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Abstract

Most models of learning and memory assume that memories are maintained in neuronal circuits by persistent synaptic
modifications induced by specific patterns of pre- and postsynaptic activity. For this scenario to be viable, synaptic
modifications must survive the ubiquitous ongoing activity present in neural circuits in vivo. In this paper, we investigate the
time scales of memory maintenance in a calcium-based synaptic plasticity model that has been shown recently to be able to
fit different experimental data-sets from hippocampal and neocortical preparations. We find that in the presence of
background activity on the order of 1 Hz parameters that fit pyramidal layer 5 neocortical data lead to a very fast decay of
synaptic efficacy, with time scales of minutes. We then identify two ways in which this memory time scale can be extended:
(i) the extracellular calcium concentration in the experiments used to fit the model are larger than estimated concentrations
in vivo. Lowering extracellular calcium concentration to in vivo levels leads to an increase in memory time scales of several
orders of magnitude; (ii) adding a bistability mechanism so that each synapse has two stable states at sufficiently low
background activity leads to a further boost in memory time scale, since memory decay is no longer described by an
exponential decay from an initial state, but by an escape from a potential well. We argue that both features are expected to
be present in synapses in vivo. These results are obtained first in a single synapse connecting two independent Poisson
neurons, and then in simulations of a large network of excitatory and inhibitory integrate-and-fire neurons. Our results
emphasise the need for studying plasticity at physiological extracellular calcium concentration, and highlight the role of
synaptic bi- or multistability in the stability of learned synaptic structures.
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Introduction

Many experiments have shown that long-lasting changes in

synaptic efficacy can be induced by spiking activity of pre- and

postsynaptic neurons [1,2]. In hippocampal and neocortical in-vitro
preparations, both long-term potentiation and depression can be

induced by protocols in which pre- and postsynaptic neurons emit

tens to hundreds of spikes in specific temporal patterns [3–10]. In

those preparations, plasticity has been shown to depend both on

relative timing of pre- and postsynaptic spikes (‘spike timing

dependent plasticity’, or STDP), and the firing rates of pre- and

postsynaptic neurons. These induced changes in the connectivity of a

neural circuit have then been assumed to maintain or initiate a long-

term memory trace of external inputs that triggered these synaptic

changes [11]. However, in order for this theory to be valid, the

induced synaptic changes need to survive both activity triggered by

other inputs, and the ongoing background activity that is pervasive in

cortex [12,13]. How changes in synaptic connectivity survive the

continuous presentation of other inputs has been the subject of several

studies [14,15]. Here, we study the decay of the synaptic memory

trace due to background activity using a theoretical approach.

Synaptic plasticity has been described using a multitude of

different models and approaches [6,7,16–31]. In early plasticity

models, synaptic changes were purely induced by the firing-rates

of pre- and postsynaptic neurons [16,17,19]. At the end of the

nineties, theorists introduced purely spike-timing based models

[21,23]. Finally, more recent models have been striving to capture

a wide range of experimental data, and as a result capture both the

spike-timing and firing rate dependence of synaptic plasticity

[6,24–31]. These models are natural candidates for studies of the

stability of synaptic changes during ongoing activity. In this paper,

we choose the model of Graupner and Brunel [28] for the

following reasons: (i) the model includes the calcium concentration

in the post-synaptic spine, which is known to be a crucial link

between pre- and postsynaptic activity and long-term synaptic

changes; (ii) the model exhibits bistability of synaptic changes

accounting for experimental evidence suggesting that CA3-CA1

synapses in the hippocampus are bistable [32,33]; (iii) the model is

simple enough that the dynamics of the synaptic efficacy variable

can be computed analytically.

Postsynaptic calcium entry has been identified to be a necessary

[34–36] and sufficient [37–39] signal for the induction of synaptic
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plasticity (but see ref. [40]). However, most of the in vitro
experiments evoking synaptic changes use elevated extracellular

calcium concentrations, while in vivo calcium levels are estimated

to be around 1.5 mM [41]. The impact of reduced calcium entry

due to the lower extracellular calcium concentration in vivo on the

time scale of synaptic decay has not been considered heretofore.

