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Abstract

Despite the success of highly active antiretroviral therapy (HAART) in the management of human immunodeficiency virus
(HIV)-1 infection, virological failure due to drug resistance development remains a major challenge. Resistant mutants
display reduced drug susceptibilities, but in the absence of drug, they generally have a lower fitness than the wild type,
owing to a mutation-incurred cost. The interaction between these fitness costs and drug resistance dictates the appearance
of mutants and influences viral suppression and therapeutic success. Assessing in vivo viral fitness is a challenging task and
yet one that has significant clinical relevance. Here, we present a new computational modelling approach for estimating
viral fitness that relies on common sparse cross-sectional clinical data by combining statistical approaches to learn drug-
specific mutational pathways and resistance factors with viral dynamics models to represent the host-virus interaction and
actions of drug mechanistically. We estimate in vivo fitness characteristics of mutant genotypes for two antiretroviral drugs,
the reverse transcriptase inhibitor zidovudine (ZDV) and the protease inhibitor indinavir (IDV). Well-known features of HIV-1
fitness landscapes are recovered, both in the absence and presence of drugs. We quantify the complex interplay between
fitness costs and resistance by computing selective advantages for different mutants. Our approach extends naturally to
multiple drugs and we illustrate this by simulating a dual therapy with ZDV and IDV to assess therapy failure. The combined
statistical and dynamical modelling approach may help in dissecting the effects of fitness costs and resistance with the
ultimate aim of assisting the choice of salvage therapies after treatment failure.
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Introduction

The emergence of drug resistant mutants remains a major

obstacle to long-term treatment success of highly active antiret-

roviral therapy (HAART) against HIV-1 [1,2]. Mathematical

models of in vivo viral infection dynamics have provided critical

insights into HIV-1 disease and therapy by disentangling viral and

target cell dynamics [3,4], quantifying drug class specific effects on

viral load decay [5,6] and elucidating general principles of

antiretroviral therapy [7,8]. Their utility in studying the

emergence of drug-specific mutations and resistance, however, is

limited by the availability of realistic mutation landscapes. Existing

approaches typically use mutation schemes that are unspecific for

the drug or coarse-grained [9–11]. On the other hand, statistical

models of mutational pathways have been used to understand the

evolution of drug-resistance in vivo, for example, by estimating

evolutionary landscapes of viral mutations based on in vivo data

[12–15], establishing genotype–phenotype maps [16] and predict-

ing individual treatment outcomes [17,18]. These approaches,

however, do not integrate details of the viral infection dynamics

and the specific actions of different drug classes.

In viral mutational landscapes, the path to resistant mutants that

fixate and eventually cause therapy failure typically consists of

several intermediate mutants. Understanding the accumulation of

mutations and associated genotypic and phenotypic changes is

critical for prediction of treatment failure and selection of optimal

patient-specific treatments [19]. Additionally, it has been observed

that models incorporating quasispecies distributions of HIV-1

mutants can lead to a different qualitative behaviour than what

would be expected from simplified mutation models [20].

In a drug-free environment, a viral mutant genotype usually

incurs a loss in fitness [21], which is offset by resistance effects in

the presence of the drug. This loss in fitness, quantified in terms of

a fitness cost, is an important parameter dictating the appearance

of mutants and hence affecting viral suppression and therapeutic

success [22]. Although fitness landscapes of viruses have been

studied for a long time [23–25], the paucity and quality of

experimental data have always been major limitations [26].
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Experimental investigations on viral fitness rely on techniques such

as growth competition assays, parallel infection methods, and

other replication measurement assays in in vitro settings [27].

Replication capacities are typical readouts of such assays and they

are considered to be measures of viral fitness [28]. However, there

have been controversies over appropriate quantification of viral

fitnesses and the clinical relevance of such in vitro fitness measures

(see [29] for a review). Statistical techniques have been developed

and used to estimate relative fitness of viral mutants from

longitudinal in vitro data [30,31]. Attempts to estimate fitness

parameters in an in vivo setting [32,33] have relied on detailed

time course measurements of different mutant strains, which is a

severe limitation in the most common situation of sparse data

collected during routine clinical diagnostics.

The objective of this article is to enable estimation of in vivo
fitness parameters from common cross-sectional clinical data by

combining and linking statistical methods designed for cross-

sectional data with a mechanistic model of virus dynamics, which

explicitly accounts for viral fitness. This integration is achieved by

(i) learning drug-specific mutational pathways from cross-sectional

in vivo data and modelling viral infection dynamics on these

genotype lattices, and (ii) by coupling the resistance factor, an

abundant and accessible in vitro measure of drug resistance, to

drug efficacy and rate constants of the virus-host dynamics in vivo.

This approach allows to leverage sparse clinical data for the

estimation of in vivo fitness characteristics, which is a first step

towards analyzing and ultimately predicting clinical outcomes of

drug combinations and assessing causes of therapy failure.

Specifically, our statistical approach to estimate mutational

pathways from in vivo data is based on continuous-time

conjunctive Bayesian networks [16]. The viral infection is

described based on an established and validated viral dynamics

model [6,34] that explicitly allows for the incorporation of the

action of all approved drug classes. Viral resistance is included via

drug-specific resistance factors estimated from in vitro data by

isotonic regression models. The integration is finally achieved by a

quantity common to both approaches, the estimated/predicted

waiting time for different mutations.

There has been great interest in performing simulations of

antiretroviral therapy to assess treatment outcome. Recent studies

[35] have shown how even monotherapy simulations using simple

viral dynamics models can yield valuable insights on treatment

failure and answer clinically relevant questions pertaining to

combination therapy. However, implementing multiple-drug

therapy with realistic mutational pathways remains a limitation

in this regard. Our modelling approach extends naturally to

multiple drugs and is a step towards using sparse clinical data

effectively to simulate treatment regimens.

We estimate fitness characteristics of mutants for two

antiretroviral drugs from two different major drug classes:

zidovudine (ZDV), a nucleoside reverse transcriptase inhibitor,

and indinavir (IDV), a protease inhibitor. Then, we characterize

the interplay between fitness costs and resistances in mutant

selection during therapy by computing selective advantages of

different mutant genotypes. Finally, we illustrate how our model

extends to multiple drug therapy by simulating a dual therapy

with ZDV and IDV and examine reasons for virological failure in

such a setting.

Results

Fitness characteristics of ZDV resistant mutants
We used a dataset obtained from the Stanford HIV Drug

Resistance Database described in [36] to estimate possible

mutational pathways and phenotypic resistance levels under the

selective pressure of ZDV. This dataset consists of 1392

observations of HIV reverse transcriptase (RT) genotypes and

associated measurements of phenotypic resistance to ZDV.

