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Abstract

The ability to determine one’s location is fundamental to spatial navigation. Here, it is shown that localization is theoretically
possible without the use of external cues, and without knowledge of initial position or orientation. With only error-prone
self-motion estimates as input, a fully disoriented agent can, in principle, determine its location in familiar spaces with 1-fold
rotational symmetry. Surprisingly, localization does not require the sensing of any external cue, including the boundary. The
combination of self-motion estimates and an internal map of the arena provide enough information for localization. This
stands in conflict with the supposition that 2D arenas are analogous to open fields. Using a rodent error model, it is shown
that the localization performance which can be achieved is enough to initiate and maintain stable firing patterns like those
of grid cells, starting from full disorientation. Successful localization was achieved when the rotational asymmetry was due
to the external boundary, an interior barrier or a void space within an arena. Optimal localization performance was found to
depend on arena shape, arena size, local and global rotational asymmetry, and the structure of the path taken during
localization. Since allothetic cues including visual and boundary contact cues were not present, localization necessarily
relied on the fusion of idiothetic self-motion cues and memory of the boundary. Implications for spatial navigation
mechanisms are discussed, including possible relationships with place field overdispersion and hippocampal reverse replay.
Based on these results, experiments are suggested to identify if and where information fusion occurs in the mammalian
spatial memory system.
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Introduction

Accurate spatial navigation is crucial to animal survival.

Localization is the process of determining current location, critical

for many navigation behaviours. Starting from an unknown

location and direction (jointly called ‘‘pose’’), the ability to localize

is thought to depend on the detection of world-based (‘allothetic’)

cues such as visual landmarks. In contrast, it is thought that

animal-based (‘idiothetic’) cues which provide self-motion esti-

mates, e.g., from vestibular, proprioceptive or motor command

signals, can only serve to maintain localization briefly, requiring

allothetic cues for error correction [1–5]. This is because

cumulative errors will degrade self-motion estimates of position

over time, not improve it.

In the rodent brain, the firing of both place and grid cells strongly

correlate with the animal’s physical location in a familiar space [6–

10], with firing patterns being stable over days to weeks in the same

environment [11]. Such neural correlates demonstrate that an

animal can robustly localize itself within a familiar arena. A

consistent feature of these neural correlates of localization is their

persistence without vision, for upwards of 30 minutes [12,13]. One

possible strategy is to use idiothetic path integration (iPI) whereby an

animal keeps track of its current position by summing idiothetic

estimates of displacement [8,14–16], but this process is known to

suffer from cumulative errors. In an open field, error accumulation

due to iPI will lead to a rapid increase in discrepancy between true

position and estimated position [14–16]. It follows that, if using only

iPI, a navigation system cannot accurately estimate its location in

the long term, and certainly cannot localize itself starting from an

unknown pose. An important biological implication is that stable,

spatially-selective firing patterns such as those of rodent hippocam-

pal place cells or medial entorhinal grid cells cannot depend purely

on iPI.

Most experiments investigating neural correlates of spatial

behaviour have been performed in either linear tracks or 2D

arenas, the latter termed ‘open fields’ [9,10]. On their own,

featureless arena boundaries do not provide sufficient spatial

information for localization without vision. This is due to a

combination of geometric properties [17], and infinite poses which

equally account for the detection of a point along a featureless

boundary during boundary contact. The problem is compounded

further if boundary contact (an allothetic cue) is not available or

used. The mere knowledge of a boundary’s geometry is therefore

insufficient for localization, and might be interpreted as support

that arena boundaries do not significantly aid localization

compared to boundary-less open fields.

Contrary to the above supposition, it is demonstrated here that

long-term accurate localization is possible if idiothetic self-motion

cues are combined with boundary information already in memory.

In particular, the previously acquired boundary map limits the

growth of uncertainty due to noisy self-motion information.

Surprisingly, the act of sensing the boundary or any other
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landmark is not necessary. Metrics based on information theoretic

principles are used to quantify localization performance. Grid cell

simulations are used to provide both a visual display of time-

averaged localization performance, and to predict the optimal

spatial selectivity that may be expected of neural firing patterns,

based on published rodent neural data.

Results

PI alone cannot maintain an accurate position estimate in
the long term, even with a compass

As a baseline, both iPI and aPI (allothetic PI implies PI using

a compass) performance were quantified without arena mem-

ory, in a kite-shaped arena. Even for the simplified task of PI

initially orientated, localization failed (Fig. 1A, 1B). The median

place stability index, eIPIP, fell below 0.5 (chance level) in 3

minutes using iPI alone, and under 6 minutes using aPI alone

(Fig. 1C), consistent with the generally-accepted idea that

cumulative PI errors degrade location estimates over time.

Using iPI, the circular variance V hð Þ which measures the

particle filter’s directional performance across trials, increased

from 0 (no error) to close to 1 (uniformly random orientation).

