canonical potentials are the HP and AB models and

their shifted versions (Fig. 2). They are highlighted with red dots.

(EPS)

Figure S2 Hierarchical clustering of phenotype sets
generated by canonical and artificial potentials using
different clustering methods. Top. Single linkage. Bottom.

Complete linkage. Hierarchical clustering was carried out using

the Jaccard index, JPab, described in the main text. See legend

Figure S1.

(EPS)

Figure S3 Non-degeneracy and encodability for the
potentials sampled in this study. Non-degeneracy and

encodability represented on the E coordinates of Figure 3. (A)

Non-degeneracy. The fraction of viable sequences of genotype

space. (B) Encodability. Fraction of the conformation space

accessible to non-degenerate sequences.

(EPS)

Figure S4 Ideal and excess components versus non-
degeneracy and encodability across different potentials.
(A, C). Non-degeneracy and encodability versus a potential’s ideal

component (Eideal ). (B, D) Non-degeneracy and encodability versus

a potential’s excess component (Eexcess). Color represents potential

types, as in Fig. 3 and Table 1.

(EPS)

Figure S5 Non-degeneracy and encodability versus the
heteromonomeric interaction of binary potenials. (A)

Non-degeneracy (n) versus Eij . Non-degeneracy stands for the

fraction of viable sequences of genotype space. (B) Encodability (c)

versus Eij . Encodability corresponds to the fraction of the

conformation space accessible to non-degenerate sequences. Color

represents potential types, as in Fig. 3 and Table 1.

(EPS)

Figure S6 Observed versus expected compactness for
potentials types I to VI. The compactness of a conformation

corresponds to its total number of contacts (2 to 10 for the L18

model). I estimate expected compactness for a given map by

sampling ci DPi
uD conformations from phenotype space induced by

Architecture of the Protein Sequence-Structure Map
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the potential Ui. The frequency of each compactness is compared

to the observed number of conformations per type of potential.

Color represents potential types, as in Fig. 3 and Table 1.

(EPS)

Figure S7 Examples of the most and least common
conformations unique to different types of potentials.
For each potential studied here, I rank phenotypes according to

their designability and group the 1st highest and lowest percentile

according to the type of potential. I select phenotypes that fall into

any of these categories and are unique to the particular type of

potential. The figure presents the most (A) and least (B) common

phenotypes per potential (I-VI). Number of contacts per type of

potential: I) 6, 4; II) 10, 9; III) 10, 9; IV) 10, 8; V) 10, 10; VI) 9, 8;

for most and least common phenotypes, respectively.

(EPS)

Figure S8 Cumulative probability distributions of neu-
trality of neutral networks for potentials type I-VI. For

each sequence-structure map I calculate the probability of finding,

among non-degenerate sequences, a genotype that folds onto a

phenotype’s neutral network with neutrality Cneut or larger.

Neutrality is defined as the number of sequences per neutral

network: C
j
neut = DYPij

D (see Models). Color as in Fig. 3 and Table 1.

Dashed black line, HP potential.

(EPS)

Figure S9 Distribution of the diameter of genotype
components. For each sequence-structure map and for each

genotype component, we compare all-against-all sequences and

record the maximum distance observed (i.e. diameter, D). Plots

show the average frequency across maps generated by different

types of potentials I-VI. Error bars represent one standard

deviation from the mean. Color as in Fig. 3 and Table 1.

(EPS)

Figure S10 Distribution of the diameter of neutral
networks. For each sequence-structure map and for each neutral

network, we compare all-against-all sequences and record the

maximum distance observed (i.e. diameter, D). Plots show the

average frequency across maps generated by different types of

potentials I-VI. Error bars represent one standard deviation from

the mean. Color as in Fig. 3 and Table 1.

(EPS)

Figure S11 Average sequence’s neutrality per neutral
network versus network diameter. For each sequence of

each neutral network of each potential, I calculate its average

sequence’s neutrality (i.e. fraction of sequences in the 1-

neighborhood that remains in the network) (see Models). Color

as in Fig. 3 and Table 1.

(EPS)

Figure S12 Fraction of novel phenotypes across k-
neighborhoods at distance d. For each of the 245 potentials

analyzed in this study (Table S1 in Text S1), I draw 1,000 random

non-degenerate sequences and for each pair of sequences (si,sj ),

calculate ci
k, c

j
k and Fk(d), at constant k and variable distances d. I

average Fk(d) values according to their type of potential (I-VI)

(color code, see Fig. 3 and Table 1). (A) k = 3. (B) k = 5. Error bars

represent one standard deviation from the mean. Grey dashed

lines illustrate the overlapping threshold: d~2kz1.

(EPS)

Figure S13 Distribution of the diameter of neutral sets.
For each map, and for each neutral set, every pair of sequences are

compared and the maximum observed hamming distance is

recorded (i.e. diameter, D). Plots show average frequency across

maps generated by different types of potentials I-VI. Error bars

represent one standard deviation from the mean. Color as in

Fig. 3 and Table 1.

(EPS)

Figure S14 Foldability for the potentials sampled in this
study represented on the E coordinates. Every point

corresponds to a sequence-structure map. Color represents median

foldability calculated across non-degenerate sequences, using Eq.

2. Small dots represent the median foldability calculated over

binary potentials of natural amino acids. Binary potentials of

natural amino acids are obtained from the MJ potential (Table VI

in ½50�).
(EPS)

Figure S15 Hierarchical clustering of phenotype sets
generated by natural potentials using different methods
of clustering. Top. Single linkage. Bottom. Complete linkage.

Hierarchical clustering was carried out using the Jaccard index

JPab, described in the main text. See Figure S1 legend.

(EPS)

Text S1 Supplementary methods and supporting Ta-
bles S1 and S2.
(PDF)
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