Phenotypic resistance levels are defined as the logarithm of the

fold-change in virus’ susceptibility to the drug in comparison to the

wild type. We focussed on the key thymidine-analog mutations

(TAMs) that arise under ZDV monotherapy: 41L, 67N, 70R,

210W, 215Y and 219Q, where, for instance, 41L denotes the

presence of leucine (L) at position 41 of the HIV RT. The

genotypes considered were classified into those that exclusively

contain mutations from the well-studied TAM-1 (41L, 215Y,

210W) or TAM-2 (67N, 70R, 219Q) pathways [37,38], and two

mixed mutant genotypes that contain mutations from both

pathways (with cross-TAM profiles). Mixed mutants are observed

to generally occur with a lower frequency [39].

Using this dataset, the resistance factors of the genotypes and

the partially ordered set (poset) of resistance mutations were

estimated using isotonic conjunctive Bayesian network (I-CBN)

models. In conjunctive Bayesian networks, a partial order is used

to encode dependencies among mutations. A genotype is formally

defined as a subset of mutations. The set of genotypes compatible

with the order constraints of the poset is called the genotype lattice

(Figure 1). In the I-CBN model, isotonic regression is used to

associate to each genotype a phenotypic drug resistance level in

such a way that resistance levels are non-decreasing along any

mutational pathway in the genotype lattice. Next, we used

continuous time conjunctive Bayesian networks (CT-CBN) to

estimate the rate at which each mutation establishes in the viral

population. The fixation times of mutations are assumed to follow

independent exponential distributions. The waiting process for a

mutation begins only when all its parent mutations in the poset

have been established. The data needed for the estimation of this

model is a list of genotypes. In the CT-CBN model, genotypes are

assumed to be observed after an unknown sampling time. The

sampling times are themselves assumed to be random and

exponentially distributed. Since we do not know explicitly the

time points at which the mutations have occurred, we used the

Author Summary

Mutations conferring drug resistance represent major
threats to the therapeutic success of highly active
antiretroviral therapy (HAART) against human immunode-
ficiency virus (HIV)-1 infection. Viral mutants differ in their
fitness and assessing viral fitness is a challenging task. In
this article, we estimate drug-specific mutational pathways
by learning from clinical data using statistical techniques
and incorporate these into mathematical models of in vivo
viral infection dynamics. This approach enables us to
estimate mutant fitness characteristics. We illustrate our
method by predicting fitness characteristics of mutant
genotypes for two different antiretroviral therapies with
the drugs zidovudine and indinavir. We recover several
established features of mutant fitnesses and quantify
fitness characteristics both in the absence and presence of
drugs. Our model extends naturally to multiple drugs and
we illustrate this by simulating a dual therapy with ZDV
and IDV to assess therapy failure. Additionally, our
modelling approach relies only on cross-sectional clinical
data. We believe that such an approach is a highly valuable
tool in assisting the choice of salvage therapies after
treatment failure.
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censored CT-CBN model to estimate the fixation rates [40] (See

Methods for details).

We used a drug efficacy of Ewt~0:75 on the wild type

(corresponding to a drug concentration of 3 times the IC50wt) to

illustrate our results. This value was chosen to match average nadir

values in viral load after ZDV monotherapy (a drop of *1 log unit

from baseline, within 7–10 days of therapy and a nadir at *3

weeks) [41].

The estimated fitness costs and selective advantages (Table 1

and Figure 2) were in excellent agreement with established

knowledge from several in vitro assays and some in vivo
observations. The agreement holds true for general reported

ranges of fitness costs (0:1{0:4) [33,42–44] as well as for

statements concerning specific mutations. For example, it is well

known that the addition of the 210W mutation into a {41L, 215Y}

backbone has opposing effects on fitness depending on the

presence or absence of ZDV. In the absence of ZDV, the triple

mutant {41L, 210W, 215Y} has been observed to be less fit than

{41L, 215Y}, while the introduction of ZDV causes a reversal, i.e.,

the triple mutant becomes fitter than the double mutant [45,46].

This was well-reflected in our estimates (Table 1). We observed

that this reversal in fitness upon adding ZDV, was because of the

higher fitness cost of the triple mutant being more than offset by

the resistance acquired in the presence of drug. This can be seen

by comparing the selective advantages and fitness costs for the

corresponding double and triple mutants in the TAM-1 pathway

(Figure 2). TAM-1 mutations are known to occur at almost double

the frequency of TAM-2 mutations [47]. This difference was

reflected in our results by mutants containing TAM-1 mutations

having lower fitness costs than those containing TAM-2 mutations.

Additionally, we also observed that the selective advantages of

TAM-1 mutants is higher, on average, than their TAM-2

counterparts. This is also in concordance with observations that

TAM-2 mutations accumulate only after much longer durations of

monotherapy with ZDV [39].

The presence of 41L together with 215Y is a strong predictor of

virological failure in patients on ZDV monotherapy [48]. We

estimated a low fitness cost for this TAM-1 double mutant and also

observed the presence of these two mutations in mutant genotypes

contributing to therapy failure.

Our estimated fitness costs were also supported by other in vitro
investigations on the order of fitness values, such as the TAM-1

triple mutant {41L, 210W, 215Y} being fitter than its TAM-2

counterpart [43] and the TAM-2 double mutant {67N, 70R}

being less fit than the single mutant {67N} [49]. Notably, we

concurred with the observation in [49] that the occurrence of 70R

in a 67N or {67N, 219Q} backbone has a significant cost.

We further studied parameter identifiability by considering an

ensemble of fits. All fits with a root mean squared deviation

(RMSD) of v0:1 between the normalized statistical and

mechanistic waiting times, were treated as equally valid (see

Methods). Across all such valid fits, we observed a strong and

statistically significant Spearman rank correlation of the estimated

fitness costs (rmean~0:79, p = 0.020) and selective advantages

(rmean~0:80, p = 0.017). This indicated that our predictions on

the ranking of fitness costs and selective advantages of the different

Figure 1. Partially ordered set (poset) and induced genotype lattice for mutations associated with resistance to ZDV. A. Poset of
resistance development to ZDV. Vertices represent mutations and directed edges represent the order constraints of mutation accumulation. We
observed the clustering of thymidine analog mutations (TAMs) along the two classical TAM-1 and TAM-2 pathways that is well-known under ZDV
therapy [37,38]. The left arm of the poset (mutations 41L, 215Y and 210W) is the TAM-1 pathway, while the right arm (mutations 67N, 70R and 219Q)
is the TAM-2 pathway. B. Genotype lattice of mutants induced by the poset of mutations in A. The vertices represent the genotypes that are
compatible with the poset in A. Predicted levels of phenotypic resistance are color-coded (green, fully susceptible; red, highly resistant). Please see
Supplementary Table S2 in Supporting Information for the waiting times of mutations.
doi:10.1371/journal.pcbi.1003886.g001