In contrast, V hð Þ remained close to 0 using aPI since the

compass continually reset orientation errors. Using either type

of PI, spatially-selective firing patterns could not be maintained

beyond 1–2 minutes (Fig. 1D). The more general task of

localization initially disoriented (Fig. 1E) further increased

localization difficulty, with eIPIPv0:5 throughout the simulation

period, and no grid-like firing pattern was observed. Taken

together, it was clear that neither aPI or iPI alone could enable

localization. Next, idiothetic self-motion cues were combined

with arena memory information.

Idiothetic localization inside a 2D arena
Figure 2A shows snapshots of the positional uncertainty

distribution along random trajectories, combining idiothetic self-

motion cues with arena boundary memory. Starting either

oriented or disoriented, the true pose remained close to the

estimated pose. eIPIP remained above 0.5 using idiothetic cues

(Fig. 2B) demonstrating localization success. Similarly, the direc-

tional component of the pose estimate, h, was centred on the true

direction. Not surprisingly, initial orientation improved position

estimation but its effect on Ip was no longer detectable at 96

minutes (Wilcoxon test, p = 0.49). Likewise, V(h) remained

consistently higher when initially disoriented (Fig. 1B, dotted

lines), but the effect persisted beyond 192 minutes (k-test,

p = 6.061024). Lastly, 90% of changes in eIPIP occurred within the

first 5 minutes. Together, these results show that idiothetic

localization was achieved rapidly even when initially disoriented.

Sufficient spatial information to express location
estimates as grids

To determine whether the idiothetic localization described

above could sustain spatially selective firing patterns similar to

those of grid cells, a stochastic spiking model of grid cells was used

[17] (SI Modelling and Analysis). Accurate localization was

expected to result in multiple distinct, spatially regular activity

peaks (modes).

Distinct grids were seen both when the animal was initially

oriented (Fig. 2C, row 1) and initially disoriented (Fig. 2C, row 2).

Autocorrelograms (Fig. 2C, right column) of the normalized firing

fields showed spatial regularity similar to grid cells [13,18,19]. Of

note was the rapid emergence of the grid pattern during the first 2

minutes (Fig. 2C, 0–2) when initially disoriented, consistent with

the changes in Ip and V(h) of Fig. 2B. These results show that it is

plausible for neural correlates of successful idiothetic localization

to be observed using arena size and timescales similar to rodent

experiments.

Arena properties allowing idiothetic localization
A range of boundary properties were found to be compatible

with idiothetic localization, including one axis of reflective

symmetry (all arenas of Fig. 2C), arena concavity (T-maze arena),

lack of vertices and straight edges (egg-shaped arena), or a circular

outer arena boundary (void landmark arena). In all cases, the

spatial information content and gridness indices (Table S1)

demonstrated spatial specificity comparable to published rodent

place and grid cell data [19,20]. However, localization metrics

including eIPIP (Fig. 2D, left) and Ip distributions (Fig. 2D, right)

varied with arena, showing that idiothetic localization perfor-

mance depended on arena geometry. Noise level, additional

allothetic boundary contact information and arena size also had

graded effects on localization performance (Text S1 - Supporting

Results, Fig. S1 and S2, Table S1).

The mechanism of localization from initial disorientation may

be intuited by considering the mechanism of action of a particle

filter. Among a large number of initially random pose hypotheses

(represented by particles), some are close to the true pose while

others are not (Fig. 3A, left). A poor initial pose estimate is more

likely to result in an estimated trajectory which crosses a boundary

in memory, compared to a good initial pose estimate (Fig. 3A,

middle and right).

Over time, estimates cluster around the true pose, plus any

rotationally symmetric poses. The latter occurs because in arenas

with n-fold rotational symmetry (n-RS), there are n poses which

are geometrically equivalent and consistent with the boundary

map, making idiothetic localization to a unique pose impossible.

Therefore the combination of boundary asymmetry and an

internal model of boundary crossing sufficed for idiothetic

localization.

Author Summary

Spatial navigation is one of the most important functions
of animal brains. Multiple regions and cell types encode
the current location in mammalian brains, but the
underlying interactions between sensory and memory
information remain unclear. Recent experimental and
theoretical evidence have been found to suggest that
the presence of a boundary fundamentally alters the task
of navigation. In this paper, evidence is provided that it is
possible to determine the location inside any familiar
arena with 1-fold rotational symmetry, while completely
ignoring sensory cues from the outside world. Surprisingly,
the results show that the mere knowledge of the
boundary’s existence is enough, without requiring direct
physical contact. Localization is robust despite the
presence of noise modelled from the rodent head
direction system, and even inaccuracies in the navigation
system’s memory of the boundary or internal models of
noise. In circular arenas, rotational asymmetry can arise
from interior structures such as barriers or voids, also
without contact information. This theoretical evidence
highlights the need to distinguish arena-based navigation
common to most experimental studies, from open field
navigation. These findings also point to novel ways to
study information fusion in mammalian brains.