In the present paper, we study the persistence of synaptic

changes, first in a synapse connecting a pair of independent

Poisson neurons, and second in a large network of excitatory and

inhibitory leaky integrate-and-fire (LIF) neurons. We show that in

the absence of bistability, synaptic changes decay exponentially

during ongoing activity and that the time constant exhibits a

power-law like behaviour with respect to the present firing rate.

We demonstrate that the reduced extracellular calcium concen-

tration in vivo leads to several orders of magnitude longer memory

time scales. The introduction of bistability in the synaptic plasticity

rule further stabilises synaptic changes at low firing rates and

extensively prolongs memory time scales when combined with the

in vivo extracellular calcium conditions. Finally, we extend our

results to a large recurrent network of LIF neurons, where we

demonstrate network firing rate stability under synaptic plasticity,

decay of an implanted memory for in vitro parameters and long

term memory maintenance for in vivo parameters.

Results

Memories are thought to be stored in the brain thanks to

activity-dependent modifications of synaptic connectivity. Accord-

ing to this hypothesis, memories stored by a particular neural

circuit are encoded by the state of all the modifiable synapses of

the circuit. Synaptic plasticity allows particular patterns of activity

to leave a trace in the connectivity matrix, but this trace is then

potentially vulnerable to the ongoing activity that follows. An

important question is therefore what controls the time scale of the

persistence of a particular synaptic state, in the presence of such

ongoing activity. To study this question, we initialize the efficacy of

a synapse (either an isolated one, or part of a network) at a

particular value, and study how this efficacy decays with time in

the presence of background activity, using a calcium-based model

of synaptic plasticity [28].

In the model, the temporal evolution of the synaptic efficacy

variable, r(t)[½0,1�, is described by

t
dr

dt
~{

LU(r)

Lr
{cDrH(c(t){hD)zcP(1{r)H(c(t){hP)

zs
ffiffiffi
t
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H½c(t){hD�zH½c(t){hP�
p

g(t),

ð1Þ

where t is the time constant of synaptic efficacy changes, and c(t)
is the calcium concentration. The dynamics of r depends on four

terms:

1. The dynamics are governed by a potential U(r) for low calcium

concentrations (c(t)vhd ) since all other terms on the right-hand

side of Eq. (1) are zero then. In the following we consider two

possible scenarios for U(r): (i) a flat potential, U(r)~0 - in this

case the synaptic efficacy variable stays constant in time in the

absence of calcium transients. This means all possible values of

r[½0,1� are stable; (ii) a double well potential,

U(r)~
1

4
r2(1{r)2: ð2Þ

In this case, r evolves towards one of two possible stable fixed

points (the minima of U ), one at r~0 - the DOWN state -, the

other at r~1 - the UP state -, depending on the initial condition.

This corresponds to a bistable synapse.

2. For intermediate calcium concentrations (c(t)whd ), the synapse

is depressed, with a depression rate cd .

3. For large calcium concentrations (c(t)whpwhd ), the synapse

undergoes both potentiation, with a potentiation rate cp, and

depression, with the same rate as in the hpwc(t)whd . Since

cpwcd , potentiation dominates over depression in that region.

4. A noise is only active when calcium concentration is above the

lowest plasticity threshold hD, and increases in magnitude when

the upper plasticity threshold, hP, is also crossed. s defines the

amplitude of the noise, and g(t) is a Gaussian white noise

process with unit variance.

Changes in r are induced by increases in the postsynaptic

calcium concentration, c(t) (see Eq. (11), in Methods), evoked by

pre- and postsynaptic spikes. The calcium concentration increases

by an amount Cpre, in response to presynaptic spikes, while it

increases by an amount Cpost in response to postsynaptic spikes. It

decays exponentially with a time constant tCa in between spikes.

Calcium transients induced by presynaptic activity are assumed to

represent calcium influx through NMDA receptors, while calcium

transients induced by postsynaptic spikes are assumed to represent

activation of voltage-gated calcium channels [42] (see [28] for

more details of the model).

This calcium-based model of synaptic plasticity has been used to

successfully fit data from various experimental preparations [28].