HIV-1 Fitness Characteristics

PLOS Computational Biology | www.ploscompbiol.org 3 November 2014 | Volume 10 | Issue 11 | e1003886



mutant genotypes were strongly conserved. Additionally, in about

90% of the valid fits, we found that the average fitness cost of

TAM-1 mutants was less than that of TAM-2 mutants, while in

approximately 92% of valid fits, the deleterious effect of 210W

inserted in a {41L, 215Y} backbone in the absence of ZDV was

preserved. Similarly, we examined the validity of each of our

conclusions and found that they were all well-conserved across the

valid fits (see Supplementary Table S3 and Supplementary Figure

S1 in Supporting Information for details). Moreover, since the

parameters of the virus dynamics model are subject to uncertain-

ties, we examined the validity of our predictions under uncertainty

of all the viral turn-over parameters, considering perturbation of

up to +50%. Our model predictions remained robust even under

these parameter perturbations (see Supplementary Text S1,

Supplementary Figure S2 in Supporting Information for details).

Additionally, we also tested the impact of variability of RFs

estimated in the first-stage, on the estimation of fitness costs.

Again, the order in the estimated fitness costs remained preserved

(see Supplementary Text S1 and Supplementary Figure S6).

In addition to estimated fitness characteristics, the viral load

time courses predicted by our model gave insights into the

dynamics of different mutations. In the TAM-2 pathway, we

observed a transient disappearance of mutation 70R before its

eventual fixation, as was reported earlier [50]. This phenom-

enon is attributed to the competition between TAM-1 and

TAM-2 mutations: the mutation 70R appears initially and is

then outcompeted by 215Y. 70R later fixates in the population

after being associated with 67N and other TAM-1 mutations

(Figure 3). We also concurred with studies [11] attributing the

initial rebound after ZDV monotherapy to insufficient suppres-

sion of the wild type, rather than the early selection of

mutations.

Figure 2. Fitness costs, resistance factors, and selective advantages of mutants arising under ZDV therapy. A. Estimated fitness costs
(normalized by setting fitness cost of wild type to 0), B. Resistance factors (normalized by setting resistance factor of wild type to 1), on a logarithmic
scale, and C. Estimated selective advantages (normalized by setting selective advantage of wild type to 1) of ZDV mutants. In A, B and C, the x-axis
depicts the number of mutations. The TAM-1 mutants (joined by blue solid lines) are to the left and TAM-2 mutants (joined by red solid lines) are to
the right of the wild type. The mixed mutants (joined by black solid lines) are to the left of the TAM-1 mutants. The TAM-1, TAM-2 and mixed mutants
are separated by vertical dashed lines.
doi:10.1371/journal.pcbi.1003886.g002

Table 1. Estimated fitness costs for ZDV mutants.

Mutant log RF Fitness cost Comment

WT 0 0 Wild type

{67N} 0.28 (0.15, 0.49) 0.17 (0.14, 0.24) TAM-2

{67N, 70R} 0.79 (0.59, 0.99) 0.29 (0.27, 0.36) TAM-2

{67N, 70R, 219Q} 1.03 (0.95, 1.11) 0.23 (0.18, 0.30) TAM-2

{41L} 0.32 (0.18, 0.52) 0.25 (0.17, 0.34) TAM-1

{41L, 215Y} 0.60 (0.53, 0.65) 0.08 (0.07, 0.11) TAM-1

{41L, 210W, 215Y} 1.04 (0.95, 1.09) 0.20 (0.16, 0.26) TAM-1

{41L, 67N, 210W, 215Y} 1.35 (1.30, 1.42) 0.07 (0.05, 0.08) Mixed

{41L, 67N, 70R, 210W, 215Y, 219Q} 2.40 (1.73, 2.79) 0.06 (0.04, 0.07) Mixed

Estimated resistance factors (on a logarithmic scale, log RF, column 2) and fitness costs (column 3) of TAM-1 and TAM-2 mutants and two mixed mutants arising during
ZDV therapy. In parentheses, are the 95% confidence intervals for the estimates obtained from 200 bootstrap samples (where we resampled with replacement from the
list of statistical waiting times and re-estimated fitness costs).
doi:10.1371/journal.pcbi.1003886.t001
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Fitness characteristics of IDV resistant mutants
We again used the Stanford HIV Drug Resistance Database

[36] to estimate the poset (Figure 4A) and genotype lattice

(Figure 4B) of mutations associated with resistance to indinavir

(IDV), a protease inhibitor, and corresponding resistance factors of

IDV mutants. As for ZDV, the poset, the genotype lattice, and the

rate of fixation for each mutation were determined by the I-CBN

and CT-CBN models. The dataset for IDV consists of 2170

observations of HIV reverse transcriptase (RT) genotypes and

their paired measurements of phenotypic resistance to IDV. We

focussed on the five mutations 46I, 54V, 71V, 82A, and 90M.

Four of these (46I, 54V, 82A and 90M) are among the most

frequent primary (major) mutations reported in the Stanford HIV

Drug Resistance Database under IDV therapy [36]. We chose

71V to represent a common secondary (minor) mutation to study

possible compensatory fitness effects. We used a drug efficacy

Ewt~0:90 on the wild type to illustrate our results. This value was

chosen to match average nadir values in viral load after IDV

monotherapy (a drop of *1–1.5 log units within 3–4 weeks of

therapy) [51,52].

The estimated fitness costs, resistance factors and selective

advantages (Table 2 and Figure 5) agreed well with reported

experimental findings. In general, we observed that early

mutations have a high fitness cost, while the accumulation of

further mutations succeeded in compensating almost entirely for

this loss in fitness (Figure 5A). This is in agreement with clinical

observations that mutations selected early during therapy with

protease inhibitors cause impaired protease function and that

subsequent accumulation of mutations compensates for this fitness

cost [27,53]. A striking behaviour that we observed was the

presence of staircases in the fitness landscape, which has also been

described earlier [54]. We observed a monotonic increase of the

average selective advantages of the mutants with increasing

number of mutations (Figure 5C). This observation provides

additional reasoning for the accumulation of mutations during

IDV therapy. Notably, the high fitness costs for the double and

triple mutants (Figure 5A) were not sufficient to deter their

occurrence, as the fitness costs were well-offset by resistance

(Figure 5B), which facilitated further climbing of the fitness

landscape by accumulating mutations (Figure 5C).