Estimating Location without External Cues
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Figure 1. Failure of localization using only path integration. Examples of the first 20 true steps along random trajectories (red), using iPI only
(A) or aPI only (B) to track the position (cyan), starting at the arena centre fully oriented. The estimated final position (cyan, with bivariate Gaussian fit
showing 1, 2 and 3 SDs) following 48 minutes for 103 independent trials differed markedly from the true positions (red, approximately uniformly
random within the arena). (C) Initially oriented, Ip (solid lines, median; shaded, IQR) decayed more rapidly using iPI (blue, eIPIPv0:5 by 3:07) than aPI

(orange, eIPIPv0:5 by 5:33). V(h) increased using iPI (blue dotted line), but V(h) remained constant during aPI (orange dotted line). The Ip distributions
(right) showed that all position estimates were below chance (0.5) at 48 minutes. (D) Simulated grid cell spikes using iPI (top row) and aPI (bottom
row) had insufficient spike count (averaging ,1 spike per analysis pixel) to obtain reliable measures of information content. (E) Initially disoriented,
eIPIPv0:5 throughout the 48 minute period (lower than (C), Wilcoxon test: iPI, p = 1.461024; aPI, p = 3.361025), and no grid firing pattern formed.
Stable V(h) showed no gain or loss of directional information.
doi:10.1371/journal.pcbi.1003927.g001
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Figure 2. Successful idiothetic localization in familiar arenas. (A) Uncertainty (blue particle cloud) either oriented or disoriented initially,
showing the estimated pose (cyan arrow) was close to the true pose (red arrow) after 90 seconds. For clarity, only the position of each particle’s pose
is shown. See also Video S1. (B) eIPIP at 48 minutes, eIPIP 48ð Þ, was above chance (0.5) either oriented or disoriented initially (Mann-Whitney U-test,
p = 4.36102164 and p = 7.56102161, respectively). In both cases, h was non-randomly distributed (Rayleigh test, p,102256) and centred on the true

direction (circular m test, p = 0.80 and p = 0.84, respectively) following 48 minutes. eIPIP (solid lines) and V(h) (dotted lines) both showed incomplete

convergence at 48 minutes ( eIPIP 48ð Þ, Wilcoxon test, p = 2.661025; k-test, p,10216). Ip kinetics also differed (disoriented, t90 = 2:18; oriented, t90 = 4:32).
(C) Simulated grid cell spikes during idiothetic localization in 4 arenas with 1-fold rotational symmetry, initially disoriented (rows 2–5), and initially
oriented (row 1). Autocorrelograms of the normalized firing fields from 46–48 minutes are included (right column). See also Table S1. (D) Median Ip

and V(h) functions (left), and Ip(48) distributions (right) are shown for the four arenas in (C) when initially disoriented.
doi:10.1371/journal.pcbi.1003927.g002
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Predictions of idiothetic localization
Through careful inspection of the particle filter model, five

further predictions related to idiothetic localization were made and

demonstrated through simulations using the rodent HD error

model. Firstly, local arena geometry was expected to affect the Ip

value differently in arenas with the same degree of rotational

symmetry, since within each of n sectors of an arena with n-RS,

localization should be possible with performance depending on the

sector’s asymmetry. An adjusted Ip* for n-RS arenas was found to

be positively correlated to the average rotational asymmetry

(Fig. 3B, Text S1 - Modelling and Analysis), confirming that both

local and global rotational asymmetry affected localization

performance.

A second prediction was that an asymmetric interior barrier

could replace rotational asymmetry in the traversable space,

and was tested in a circular arena (Fig. 3C). Modelling

boundary crossings, a circular traversable area (‘-RS) allowed

idiothetic localization when an internal barrier was present.

However, localization failed when estimated movements were

represented as discrete steps which ignored barrier crossings

(Text S1 - Modelling and Analysis), showing that the way that

self-motion cues and arena memory information are combined

can significantly affect performance. In this instance, being

able to determine whether a boundary has been crossed was

more important for the navigation system than merely

determining whether it remained inside the arena. In the

particle filter, the pose hypotheses (particles) which crossed any

boundary were removed, even if they remained within the

traversable space of the remembered arena. A related

prediction was that intermittent use of a compass suffices for

localization in empty circular arenas (Fig. S4), since a compass

directly breaks rotational symmetry in any arena. In this way,

allothetic compass information may be incorporated infre-

quently, while place information is maintained using idiothetic

cues for most of the time. Importantly, no ‘reset’ of the position

estimate was required – only breaking of rotational symmetry

through the compass.