Here, we use the data-set that best fits plasticity data obtained in

visual cortex slices [6] - hereafter called the ‘in vitro’ parameter

set. In this experiment, the extracellular calcium concentration

was set to be 2.5 mM [6], which is significantly higher than the

estimated in vivo concentration of about 1.5 mM [41]. Here we

assume that a decrease in extracellular calcium concentration

leads to a proportional decrease in the calcium influx into the post-

synaptic spine. Using this assumption, we can readily predict the

effects of decreasing the extracellular calcium concentration on the

plasticity rule in the calcium-based model by scaling the

amplitudes of the pre- and postsynaptically evoked calcium

Author Summary

Synaptic plasticity is widely believed to be the main
mechanism underlying learning and memory. In recent
years, several mathematical plasticity rules have been
shown to fit satisfactorily a wide range of experimental
data in hippocampal and neocortical in vitro preparations.
In particular, a model in which plasticity is driven by the
postsynaptic calcium concentration was shown to repro-
duce successfully how synaptic changes depend on spike
timing, specific spike patterns, and firing rate. The
advantage of calcium-based rules is the possibility of
predicting how changes in extracellular concentrations will
affect plasticity. This is particularly significant in the view
that in vitro studies are typically done at higher concen-
trations than the ones measured in vivo. Using such a rule,
with parameters fitting in vitro data, we explore how long
the memory of a particular synaptic change can be
maintained in the presence of background neuronal
activity, ubiquitously observed in cortex. We find that the
memory time scales increase by several orders of magni-
tude when calcium concentrations are lowered from
typical in vitro experiments to in vivo. Furthermore, we
find that synaptic bistability further extends the memory
time scale, and estimate that synaptic changes in vivo
could be stable on the scale of weeks to months.

Synaptic Memory Maintenance in the Presence of Background Activity
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transients according to the ratio of calcium concentrations, i.e.

1.5/2.5 = 0.6. This leads to what we call the ‘in vivo’ parameter

set. Values of all parameters for both conditions are indicated in

Table 1.

The dynamics of the synaptic efficacy in response to calcium

transients under the in vitro and the in vivo conditions are

illustrated in Fig. 1. The synaptic efficacy is only modified when

the calcium concentration increases above the depression

threshold hD (Fig. 1,B–E). For the in vitro case, this happens

whenever a postsynaptic spike occurs since CpostwhD, but for the

in vivo parameter set this happens much more rarely because of

the smaller calcium amplitudes (Cpre,CpostvhD in the in vivo
case; see Table 1). In the latter case, synaptic changes are only

induced whenever subsequent spikes occur in short succession

such that calcium accumulates and crosses the depression and/or

potentiation threshold. Such events are rare at low firing rates

(Fig. 1,D–E).

Memory decay for a synapse connecting two
independent Poisson neurons

We now proceed to study the time scales of synaptic decay. We

start with the case of a synapse connecting two neurons firing

according to uncorrelated Poisson processes, and compare the

memory time constants in the flat and double-well potential cases.

Simulations were performed using an event-based implementation

of the synaptic plasticity model, which updates the synaptic

efficacy only upon the occurrence of pre- and postsynaptic spikes

(see Methods for details).

We initialise the synaptic efficacy to r~1 and investigate the

time constant of decay in the presence of an ongoing constant

firing rate, initially for the flat potential synapse (Eq. 1, with

U(r)~0). Pre- and postsynaptic neurons emit uncorrelated

spikes following Poisson statistics, both with a mean rate of 1/s.

Under these conditions, a fully potentiated synapse progressively

decays and eventually fluctuates around a value of 0.2. On

average, this decay is well described by a single exponential

function (Fig. 2,A,B). The time constant of this decay is much

longer in the case of the in vivo parameter set (Fig. 2,B) than in

the in vitro parameter set (Fig. 2,A). The decay time constant is

2.5 minutes for the in vitro case and approximately 2 hours for

in vivo in the presence of 1/s pre- and postsynaptic firing

(Fig. 2,C).