In addition to these general fitness trends, specific characteristics

of particular mutations were also in line with prior findings. The

minor mutation 71V is known to play a compensatory role [55]. In

our estimates, this was observed by a partial recovery in fitness of

the triple mutant {46I, 71V, 90M} compared to the double

mutant {46I, 90M} from 0.66 to 0.44 (Table 2). In the presence of

IDV, the addition of 54V to a {71V, 82A} backbone is known to

not confer a significant advantage [56], and this was reflected by a

ratio of approximately 1.3 for the selective advantages of this pair

of mutants. Furthermore, as in [57], we noted a higher fitness cost

for the single mutant 71V as compared to 90M.

Nijhuis et al. [55] observed the persistence of protease resistant

mutants for long periods of time even after the cessation of

therapy. They argued that the reversal of the underlying mutations

might not be feasible due to lower replication capacities of

intermediate mutants upon reversion. Our results support this

hypothesis by showing that the most resistant strain that develops

after therapy failure is very unlikely to reverse back in the

mutational landscape, owing to a fitness barrier encountered in its

reversion to the wild type (Figure 5A).

As with ZDV, we studied parameter identifiability by consid-

ering an ensemble of fits with an RMSD v0:1 between the

statistical and mechanistic waiting times. There was a statistically

significant Spearman rank correlation (rmean~0:64, p = 0.014)

between the best estimate of fitnesses and all other valid fits. We

found the average fitness estimates (Figure 5C) to be very strongly

conserved (rmean~0:90, p~0:037). We also examined each of the

results above and observed consistency across the valid fits (see

Supplementary Table S3 and Supplementary Figure S1 in

Supporting Information for details). For example, in *77% of

the valid fits, 71V was observed to play a compensatory role by

lowering fitness costs, while in *65% of fits, the single mutant

90M was fitter than 71V.

Dual therapy with ZDV and IDV
There is great interest in using viral dynamics models to study

antiretroviral treatment to assess therapy outcomes and simulate

clinical trials [35]. Our model extends naturally to multiple-drug

therapy. To illustrate this, we performed simulations of a dual

antiretroviral therapy with zidovudine (ZDV) and indinavir (IDV).

Figure 3. Abundance of the 70R mutation and mutant genotypes with 70R under ZDV therapy. A. Absolute abundance (in numbers) of
the 70R mutation. B. Relative abundance of the 70R mutation in the viral population. The transient appearance and eventual fixation of the mutation
70R can be seen. C. Absolute abundance (in numbers) of mutant genotypes containing the mutation 70R. The absolute abundance of a certain
mutation is calculated by adding all mutant genotypes containing the mutation.
doi:10.1371/journal.pcbi.1003886.g003
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We used the posets of mutations for ZDV and IDV that we have

estimated earlier (Figure 1A and Figure 4A, respectively), together

with the resistance factors and fitness costs of the different mutant

genotypes (see Methods for details). Our goal was to assess

treatment outcomes and reasons for failure of the dual regimen.

To this end, we used a range of Ewt values for ZDV and IDV to

account for differential drug effects and adherence patterns, and

studied the treatment outcome by monitoring the total viral load.

Our simulations enabled us to predict the dominant mutant

genotypes at the point of failure (we defined failure at the point

when the viral load crossed a threshold of 500 copies/ml). Based

on this, we classified failure as being due to wild type, mutations

resistant to ZDV, mutations resistant to IDV or mutations resistant

to both drugs used.

We observed that there are different regimes of the individual

drug efficacies (Ewt,ZDV and Ewt,IDV) that result in varying causes of

failure (Figure 6A). With Ewt,ZDV = 0.75 and Ewt,IDV = 0.90, for

example, we observed virological failure after *3 months

(Figure 6B) due to mutations resistant to both drugs. In this

case, the wild type is sufficiently suppressed and declines during

the treatment period. However, we identified regions in the

Ewt,ZDV-Ewt,IDV plane, where treatment failure occurred due to

insufficient suppression of the wild type. We classified the

treatment as having failed owing to the wild type, if the wild

type was the dominant genotype at the point of virological failure.

We note that the wild type would eventually be out-competed by

resistant mutants in all situations. Such situations of failure with

the wild type could indicate insufficient drug pharmacokinetics, a

low drug efficacy or poor adherence. This would have

implications in designing a salvage therapy regimen, subsequent

to failure. Additionally, we also observed that there are

combinations of (Ewt,ZDV,Ewt,IDV), for which failure occurs due

to mutations to one of the two drugs (Figure 6A). Our model,

thus, enabled prediction of viral evolution under a multiple-drug

treatment scenario.

We noted that for a certain Ewt of one drug, predicting the

treatment outcome predicted from monotherapy simulations

might lead to qualitatively different results, as opposed to using

a model with multi-drug therapy. For example, the value of

Ewt,ZDV below which failure with wild type is detected was different

in ZDV monotherapy simulations. This reiterates the value of

implementing multi-drug treatment regimens in in silico simula-

tions.

We further emphasize that in order to simulate a certain

combination, our approach needs only clinical data from

treatment regimens in which the individual drugs are a part. For

instance, in the current example of dual therapy with ZDV and

IDV, the estimation of resistance factors and fitness characteristics

relied on sparse cross-sectional clinical data from treatment

regimens that included ZDV and/or IDV (not necessarily both).

Subsequent to this, we were able to simulate the dual therapy and

assess genotypic reasons of therapy failure.

Discussion

We have presented an HIV-1 infection dynamics model with

statistically learned drug-specific in vivo mutational landscapes.

Our approach relies on typical and frequently available clinical

data, which consists of left-censored observations, as opposed to

extensive time course measurements of different mutant geno-

Figure 4. Partially ordered set and induced genotype lattice for mutations associated with resistance to IDV. A. Poset of the
continuous time conjunctive Bayesian network for resistance development to IDV. B. The genotype lattice of mutants induced by the poset in A. The
vertices represent the genotypes that are compatible with the poset in A. The predicted levels of phenotypic resistance are color-coded (green =
fully susceptible, red = highly resistant). Please see Supplementary Table S2 in Supporting Information for the waiting times of mutations.
doi:10.1371/journal.pcbi.1003886.g004
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types, that are generally scarce. Mutations are detected through

their appearance in specific mutant genotypes and our model

describes how their dynamics is coupled. Although there is

considerable debate on appropriate measures of fitness and

clinically relevant quantifiers [29], evidence exists for the influence

of fitness on transmission efficiency [58], plasma viral load [59]

and treatment interruption outcomes [60]. Assessing fitness

characteristics has also been shown to have in vivo clinical

relevance as correlations between fitness measures and standard

treatment outcome markers, such as viral load, [61] have been

demonstrated. We estimated fitness characteristics of drug resistant

HIV-1 mutants and illustrated our results for ZDV, a nucleoside

reverse transcriptase inhibitor, and IDV, a protease inhibitor. Our

estimated fitness costs and selective advantages showed excellent

agreement with experimental knowledge.