A third prediction was that the centre of a finite-sized navigating

agent need not reach the arena boundary, if it used an internal

model of its own perimeter. This was demonstrated using an

elliptic agent using both random and thigmotactic (wall following)

trajectories (Fig. 4A). Accuracy was significantly improved by

using a thigmotactic movement strategy, demonstrating trajectory-

dependence of localization performance.

Figure 3. Boundary properties affecting idiothetic localization. (A) Culling of pose hypotheses over 3 true steps (red pointer), starting with
20 possible directions and two possible positions (40 poses). Each pose hypothesis independently tracked the displacements (blue) using only
idiothetic displacement information. Pose estimates which crossed a boundary (red crosses) were removed. Acceptable hypotheses (cyan dots) were
cloned to maintain the total particle population constant. For clarity, no sensory noise was included in this illustration but was present in all
simulations. (B) Arenas of equal area (top) in ascending order (bottom to top, left to right) of rotational asymmetry functions (lower left) averaged
over 360u. The adjusted Ip

* following 48 minutes increased with mean asymmetry (lower right). Regular polygonal arenas are labelled by the number
of edges. (C) Ip (median, IQR) and V(h) are shown using traversable space (blue) or boundary crossing (red) to update the pose estimate in a circular
arena with an asymmetric barrier. Simulated grid cell spikes using a discrete model which did (right) or did not (left) use boundary crossing (46–
48 min). There was a uniform angular distribution in traversable space (dotted line) but not traversed positions (solid lines).
doi:10.1371/journal.pcbi.1003927.g003
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A fourth prediction was that the test arena may vary slightly

from the learned arena. Assuming a standard kite arena in

memory, the test arena was linearly expanded in the X, Y or both

X & Y directions, by 10% (Fig. 4B, S3C). Grid modes showed

greater spatial specificity following X or Y expansion, than along

both directions. Partial grid rescaling was observed [19],

principally along the expansion direction. These results show that

strict congruence between the learned and test arena was

unnecessary, but that spatial specificity was affected by a disparity

between the learned and actual boundary.

A final prediction was that the true pose at the beginning of a

disoriented trial can be recovered by replaying self-motion

estimates in reverse. In real time, the initial pose estimate was

uniformly distributed over the arena in all directions. Following a

period of localization, the final pose estimate was treated as the

initial pose estimate of the same trajectory replayed in reverse, in

an ‘offline’ manner. Fig. 5 shows that following reverse replay,

pose estimates were substantially improved from real-time pose

estimates during initial localization, which were optimal at the

time. Assuming that a sequence of self-motion estimates can be

stored and retrieved later, this simple strategy can significantly

improve a past pose estimate retrospectively. Alternatively, an

‘online’ backward inference procedure can also be used to achieve

retrospective localization for a chosen time, without storing self-

motion estimates (Fig. S5, Text S1 – Modelling and Analysis, Text

S1 - Supporting Results). The ability to accurately recover the

starting pose implies that homing is possible using only idiothetic

sensory cues, even when initially disoriented. In principle, direct

homing can occur after an indefinite period of time, since both

current pose and initial pose (‘home’) can be determined.

Discussion

Idiothetic localization is a dynamic process
In terms of a particle filter, idiothetic localization can be seen as

a consequence of a dynamic competition between increasing

uncertainty due to iPI errors (Fig. 1A) and decreasing uncertainty

due to culling of invalid hypotheses which cross a boundary

(Fig. 3A). The rate of increase of uncertainty (diffusion-like particle

cloud expansion) depends on the magnitude of intrinsic iPI errors

Figure 4. Other properties affecting idiothetic localization. (A) Ip (median, IQR) and V(h) during idiothetic localization (left) by a 7615 cm
elliptic navigating agent (black), during random (blue) or thigmotactic (red) movements in an egg arena. The thigmotactic movement strategy
resulted a higher eIPIP 48ð Þ (right, Wilcoxon test, p = 1.36102200) and lower V(h) (k-test, p,10216) at 48 minutes, and faster Ip rise kinetics (random
t90 = 13:25; thigmotactic t90 = 2:46). An example trajectory is shown for each movement strategy (grey). See also Video S3. (B) Idiothetic localization
following linear arena expansion. Simulated grids partially rescaled with the expansion of the test arena, assuming the standard kite boundary in
memory. The optimal scaling factors determined by the normalized firing field are shown together with the true arena scale factor (parentheses). See
also Table S1. (C) Median Ip and V(h) functions (left), and Ip(48) distributions (right) are shown for the four arenas in (B). Ip functions were calculated
using the test arena.
doi:10.1371/journal.pcbi.1003927.g004
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(Fig. S1) and path structure (e.g., path tortuosity [16], arena size

and shape). The rate of decrease of uncertainty (i.e., particle

culling) depends on the interaction of arena shape (e.g., Fig. 2),

size (e.g., Fig. S3) and path structure (e.g., Fig. 4). When the

factors affecting the rate of increase and decrease in uncertainty

are kept constant over a prolonged period of time, a dynamic

equilibrium is reached which corresponds to the plateau seen in

most eIPIP functions.