The dynamics of the synaptic efficacy (Eq. 1) can be described

by a truncated Ornstein-Uhlenbeck (OU) process if single calcium

transients induce small changes in the synaptic efficacy and if the

potential is flat (see [28] for the non-truncated case). Truncation of

the process is induced by the bounds at r~0 and r~1. In such a

process, the mean synaptic efficacy decays exponentially with a

time constant, teff , which is given by

teff (n)~
t

CD(n)zCP(n)
, ð3Þ

to an asymptotic average efficacy, �rr(n) (see Eq. (22) in Methods),

where CP(n)~cPaP(n) and CD(n)~cDaD(n) are the net potenti-

ation and depression rates which depend on the rates Cp and Cd as

well as on the average fractions of time spent above the

potentiation and depression thresholds, aP(n) and aD(n), respec-

tively. The average fractions of time the calcium traces spend

above the potentiation and depression thresholds are given by

aD(n)~1{

ðhD

0

P(c,n)dc, ð4Þ

aP(n)~1{

ðhP

0

P(c,n)dc, ð5Þ

where P(c) is the probability density function of the calcium

variable, that can be computed analytically in the case of

independent pre- and postsynaptic Poisson firing [28,43] (see

Methods for details). The theory provides an excellent match for

the dynamics of the mean synaptic efficacy – compare in

Fig. 2,A,B the truncated OU theory (blue and red curves), with

the simulation mean (green and light blue curves).

Synaptic efficacy decay becomes faster with increasing pre- and

postsynaptic firing rates since the calcium trace spends more time

above depression and potentiation thresholds (Fig. 2,C). At the

same time, the asymptotic value of synaptic efficacy (�rr) increases

due to an increase in time spent above the potentiation threshold

(Fig. 2,D). As a result of the smaller in vivo calcium amplitudes,

the efficacy decay for the in vivo case is, at all firing rates, much

slower than the decay in vitro (Fig. 2,C). The asymptotic efficacy

value is lower, at small firing rates (nv1/s), for the in vitro case

since isolated postsynaptic spikes always cross the depression

threshold (CpostwhD) which results in a large net depression rate

CD, compared to in vivo (Fig. 2,D).

To get a deeper understanding of the dependence of the

memory time scale on the firing rates of pre- and postsynaptic

neurons, we set Cpre~Cpost~1. This simplification allows us to

derive a power law relationship between the memory time scale

and the firing rate teff*1=(ntCa)k, where k is the number of (pre

and/or post-synaptic) spikes required to clear the depression/

potentiation thresholds. To compute the memory time scale, we

need to compute the fraction of times spent above the depression

and potentiation thresholds, aD and aP. In the case hDv1vhP,

one can show that at low rates aP%aD. Consequently it is only

necessary to focus our analysis on aD. When hDv1, the time spent

above the depression threshold is

Table 1. Parameters of the calcium-based synapse model.

Parameter In-vitro In-vivo

Cpre 0.56175 0.33705

Cpost 1.23964 0.74378

tCa (ms) 22.6936

hD 1

hP 1.3

cD 331.909

cP 725.085

s 3.3501

t (sec) 346.3615

r� 0.5

D (ms) 4.6098

The in vitro values are obtained in [28] by fitting the model, using a gradient
descent method, to cortical plasticity data presented in Figure 8a (frequency
dependence of synaptic plasticity for a fixed relative pre- post- spike timing) of
[6]. In vivo calcium amplitudes are scaled from the in vitro values according to
the change in extracellular calcium concentration.
doi:10.1371/journal.pcbi.1003834.t001
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aD(n)~1{
Ah

2ntCa
D

2ntCa

, ð6Þ

where n is the firing rate of pre- and postsynaptic neurons

(npre~npost~n), tCa is the decay constant for the calcium

concentration and A~ exp ({2ntCac)=C(2ntCa) (see Eqs. (13) –

(17)). This closed form solution allows us to perform an expansion

for low firing rates n

aD(n)*2ntCa log
1

hD

� �
{(ntCa)2 2 log (hD)2{

p2

3

� �

zO (ntCa)3
� �

:

ð7Þ

Similarly for 1vhDv2vhP we have in the low rate limit,

aD(n)*(2ntCa)2 p2

12
zLi2(1{hD)z log (hD) log (hD{1)

� �

zO (ntCa)3
� � ð8Þ

where Li2 is the dilogarithm, Li2(z)~
X?

k~1
zk=k2. Thus, in both

cases we find that the memory time scale depends on the firing rate as

teff*
t

cD(ntCa)k
ð9Þ

where k~Ceil(hD). We expect this relationship to hold in

general. Intuitively, this is due to the fact that we need k spikes

arriving simultaneously on a time scale of order tCa in order for

the calcium concentration to cross the depression threshold hD,

and that the probability of observing k spikes in a time interval tD

is at low rates proportional to (ntCa)k. We also expect the result to

hold in general for Cpre=Cpost. In this case, we expect that

k~Ceil
hD

max (Cpre,Cpost)

� �
.