So far, mechanistic modelling of HIV infection has mainly used

fixed fitness costs with the infection dynamics being examined for

different values of these fitness costs [6,9]. However, it is well

known that fitness landscapes of HIV-1 are highly rugged [26].

Earlier work characterizing in vivo fitness characteristics has relied

on detailed viral load measurements of different mutant strains,

which is rarely possible in realistic clinical situations. Our

approach utilized statistical learning methods to estimate muta-

tional landscapes from clinical data that were then incorporated

into a mechanistic viral dynamics model. Our results are also in

agreement with an earlier study [11] where a mechanistic

Table 2. Estimated fitness costs for IDV mutants.

Mutant log RF Fitness cost, s (95% CI) Type

WT 0 0 Wild type

{90M} 0.59 (0.56, 0.72) 0.36 (0.33, 0.38) Single point (M)

{71V} 0.32 (0.26, 0.48) 0.45 (0.38, 0.50) Single point (m)

{46I, 90M} 1.28 (1.26, 1.37) 0.66 (0.56, 0.70) Double (MM)

{71V, 90M} 1.08 (1.04, 1.18) 0.31 (0.29, 0.34) Double (mM)

{54V, 71V} 1.29 (1.26, 1.37) 0.49 (0.47, 0.54) Double (Mm)

{71V, 82A} 1.29 (1.26, 1.37) 0.42 (0.39, 0.44) Double (mM)

{54V, 71V, 82A} 1.29 (1.26, 1.34) 0.58 (0.53, 0.71) Triple (MmM)

{54V, 71V, 90M} 1.52(1.35, 1.64) 0.28 (0.26, 0.34) Triple (MmM)

{71V, 82A, 90M} 1.52 (1.45, 1.64) 0.39 (0.32, 0.42) Triple (mMM)

{46I, 71V, 90M} 1.28 (1.26, 1.34) 0.44 (0.41, 0.47) Triple (MmM)

{54V, 71V, 82A, 90M} 1.52 (1.45, 1.64) 0.28 (0.22, 0.32) Quadruple (MmMM)

{46I, 71V, 82A, 90M} 1.67 (1.57, 1.74) 0.31 (0.28, 0.33) Quadruple (MmMM)

{46I, 54V, 71V, 90M} 1.67 (1.65, 1.74) 0.15 (0.12, 0.17) Quadruple (MMmM)

{46I, 54V, 71V, 82A, 90M} 1.67 (1.65, 1.74) 0.04 (0.03, 0.05) Quintuple (MMmMM)

Estimated resistance factors (on a logarithmic scale, log RF, column 2) and fitness costs (column 3) of mutants arising during IDV therapy. In parentheses, are the 95%
confidence intervals for the estimates obtained from 200 bootstrap samples (where we resampled with replacement from the list of statistical waiting times and re-
estimated fitness costs). Mutant types (column 4) are encoded by one ‘M’ for each major mutation and one ‘m’ for each minor mutation in the genotype.
doi:10.1371/journal.pcbi.1003886.t002

Figure 5. Fitness costs, resistance factors and selective advantages of mutants arising under IDV therapy. A. Estimated fitness costs
(normalized by setting fitness cost of wild type to 0), B. Resistance factors, on a logarithmic scale (normalized by setting resistance factor of wild type
to 1), and C. Estimated selective advantages (normalized by setting selective advantage of wild type to 1) of IDV mutants. In A, B and C, the x-axis
depicts the number of mutations. Black crosses represent the values for the different mutant genotypes, while the blue solid line represents the
average of fitness costs, resistance factors and selective advantages across all mutant genotypes with a given number of mutations.
doi:10.1371/journal.pcbi.1003886.g005
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modelling approach was used to fit drug efficacy and fitness

parameters to clinically observed mutant data under zidovudine

and lamivudine therapy. As observed in this study, we also noted

that the lack of adequate suppression of the wild type strain

contributes significantly to the initial rebound in the viral load. In

this scenario, the wild type strain initially rebounds leading to

virological failure and then later declines after being out-competed

by the mutants. In comparison to [11], our model is a more

detailed version in the mechanistic sense and further accounts for

more realistic mutation pathways. For the protease inhibitor IDV,

our results clearly demonstrated the incentive for the accumulation

of mutations by HIV-1 in spite of significant losses in fitness

incurred by the first few mutations. Interestingly, the high fitness

costs of double and triple mutants do not deter their occurrence,

and their appearance paves the way for later mutants with higher

fitness [53]. In line with earlier studies [55], we observed a fitness

barrier that prevents reversion to wild type upon cessation of

therapy.

The simulation of antiretroviral treatments has generated

interest, particularly in the context of assessing therapy failure

and in explaining puzzling clinical observations. For example,

clinical trials have shown [62,63] that some protease-inhibitor

containing regimens fail without mutations being detected in the

protease region of the HIV genome. Bloomenfeld et al. [35] used a

simple viral dynamics model and information on mutations and

drug pharmacokinetics from literature to simulate monotherapies

and deduced that the short time spent by protease-resistant

mutants in the mutant-selection window was responsible for lack of

selection of mutations in the protease regimens. However, the

inclusion of only single point mutants is a limitation in modelling

long-term treatment and in ascertaining the impact of a certain

failed regimen on potential salvage therapies. Our model includes

different target cells (T-cells and macrophages), a latent reservoir,

multiple major drug-resistance mutations and extends to combi-

nation therapies, and hence represents a first step in using viral

dynamics models informed by mutations and resistance through

statistical learning from clinical data, to assess and understand the

impact of a failed regimen. The long-lived infected macrophages

and latently infected cells in the virus dynamics model contribute

to different later stages of viral decay and their impact would be

significant in the analysis of multiple-drug regimens.

The presented viral infection dynamics model incorporating

drug-specific in vivo mutation landscapes aimed at capturing the

complex competition dynamics between the different mutant

strains. It was based on a simplified representation of drug

pharmacokinetics (PK) and effect. If detailed data on drug PK and

patient-specific viral load dynamics and baseline characteristics are

available, a population-pharmacokinetic/pharmacodynamic anal-

ysis would be the appropriate approach to account for inter-

individual variations [64]. In the absence of such detailed data, we

assessed the impact of time-varying drug concentrations on our

model predictions by integrating a simple two-compartment PK

model of ZDV. The mechanistic predicted waiting times retained

a high and significant correlation with the average statistical

waiting times (details in Supplementary Text S1, Supplementary

Table S4 and Supplementary Figure S3). Hence, our simplifying

assumption of a constant drug concentration and effect seems

reasonable and is in line with most prior analyses [65]. Further,

while deterministic simulations represent the average dynamical

behaviour of the system, stochastic effects need to be incorporated

using numerical hybrid algorithms to explain the variability in

clinical data. We performed an initial analysis by using such a

hybrid deterministic-stochastic algorithm [66], that switches from

deterministic to stochastic regime below a certain threshold

(separately for each reaction). While, we observed a delay in the

appearance of certain mutations in agreement with previous

observations [67], the model predictions remained robust with

regard to the order of appearance of mutations and the predicted

waiting times continued to be significantly correlated with the

statistical waiting times used to fit the model (details in

Supplementary Text S1, Supplementary Table S6 and Supple-

mentary Figure S5).