The complex interactions between arena shape, size and path

structure are briefly described. Intuitively, if relatively few pose

hypotheses (particles) can account for a sequence of displacements,

uncertainty tends to decrease. For example, a path taken from the

acute to obtuse to a right angle corner of a kite arena cannot be

accounted for by any particle trajectory except one which is close

to the true trajectory. In contrast, there are infinite possible paths

which span the diameter of a circular arena or follow its boundary,

so there are always a range of particle trajectories which can

account for any displacement sequence arising in a circular arena.

Consequently, determining a unique location is impossible. In a

given 1-RS arena, the path structure determines the relative

uniqueness of the displacement sequences. Hence very few

thigmotactic loops around a 1-RS arena (e.g., Fig. 4A) are

required to uniquely determine location, within the limits of

noise. Therefore, when rotational asymmetry is due to an outer

boundary, thigmotaxis is an efficient strategy for localization. In

contrast, a trajectory biased towards the center of such an arena

takes longer for localization, and the agent spends relatively longer

time periods poorly localized leading to a lower level of

equilibrium performance. Thus large arenas tend to increase

uncertainty since more time is spent in the centre of the arena.

This effect is exacerbated by the nonlinear increase in positional

uncertainty due to unconstrained iPI [16]. It is important to note

that these effects are not applicable if the rotational asymmetry is

due only to an interior arena structure such as a barrier or void. In

this case, thigmotaxis is not sufficient for localization, while a

trajectory bias towards the arena centre will improve localization

compared to a random trajectory.

The magnitudes of the competing rates of increase and decrease

in uncertainty also depend on the initial pose distribution (e.g.,

Fig. 2A, S2). For example, when initially disoriented, a large

portion of pose hypotheses are grossly incompatible with self-

motion cues given the known arena, resulting in a relatively high

rate of decrease in uncertainty (particle culling) relative to the

increase from iPI (diffusive expansion of particle cloud). Conse-

quently, overall uncertainty decreases, leading to improved

localization when initially disoriented. In contrast, when initially

oriented, the majority of pose hypotheses remain compatible with

self-motion information so the rate of particle culling is low relative

to the diffusive expansion of the particle cloud due to iPI errors.

Hence, there is an overall decay in localization performance when

initially orientated. In general, the direction of change in

localization performance (e.g., eIPIP) depends on whether the current

pose uncertainty is above or below the equilibrium level. In turn,

the equilibrium performance level depends on the interaction

between iPI errors, arena size, shape and path structure.

Arena rotational asymmetry and boundary maps
By itself, rotational asymmetry is not sufficient for long term

localization. Fig. 1B shows that even combining two levels of

rotational symmetry breaking (compass+kite arena) is not sufficient

for localization. The lack of an arena map led to unlimited growth

of uncertainty in the position estimate, despite accurate orienta-

tion. In contrast, breaking rotational symmetry in combination

with an arena map allowed long term localization (e.g., Fig. 2, Fig.

S4). Hence it is the combination of rotational asymmetry and

arena map which allows idiothetic localization.

However, an arena map is not always necessary if allothetic cues

are available. When detected, the acute and obtuse corners of a

kite arena are unique landmarks which can theoretically be used

by a modular navigation system for localization [17,21], without

requiring a full boundary map in memory. The axis of the two

unique landmarks provides the symmetry breaking information

(hence orientation), while the point-like nature of each landmark

provides location information. Similarly, rats and other animals

can leave markings inside arenas which can potentially be used to

break rotational symmetry and allow localization even in a circular

arena, without a boundary map. Hence it is specifically the

restriction to using only idiothetic cues which necessitates both the

use of an arena map and presence of rotational asymmetry for

successful localization.

Implications for spatial navigation mechanisms
It was shown previously that combining self-motion cues and

arena memory significantly slowed the decay of pose estimates in a

circular arena, when initially oriented. When allothetic boundary

contact cues were included, the residual localization achieved

could account for the prolonged stability of rodent place and grid

fields observed in darkness despite an unstable head direction

system [17]. It is now shown that in arenas with 1-fold rotational

symmetry, localization decay can in fact be stopped altogether,

that allothetic cues are not necessary, and the navigating agent can

be initially disoriented. Important implications of these new

findings are discussed below.