The derived power law behaviour for teff is plotted in Fig. 2,C
together with the full analytical solution for teff . We see that as

expected, teff scales as 1=n for the in vitro parameter set, where a

single spike is enough to cross hD, while it scales as 1=n2 for the in
vivo parameter set, where two spikes are needed to cross the

depression threshold.

The implication of this theoretical result is that, at low firing

rates, there is a direct relationship between the number of spikes

required to clear the lower plasticity threshold and the memory

time scale. Note that the full synaptic efficacy model with

Cpre=Cpost is considered in the following (see Table 1)

Memory decay for a bistable synapse
We now turn to examine the effect of a bistability on memory

time scales. The dynamics of the synapse is now described by Eq.

(1), where the potential U(r) is given by Eq. (2). This double well

potential leads to a bistable synapse, that can take two possible

efficacy states (r~0 and r~1) in the absence of activity. In the

presence of background activity, transitions between these two

states become possible. We investigate stability and transition

Figure 1. Dynamics of the synaptic plasticity model with the in vitro and in vivo parameter sets. (A) Pre- and postsynaptic spike trains
generated as realisations of Poisson processes at 1/s. (B,C) The spike train in A induces large calcium transients (blue trace) with the in vitro parameter
set (Cpre~0:562 and Cpost~1:240; see Table 1). Whenever the calcium trace crosses the depression (cyan) or potentiation thresholds (orange),
changes in the synaptic efficacy (green) are induced. (D,E) Same as in B,C but with calcium amplitudes corresponding to the in vivo case (Cpre~0:337
and Cpost~0:744). The small calcium transients do not cross the depression/potentiation thresholds and no efficacy changes are observed. Note that
the flat potential for r is used here and that noise is set to zero for clarity, s~0.
doi:10.1371/journal.pcbi.1003834.g001
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times for in vitro and in vivo parameter sets as a function of pre-

and postsynaptic firing rates.

The effect of background activity on the dynamics of r can be

explained by the fact that it modifies the potential, U(r), leading

to an effective potential

Ueff (n,r)~
1

4
r2(1{r)2z

cDaD(n)

2
r2z

cPaP(n)

2
(1{r)2, ð10Þ

(see Methods). In Eq. (10), the first term on the r.h.s. corresponds

to the ‘bare’ double well potential U(r) (Eq. (2)); the second term

describes the effect of depression on the potential, that tends to

strengthen the stability of the lower well (DOWN state) at r*0, at

the expense of the other well that tends to disappear when aD(n)
increases; finally, the last term describes the effect of potentiation,

that shifts the minimum of the only remaining well towards higher

values of r when aP(n) increases.

Thus, there are two distinct regions of firing rates in the bistable

case with respect to the effective potential. For sufficiently low

rates, the effective potential still has two minima (see Fig. 3,A, and

the effective potentials for 0.1/s and 1/s, indicated by orange and

magenta curves in the inset). There is a critical value of the rates at

which the high efficacy minimum disappears through a saddle-

node bifurcation. Beyond this rate, the synapse is no longer

bistable, and synaptic efficacy has one stable state only (Fig. 3,A),

equivalent to the asymptotic efficacy value for the flat potential

(Fig. 2,D). Finally, at high firing rates, the ‘bare’ potential becomes

negligible, and the effective potential approaches a quadratic

potential with a single stable state whose location depends on the

rate (green curve in the inset in Fig. 3,A). The transition from

double-well to single well regimes occurs at different firing rates for

the in vitro (*0:04/s) and the in vivo (*1:3/s) parameter sets due

to the larger calcium amplitudes in the former.