Figure 6. Treatment outcome with ZDV+IDV dual therapy. A. Genotypic reasons of treatment failure were assessed in terms of mutations
present at point of virological failure. For different combinations of drug efficacies Ewt,ZDV and Ewt,IDV, the different genotypic reasons of failure are
shown in different colours. The treatment outcome could be a) failure with mutations resistant to both ZDV and IDV, (b) failure with mutations
resistant only to ZDV, (c) failure with mutations resistant only to IDV, (d) failure with wild type, and (e) no detection of failure. B. Viral load (in copies
RNA/ml) under ZDV+IDV therapy with Ewt,ZDV = 0.75 and Ewt,IDV = 0.90. The blue line shows the total viral load, while the red dashed line depicts the
wild type. The horizontal black dashed line represents the detection threshold used (500 copies/ml).
doi:10.1371/journal.pcbi.1003886.g006

HIV-1 Fitness Characteristics

PLOS Computational Biology | www.ploscompbiol.org 8 November 2014 | Volume 10 | Issue 11 | e1003886



There are several mechanisms of resistance in HIV-1 infection.

In addition to the mechanisms included in the two-stage virus

dynamics model, features such as the compensatory Gag

mutations [68] and other compensatory mechanisms adopted by

HIV-1 have also been described, including frame-shifts in the Gag

region that increase viral protease expression levels [69]. These

effects can be integrated by including information on the Gag

region into the mutational scheme and this extended model may

then partially account for higher observed fitness levels of some

mutants.

In summary, we have presented a new approach to model HIV-

1 infection dynamics that incorporates drug-specific in vivo
mutational landscapes and allows for the estimation of mutant

fitness characteristics. Importantly, it relies only on cross-sectional

clinical data and, as demonstrated, extends naturally to combina-

tion therapies. We believe that it is a promising approach to

analyze treatment outcomes with drug combinations or to study

optimal switching strategies.

Methods

Mechanistic viral dynamics model
The viral infection cycle was described by the two-stage model

presented in [34]; see Figure 7 for a graphical representation and

description, Supplementary Text S1 for the corresponding system

of ordinary differential equations (ODEs) and Supplementary

Table S1 for the parameters used. The model allows for

integrating drug-specific mutation schemes and the actions of all

approved antiretroviral drug classes including reverse transcriptase

inhibitors (RTIs), protease inhibitors (PIs) and integrase inhibitors

(InIs).

Mutations in the viral genome occur during the process of

reverse transcription, but manifest themselves only after the viral

DNA has been integrated into the host genome. Hence, mutations

were modelled to occur between early infected cells (first stage

T1 and M1) and late infected cells (second stage T2 and M2). We

considered only mutation events between genotypes differing by a

single amino acid site, owing to the fact that, though multiple

amino acid changes are simultaneously possible, the probability of

such events is very low. The probability rg’?g of a mutation that

changes the genotype from g’ to g was assumed to be m for a single

underlying base-pair mutation and m=2 for a double underlying

base-pair mutation, where m denoted the probability of mutation

per base-pair per cycle of replication (see Supplementary Text S1

for details, in particular regarding the choice of m=2). Since

mutations are primarily a result of error-prone reverse transcrip-

tion [70], forward and backward mutations were considered. The

average error rate in viral reverse transcription is about m~3:10{5

mutations per nucleotide per cycle of replication; and two-thirds of

these mutations are known to be base-pair substitutions [70]. In

agreement with [11], we used the following nucleotide-specific

mutation rates: for a G ? A nucleotide change, we set a mutation

rate of m1~1:10{5 (because about half of the base-pair mutations

are of this type [70]), for mutations involving nucleotide changes A

? G, we used a lower rate of m2~m1=2, and for transversion and

other mutations (involving a change from a purine to a pyrimidine

or vice-versa), we set m3~m1=10.

As with infectious viruses, we also included different mutant

strains of non-infectious viruses, since viral detection assays do not

distinguish between infectious and non-infectious viral particles.

The effect of an antiretroviral drug on a viral genotype g was

modelled by a fractional reduction of the targeted process,

characterized by the drug efficacy parameter

E~Eg~
Cdrug=IC50g

1zCdrug=IC50g

, ð1Þ

where IC50g denotes the drug concentration at which the

fractional reduction is 50%. The subscript g indicates that the

IC50-value and thus the drug efficacy was assumed to be genotype

dependent (see below). Denoting by kE and k0 the rate constants of

the targeted process, in the presence and absence of the drug,

respectively, drug action was modelled by

kE~(1{E)k0: ð2Þ

The two-stage model in [34] was derived from a more detailed

viral infection model by model reduction (see [6] for details). As a

consequence, the processes of infection of T-cells and macro-

phages (with rate constants bT and bM, respectively) and

production of new infectious and non-infectious viruses from

infected T-cells (with rate constants NTI and NTNI, respectively)

and from infected macrophages (with rate constants NM,I and

NM,NI, respectively) are lumped processes, integrating several

subprocesses. For example, the infection process comprises the

subprocesses of receptor binding, fusion and reverse transcription.

The consequences of model reduction have to be taken into

account when modelling the actions of drugs targeting some of

these subprocesses in the two-stage model, resulting in an

additional model reduction factor cE. This is analogous to the

model of competitive inhibition in the context of the Michaelis-

Menten approximation of substrate conversion by an enzyme:

Defining the unperturbed rate constant as k0~Vmax=(KMzS),
the model of competitive inhibition stated in terms of the

inhibitory concentration E~I=KI in units of KI would be:

kE~(1{cEE)k0 with cE~(1{r)=(1{rEzE) and r~S=
(KMzS). For the drug classes of our interest, namely RTIs and

PIs, eq. (2) becomes

kE~(1{cEE)k0 with cE~
1{r

1{rE
, ð3Þ

where r denotes the probability of successful reverse transcription

(for RTIs) or the probability of successful viral maturation (for PIs);

and k0~bT ,g and k0~bM,g for RTIs, and k0~NTI and k0~NMI

for PIs. For further details, we refer to Supplementary Text of [6].