Figure 5. Estimating initial pose using reverse replay of past
self-motion estimates. (A) Uncertainty (blue particle cloud) during
real-time localization or during reverse replay, showing the estimated
pose (cyan arrow) and the true pose (red arrow) during a two-minute
period initially disoriented. (B) Ip (median, IQR) and V(h) are shown
during real-time localization (black) or during reverse replay (red), and
the corresponding Ip distributions at 30 s.
doi:10.1371/journal.pcbi.1003927.g005
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Using only idiothetic cues in conjunction with information

already in memory potentially reduces computational load during

navigation. Such a strategy allows a navigating agent to devote

computational or attentional resources for processing allothetic

sensory information for other tasks. Although precision is reduced,

it is likely to be a low-risk strategy since occasional use of allothetic

cues suffices to recover near-optimal localization (e.g., Fig. S2A,

Fig. S4). There is evidence that animals may use allothetic sensory

cues intermittently during navigation [22,23]. If allothetic cues are

used intermittently during localization by the hippocampal-

entorhinal space circuit, two consequences may be observed.

Firstly, cumulative spatial uncertainty may increase spatial firing

variability beyond that expected from average firing rates. Over

multiple passes through the same true location, positional

uncertainty will cause variability in the estimated location,

potentially reflected in variability in spike activity. This may

contribute to the phenomenon of ‘overdispersion’ [24,25]

observed in CA1 place cells, whose firing fields are influenced

by both allothetic cues [26,27], and self-motion information such

as via grid cells [8,28]. A second possible consequence of

cumulative spatial uncertainty is temporary divergence in the

spatial code relative to allothetic landmarks. A temporary

divergence may contribute to the multiple ensemble place codes

which have been reported in rodent CA1, interpreted as

alternating attention between distal landmark cues and self-motion

cues [25]. However, the results of the present study suggest that

using self-motion cues alone is likely to lead to degradation of the

place code within 2–3 minutes (Fig. 1). Hence in the long term,

attention to self-motion cues is not sufficient to account for a

second stable place code, unless there is also intermittent compass

information, rotational asymmetry in the arena, or both.

The rodent medial entorhinal cortex (mEC) contains both

border cells and grid cells [13,29], which raises the possibility that

it could be a self-sufficient localization system. If mEC border cells

encode a boundary spatial representation, then together with the

putative grid cell based path integration system [8,13], fusion of

self-motion and boundary memory information should enable

localization. If so, stable grid fields are expected to emerge in

familiar arenas with 1-fold rotational symmetry, in the absence of

vision, initially disoriented, and in a hippocampus-independent

manner. However, in arenas with .1-fold rotational symmetry

such as circular or square arenas, such a system would require

supplementation with a compass cue, at least sporadically (e.g.,

Fig. S4). In rodents, the latter could be provided via the visually-

stabilised head direction (HD) system [30–32], whose firing

properties mature prior to place and grid cells during development

[33,34], as would be expected if HD cells provided important

symmetry-breaking information for place and grid cells.

Boundaries occurring in natural environments rarely have .1-

fold rotational symmetry, making it plausible that biological

navigation systems may exploit this property for localization. It

remains to be tested whether species which spend significant time

in enclosed spaces [35–37] are more likely to have evolved

mechanisms to use this localization strategy. It has been reported

previously that the persistent stability of rodent place and grid cell

firing in darkness starting from full orientation [12,13] is likely to

rely on the fusion of self-motion and boundary information [17].

Assuming the same type of information fusion occurs starting from

full disorientation, the results of the current study suggest the

emergence of stable place and grid fields should occur in arenas

with 1-fold rotational symmetry.

It is worth noting that the localizing mechanism described here

need not be restricted to bounded spaces with impassable physical

barriers. For instance, this strategy is equally applicable if an

animal’s trajectory is limited by a few distinct landmarks, forming

a virtual arena with 1-fold rotational symmetry in an otherwise

open trajectory space. Familiar landmarks could thus be used to

break rotational symmetry in the trajectory space without a

physical barrier, and resulting in successful localization without

knowledge of the distance or allocentric direction to those

landmarks during a journey. However, the geometry of the virtual

boundary must be known. In this hypothetical example, the

trajectory is guided by allothetic cues, while localization uses

idiothetic cues and information already in memory.

One prediction of idiothetic localization was that reverse replay

of past information enabled retrospective improvement in

localization (Fig. 5). That is, knowledge of current location

improved when future information became available. Experimen-

tally, replays of sequences of place cell activity corresponding to

past behavioural trajectories have been reported during sleep

[38,39] and when awake [40], including in reverse temporal order

[40,41]. The modelling results here suggest that a possible role of

hippocampal reverse replay may be to improve past estimates of

location, which may in turn improve the accuracy of future path

planning [42].

While the present study examined the information and

computations which may be necessary and sufficient to be used

in conjunction with a known boundary map for localization,

future studies will need to address the acquisition of the

boundary map itself. In robotics, particle filter methods have

been used successfully to build boundary maps using only self-

motion and boundary detection cues, starting from full

disorientation – a Simultaneous Localization and Mapping

(SLAM) problem [43,44]. Similar methods may be used to

investigate the factors which could affect the acquisition of a

boundary map under biologically realistic conditions, and make

predictions about localization performance when only imperfect

maps are available.

Applications in arena-based experiments
From the findings in this study, it is proposed that spatial

memory systems which can effectively combine idiothetic self-

motion cues and boundary memory can determine location in

familiar arenas with 1-fold rotational symmetry. If allothetic cues

are stringently removed, localization necessarily demonstrates the

fusion of idiothetic self-motion and memory-based boundary

information. This prediction may be tested, for example, by using

blindfolded human subjects passively led along random or

thigmotactic trajectories. Where in vivo recordings are feasible,

it may be possible to isolate the cells and circuits where the fusion

of idiothetic self-motion and boundary memory information

occurs. For instance, if stable mEC grid fields emerge from full

disorientation under the cue-restricted conditions described,

information fusion must occur either at or upstream of the medial

entorhinal grid cells.

Together, the reported results reveal that detection of cues from

the external world is not always necessary for localization, that

bounded arenas are distinct from true open fields [9,10,45,46],

and that any information which breaks rotational asymmetry may

be useful for localization. Furthermore, arena boundaries affect

navigational difficulty in a size-, shape- and path- dependent

manner, and need to be addressed during the design and

interpretation of experiments which investigate the navigational

abilities of animals in arenas. Finally, the results suggest that

specific arena designs can be used to interrogate the combination

of self-motion and memory information in the hippocampal-

entorhinal space circuit, whose properties are influenced by

environmental boundary information [18,29,47,48].
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Methods

It is known from recordings of Head Direction (HD) cells in rats,

that error in the estimate of head direction increase steadily as the

animal moves away from the place where it was first deprived of its

vision [30,31]. The accumulation of errors in head direction was

modelled as a Wiener process [17], based on the reported drift in

tuning functions of HD neurons without vision [30,31]. Simulated

rodents began each trial either oriented (i.e. with perfect initial

pose information) or disoriented (no initial pose information).

A particle filter was used to approximate Bayes-optimal fusion

of idiothetic self-motion and boundary information, to provide the

best estimate of successive poses given noisy displacement inputs.

The localisation performance, as revealed by this particle filter

approach, was analysed across 103 random trials in each

condition, using metrics developed previously to characterise

instantaneous spatial accuracy and precision. Briefly, the median

place stability index, eIPIP, characterizes the particle filter’s

localization performance across trials, where 0.5 represents chance

(uniform uncertainty within the arena), and 1 represents perfect

localization. Similarly, the circular variance V hð Þ measures the

particle filter’s directional performance across trials, where 0

represents uniformly random heading estimates, and 1 represents

no heading error.

The particle filter estimate of position was then used to

simulate the firing activity of grid cells in medial entorhinal

cortex, using a stochastic spiking model where spike probability

decreased with estimated distance from the neurons’ preferred

firing locations [17]. The resultant spike patterns were analysed

using standard time-averaged metrics developed to characterize

place and grid cell activity [19,20], including information content

and gridness indices. See Text S1 - Modelling and Analysis for

further details.

Supporting Information

Figure S1 Matched and mismatched uncertainty. Effects

of matched and mismatched angular and linear uncertainty on

idiothetic localization. eIPIP and V(h) functions (left), Ip(48)
distribution (middle), simulated grid cell spikes (top right) and

firing field autocorrelograms (bottom right) during 46–48 minute

period in kite-shaped arenas. A, Matched angular uncertainty

using 0.256 (light blue), 0.56 (dark blue), 16 (black), 26 (dark

red), and 46 (light red) the standard s2
0. B, Matched linear

uncertainty using 0.256 (light blue), 0.56 (dark blue), 16 (black),

26 (dark red), and 46 (light red) the standard s2
l . C, Mismatched

angular uncertainty using 0.256 (light green), 0.56 (dark green),

16(black), 26(dark purple), and 46(light purple) the standard s2
0.

D, Mismatched linear uncertainty using 0.256 (light green), 0.56
(dark green), 16 (black), 26 (dark purple), and 46 (light purple)

the standard s2
l . E, Boxplots of Ip(48) showing the effects of

matched and mismatched angular and linear uncertainty on

idiothetic localization performance (outliers not shown). Red bars

indicate comparisons of eIPIP using Wilcoxon test with Holm-Šidák

correction (* = p,0.05, ns = not significant). Black bars indicate

comparisons of circular concentration of h~bhh{hTRUE (error in

pose direction estimate) following 48 minutes, using k-test with

Holm-Šidák correction (* = p,0.05, ns = not significant).