The advantage of decreased drug-susceptibility of a mutant

genotype g is typically counter-balanced by a reduction in the

fitness of the viral strain [21]. This was quantified in terms of the

fitness costs sg. We made the common assumption that a mutation

in a part of the genome that is associated with a certain process of

the viral replication cycle caused a drop in the rate of only this

process. For example, we assumed that a mutation in the reverse

transcriptase part of the HIV-1 genome resulting in a mutant

genotype g lowers only the rate of reverse transcription. This is a

reasonable assumption at least for HIV-1 [71], as most resistance

mutations occur in the region of the genome that is coding for the

drug target. Hence, any cost due to a resistance mutation is also

most likely to be incurred on the function of this region.

Aiming at the integration of in vitro measurements of drug- and

strain-specific resistance factors, we parametrized all mutant

genotypes with reference to the wild type. This also allowed for

the estimation of genotype-specific fitness costs sg[½0,1�. We

denoted by kwt,0 the rate constant of the targeted process in the

wild type in the absence of any drug. For a genotype g and drug

efficacy Eg, the rate constant of the targeted process was defined as
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kg,Eg~(1{cEg Eg):(1{sg):kwt,0: ð4Þ

The first factor accounts for the reduction in activity due to drug

action. The genotype-dependent drug efficacy Eg is given by eq.

(1), where

IC50g~RFg
:IC50wt ð5Þ

was defined in terms of the wild type IC50wt-value and the

resistance factor RFg§1 accounting for the increase in drug-

resistance. The second factor in eq. (4) accounts for the reduction

in activity due to loss of fitness of the mutant genotype.

In the absence of drug (i.e., E~0), resistance plays no role and it

is clear from eq. (4) that the overall rate of infection for the mutant

is lower than that of the wild type, such that the wild type

eventually outcompetes the mutant. In the presence of drug, the

fitness of a mutant genotype g depends on the dynamic interplay

between the two factors: the fitness cost sg and the resistance factor

RFg. We quantified the overall fitness of a mutant relative to the

wild type based on the selective advantage (similar to [72]) as

SAg~
(1{sg):(1{cEg Eg)

(1{swt):(1{cEwt
Ewt)

ð6Þ

with swt~0 by definition. If SAgw1, the mutant g has a

replicative advantage over the wild type in the presence of drug.

Statistical model of mutation accumulation
The structure of the mutational landscape determined the

scheme of mutations that entered the system of ODEs in the

mechanistic model (see Supplementary Text S1). We estimated the

mutational scheme from clinical data based on a continuous-time

conjunctive Bayesian network (CT-CBN) [16]. The CT-CBN is

defined by a partially ordered set (poset) of mutations, denoted by

E with order relation [ and by the rate of accumulation (i.e.,

generation and fixation) of each mutation. The poset specifies the

order in which mutations can accumulate in the viral population.

The relation j [ e indicates that mutation j has to occur before

mutation e. In this case, we call j a parent of e and denote the set

of all parents of e by pa(e). A subset g(E of mutations is called a

genotype. The genotype lattice, denoted by G, consists of all

Figure 7. Two stage mechanistic model of in vivo HIV-1 infection dynamics [6]. Target cells TU (T-cells) and MU (macrophages) can be
infected by infective viruses VI (with effective infection rate constants bT and bM), resulting in early stage infected cells T1 and M1, respectively.
Infection can also be unsuccessful after fusion of the virus, rendering the cell uninfected and thereby eliminating the virus (CLT,CLM). T1 and M1

can also possibly return to uninfected states by destruction of essential viral proteins or DNA prior to integration (dPIC,T,dPIC,M). T1 cells can enter
into a latent state TL (with probability p) that can get re-activated with a rate constant a. Integration of viral DNA in the host genome proceeds with
reaction rate constant kT in the T-cells and kM in the macrophages, resulting in late stage infected T-cells T2 and macrophages M2 , respectively. The
infected T2 cells release new viruses (VI) and non-infective (VNI) viruses (with rate constants NTI and NTNI, respectively) while the infected M2 cells
release new infective and non-infective viruses (with rate constants NMI and NMNI, respectively). Target cells TU and MU are produced by the
immune system at constant rate with rate constants lTU and lMU, respectively. TU, MU, T1 , M1 , T2 and M2 can be cleared by the immune system
with reaction rate constants dTU, dMU , dT1, dM1, dT2 and dM2, respectively. Viruses are cleared by the immune system with a rate constant CLV.
Mutations are modelled to occur at the stage of integration of the viral DNA. The incorporation of the various drug classes is indicated by the
inhibition of corresponding processes: EI/FI - entry/fusion inhibitors, NRTI/NNRTI - nucleoside/non-nucleoside reverse transcriptase inhibitors, InI -
integrase inhibitors, PI/MI - protease/maturation inhibitors.
doi:10.1371/journal.pcbi.1003886.g007

HIV-1 Fitness Characteristics

PLOS Computational Biology | www.ploscompbiol.org 10 November 2014 | Volume 10 | Issue 11 | e1003886



genotypes that are compatible with the order constraints of E. It

defines the subset of possible mutational pathways (see Figure 1 for

illustration).

We assume that the occurrence times of mutations follow

independent exponential distributions and that the exponential

waiting process for a mutation starts only after occurrence of all of

its parent mutations in the poset. Formally, for each mutation e[E,

we define a random variable Ze*Exp(le). Then we define the

statistical waiting times Te,stat recursively as the random variables

Te,stat~ max
j[pa(e)

Tj,statzZe, ð7Þ

for each mutation e[E. In practice, the times of occurrence of

mutations are rarely observed and we can solely measure which

mutations have been observed at a particular time point, called

sampling time or genotyping time. The HIV genome can only

be determined if the total viral load is greater than a detection

limit D= 500 copies/ml of viral RNA [73]. Hence, in HIV drug

resistance development, genotyping can only be performed after

therapy failure which is defined as the viral load increasing

above the detection limit of a genotypic assay (often 50 copies

per mL), thereby precluding the observation of the occurrence

of each individual mutation. Sampling times are assumed to be

themselves random. In the CT-CBN model, the sampling time

Ts is assumed to be exponentially distributed, Ts*Exp(ls), and

independent of the poset. It is noteworthy that waiting time for

the sampling event starts from the onset of therapy (time zero).

However, these time points are not available in the Stanford

HIV Drug Resistance Database. In this setting, if we observe

genotype g, then Te,statvTs for all e[g and Te,stat§Ts for all

e 6[g.

We assign a resistance factor RFg to each genotype g.