(TIF)

Figure S2 Intermittent boundary contact. A, Ip (median

and IQR) and V(h) functions without vision in a kite-shaped

arena, switching from idiothetic cues only (orange bars), to

idiothetic cues plus boundary contact (yellow bars) in 8 minute

blocks, initially oriented (green) and disoriented (black). Boxplots

compare the residual effects of orientation versus disorientation,

and intermittent (+) versus no (2) wall contact information on eIPIP

(Wilcoxon test with Holm-Šidák correction, * = p,0.05, ns = not

significant). The data using no wall contact were from Fig. 2B. eIPIP

was higher for all conditions with initial orientation (green) relative

to initial disorientation (black) showing that initial pose informa-

tion had a robust and significant residual effect on localization. In

contrast, 16 minutes of wall contact information (40+) had no

residual effect on eIPIP 40ð Þ compared to no wall contact information

(40-). B, Simulated grid cell spikes and firing field autocorrelo-

grams from A, initially oriented (top row) and initially disoriented

(bottom row), with (right) and without (left) boundary contact.

Consistent with the eIPIP results of A, grids showed higher spatial

specificity using boundary contacts while initial orientation showed

residual effects beyond 30 minutes.

(TIF)

Figure S3 Large or discrepant arenas. A, eIPIP and V(h)
functions (left) and Ip(48) distribution (right) using a kite arena 4-

fold in area (red) compared to a standard kite arena (black). B,

Quadrupling the area of the kite arena resulted in no

distinguishable grid modes at 46–48 minutes (first column) when

the standard 30 cm grid spacing was used in spike simulation.

Doubling the grid spacing (linear scaling, second column)

recovered grid modes, which were less distinct than in the

standard kite arena (third column). The crosscorrelogram (fourth

column) between the normalized firing field of the standard and

the 46-arena (double grid spacing) yielded a gridness index of

0.39. Scale = 50 cm.

(TIF)

Figure S4 Idiothetic localization combined with an
intermittent noisy compass in circular arenas. A, Ip

(median and IQR) and V(h) using a compass stochastically,

averaging once every 30 s with Gaussian measurement error

scompass~s0, in a 76 cm (black) and 152 cm (blue) diameter

circular arena. Ip(48) distributions were similar (right), as were

kinetic parameters (76 cm, t90 = 10.1 s; 152 cm, t90 = 12.4 s).

Although absolute differences were small, median Ip was

significantly higher (Wilcoxon test, p = 1.2610210) and V(h) was

significantly lower (k-test, p = 8.161026) following 48 minutes in

the 152 cm arena. B, Simulated grid spikes (top row) and

autocorrelograms (bottom row) using 30 cm grids (left and

middle), and 60 cm grids (right), in 76 cm (left) and 152 cm

(middle and right) diameter circular arenas.

(TIF)

Figure S5 Improved retrospective localization using
either offline reverse replay (beta recursions) or online
backward inference (gamma recursions). (A) Uncertainty

(blue particle cloud) during real-time localization (row 1) and

during offline reverse replay (row 2), showing the estimated pose

(cyan arrow) and the true pose (red arrow) during a two-minute

period initially disoriented. Row 3 shows the same path, using

online backward inference to estimate the initial pose (time 0). The

particle size shown is proportional to the number of parent

particles with identical poses. (B) Ip (median, IQR) and V(h) are

shown during real-time localization (black), during offline reverse

replay (red), and during online backward inference (green). The

latter shows the online update in estimate of the initial pose. The

right panel shows the corresponding Ip distributions at time 0
following the completion of the two retrospective localization

strategies.

(TIF)
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Table S1 Spatial firing properties of simulated grid
cells. Information content (bits/spike) of the top three grid modes

by spike count, and gridness indices of simulated grids.

(DOCX)

Text S1 Modelling and Analysis, Supporting Results,
and Supporting References.
(PDF)

Video S1 Idiothetic localization in a kite-shaped arena
during 0 to 8 minutes, initially oriented. The top panel

shows the uncertainty (blue particle cloud) during a random

trajectory, comparing the true pose (red dot) and estimated pose

(cyan dot) in 3D pose space (X position, Y position, and direction

h). The vertical axis (h) ranges from 0 to 360u. The lower left panel

shows the positional distribution (blue particle cloud), with

direction indicated by the red (true) and cyan (estimated) pointers.

The lower right panel shows the direction distribution of the

particle cloud (blue polar histogram), overlaid on the true direction

(red pointer).

(MP4)

Video S2 Idiothetic localization in a kite-shaped arena
during 0 to 8 minutes, initially disoriented. Otherwise as

per Video S1.

(MP4)

Video S3 Idiothetic localization in an egg-shaped arena
during 0 to 8 minutes, initially disoriented, with an
elliptic body perimeter. The top panel shows the uncertainty

(blue particle cloud) during a thigmotactic trajectory, comparing

the true pose centre (red dot) and estimated pose centre (cyan dot)

in 3D pose space (X position, Y position, and direction h). The

vertical axis (h) ranges from 0 to 360u. The lower left panel shows

the positional distribution (blue particle cloud), with direction

indicated by the red (true) and cyan (estimated) ellipses. The lower

right panel shows the direction distribution of the particle cloud

(blue polar histogram), overlaid on the true direction (red ellipse

with white arrowhead).

(MP4)
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