Resistance factors are typically measured experimentally in vitro
by fluorescence-based replication assays [74]. In practice, they are

available for some genotypes, but not necessarily for all genotypes

of interest. In general, resistance factors observed for a genotype

defined by a subset of mutations will vary due to experimental

noise and different genetic backgrounds. Supplementary Figure S5

shows the variability of measured resistance factors under ZDV

and IDV therapies. To derive a general model, we employ

isotonic-CBNs (I-CBNs) and learn a mapping from the genotype

space to the drug resistance phenotype space [16]. I-CBN models

assume that resistance factors are non-decreasing over the

genotype lattice in the direction of evolution. Because of the

monotonicity assumption, the regression problem is constrained,

which serves as a means of regularization.

The estimation of the statistical models was performed in

two steps. In the first step, I-CBN models were estimated

separately using 1392 and 2170 in vitro cross-sectional

genotype–phenotype observations from the Stanford HIV

Drug Resistance Database [36] for ZDV and IDV, respective-

ly. The genotype–phenotype observations were restricted to

the PhenosenseTM [75] or the AntivirogramTM [76] assays. For

ZDV, the I-CBN was applied to mutations 41L, 67N, 70R,

210W, 215Y, and 219Q in the reverse transcriptase region of

the viral genome. For IDV, protease mutations 46I, 54V, 71V,

82A, and 90M were analyzed. Each I-CBN model included a

poset of mutations and the estimated resistance factors. In the

second step, based on the estimated poset, the rate parameters

le of the CT-CBN models were estimated from the cross-

sectional genotype observations of the Stanford HIV Drug

Resistance Database using an Expectation-Maximization

algorithm [40].

Waiting times, parameter estimation and identifiability
Having specified the parameters of the two-stage dynamical

model of viral infection (see Supplementary Table S1 and [6]),

a mutation landscape of genotypes, resistance factors and drug

efficacies, the only unknown parameters of the model are the

fitness costs of the different genotypes. These unknown

parameters were estimated by comparison of predicted

mechanistic waiting times (based on the mechanistic model

of viral infection dynamics) to the statistical waiting times eq.

(7). We linked the statistical point of view in terms of mutations

and the mechanistic point of view in terms of mutant genotypes

as follows.

A given mutant genotype g[G52E is defined as the set of all

mutations e[E that are manifested in g. We defined the

mechanistic waiting time Te,mech for each mutation e[E, as the

earliest time, at which the following two criteria were satisfied:

(i) all the mutant genotypes containing the mutation e together

constituted at least 20% of the total viral population Vtot;

the 20% detection threshold reflected the limitations of

the genotyping assay [77]; and (ii) the total viral load was

greater than a typical detection limit D= 500 copies/ml of

viral RNA, that enables genotyping [73]. This resulted in the

following definition of the mechanistic waiting time of

mutation e:

Te,mech~

inf t§0 :
X

g[G;e[g

Vg(t)w0:2:Vtot(t) and Vtot(t)wD
( )

:
ð8Þ

As discussed in the previous subsection, the average waiting

times computed from the statistical model Te,stat are dependent

on the sampling rate ls, to which we typically did not have

access. As a solution to this problem, we compared only the

relative time scales of appearance of the different mutations.

This was done by normalizing the statistical waiting times by

the time to the fastest occurring mutation, and then comparing

these to correspondingly normalized mechanistic waiting

times.

For simulations of the mechanistic viral dynamics model under

therapy, we first performed a pre-treatment steady state compu-

tation to estimate levels of different mutants at the onset of

therapy. All model simulations were performed with MATLAB

R2010b. For estimation of fitness costs, we used the MATLAB

optimization function fminsearchbnd that is based on the Nelder-

Mead simplex direct search algorithm [78] to perform the

constrained least-squares estimation

min
s[½0,1�DGD

X
e[E

( ½Te,stat�{Te,mech)2, ð9Þ

where Te,mech depends on the fitness costs s~(sg)g[G via the system

of ODEs specifying the viral dynamics. Fitness costs sg with g[G
were then defined as the solution of eq. (9). Note that in addition to

the constraints on fitness costs, the mechanistic waiting times were

also subject to the order constraints imposed by the structure of the

mutation poset.

In detailed mechanistic models with nonlinearities, parameter

identifiability and sloppiness in estimation is a common concern

[79,80]. To study the relevance of this phenomenon in our

setting, we performed 500 repeated estimations by choosing

different random initial estimates. We also subsequently
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performed simulated annealing with the function simulan-
nealbnd in MATLAB to test for convergence of our estimates.

We did not explicitly observe non-identifiability (indicated by a

flat cost function surface in multiple dimensions near the best

estimate). However, as in [81], we noted that several rounds of

simulated annealing converged to different estimates indicating

a rugged search landscape and a possible lack of a well-defined

minimum. Following the approach in [81], we considered all fits

with an RMSD of less than 0.1 between the mechanistic and

statistical waiting times as equally valid (since we estimate the

average error in the normalized statistical waiting times data to

be +10%) and discussed our results based on this ensemble of

fits.

More details on the RMSD threshold and the number of fits

considered are provided in the Supplementary Text S1.

Model simulations for dual therapy
For dual therapy with ZDV and IDV, the poset was

constructed by combining the posets of the individual drugs. If

EZDV and EIDV denote the posets under ZDV and IDV

monotherapy, then the poset EZDVzIDV under dual therapy with

ZDV and IDV can be written as the disjoint union of the

individual posets. That is,

EZDVzIDV~EZDV |: EIDV: ð10Þ

with the partial order relation in EZDVzIDV just being the disjoint

union of the partial orders in the individual posets.

If GZDVzIDV is the genotype lattice induced by the poset

EZDVzIDV under dual therapy, then a mutant genotype

g[GZDVzIDV has contributions from two sources towards its

fitness cost sg and resistance factor RFg— one from the

underlying RT mutations and another due to protease

mutations. As before, this simply manifests as changes in

reaction rates of appropriate target steps in our viral dynamics

model, the only difference being that there are two target steps,

instead of one in monotherapy. We assumed mutations in these

two regions to be free from fitness and resistance epistasis. This

is a reasonable assumption in view of studies indicating that

intragenic epistatic effects are more significant than intergenic

epistatic effects [28]. We note that if two drugs from the same

drug class are to be considered, this either requires some

additional assumptions on the extent of epistatic effects or

would involve estimation of additional parameters.

For simulations of the dual therapy with ZDV and IDV, we

used the variable order ODE-solver ode15s in MATLAB R2010b

with relative and absolute tolerances of 10{3, and a non-negativity

constraint. To study the effects of changing the drug-efficacy

parameters Ewt,ZDV and Ewt,ZDV, we performed simulations of the

dual therapy for 300 days. To classify therapy outcomes, we

monitored total viral load and detected failure when the viral RNA

exceed 500 copies/ml. Again, we chose this threshold to

correspond with genotyping assay limits. We reported detection

of no failure if the viral load did not exceed this threshold within

our simulation time.
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