For the in vitro parameter set, adding bistability to the synaptic

efficacy has no influence on the decay time constant for firing rates

larger than approximately 0.1/s (Fig. 3,B). In contrast, for the in
vivo parameter set, bistability considerably prolongs memory

decay times with respect to synapses with flat potential at firing

rates below ,1.4/s. In the presence of two stable states, the decay

of memory occurs only due to synaptic noise fluctuations that push

the synaptic efficacy out of the upper well. The influence of the

double well potential on the dynamics of the synaptic efficacy traps

synapses in the UP state leading to long dwell times before crossing

the potential barrier and converging to the low efficacy state

(Fig. 3,C). The double-well has a prolongation effect on memory

Figure 2. Memory decay for a single synapse with flat potential in the presence of uncorrelated pre- and postsynaptic Poisson
firing. (A,B) Temporal evolution of the mean synaptic efficacy in the presence of pre- and postsynaptic Poisson firing at 1/s for the in vitro (green in
A) and the in vivo (light blue in B) parameter sets (mean shown for N~1000 synapses). Blue and red lines show the mean dynamics as predicted by
the Ornstein-Uhlenbeck theory. Grey lines show example traces of synaptic efficacy evolution in time. (C) Decay time constant as a function of the
firing rate for in vitro and in vivo parameter sets. The blue and red lines show the calculated decay time constant, teff , from the OU theory. The points
show exponential decay times obtained by fitting single exponential decay functions to the mean synaptic dynamics as shown in A and B illustrating
that the OU theory correctly describes the full model behaviour. The cyan and orange dotted lines illustrate the derived power law behaviour,
teff*1=nk , between memory time scales and low firing rates (see text). The power reflects the number of spikes required to cross the plasticity
thresholds, that is, k~1 for in vitro (cyan dotted line) and k~2 (orange dotted line) for in vivo case. (D) Asymptotic synaptic efficacy as a function of
the firing rate for in vitro and in vivo parameter sets. The lines show the calculated asymptotic value, �rr, from the truncated OU theory (r[½0,1�) for in

vitro (blue line) and in vivo (red line) cases. Note that at high frequencies �rr saturates at a value equal to
cP

cPzcD

, since both depression and

potentiation terms are active in the high calcium region. The points show steady-state values obtained by fitting single exponential decay functions
to the mean synaptic dynamics as shown in A and B (green: in vitro; light blue: in vivo).
doi:10.1371/journal.pcbi.1003834.g002
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duration up to firing rates of about 3{4/s due to the transition

between double-well and single-well regimes. At high firing rates,

the potentiation and depression processes dominate and the effects

of the double-well becomes negligible for both parameter sets, that

is, the decay time constant is indistinguishable between flat and

double-well potential synapses (see Fig. 3,B).

For low firing rates, we can accurately predict the increase in

the decay time constant in the presence of bistability using

Kramers escape rate for the mean first passage time across a

potential barrier (Fig. 3,B; see Methods Eq. (26)). In this regime,

we calculated an effective decay time constant using Kramer’s

escape theory given by teff* expf2DU=s2
effg, where DU is the

height of the effective potential barrier and the noise term, s2
eff ,

drives the escape of the efficacy from the upper stable state (see

magenta line in Fig. 3,B for the in vivo case). Both terms DU and

s2
eff are dependent on n and are detailed, along with teff , in Eqs.

(23) and (26) (see Methods for more details). In the low rate limit,

s2
eff!1=nk and therefore the memory time scale increases

exponentially with the inverse of the rate to a power k,

teff! exp (a=nk), where k is again the number of simultaneous

spikes needed to cross the depression threshold. This exponential

dependence extends the time scale for synaptic decay at 1/s to the

order of one month for a bistable synapse with the in vivo
parameter set, up from hours for a synapse with flat potential.

Steady-state behaviour of networks of LIF neurons with
plastic synapses

We next study the behaviour of the calcium-based synaptic

plasticity model in a recurrent network of spiking neurons. We first

examine the steady-state of synaptic efficacy and network activity.

We again make use of the event-based implementation of the

synaptic plasticity rule (described in Methods) allowing us to

simulate much longer time scales than are normally attainable by a

time stepping simulator.

The recurrent network consists of 8000 excitatory and 2000

inhibitory leaky integrate-and-fire (LIF) neurons. Each neuron

receives an external input which consists of a constant (DC) term

and a white noise term. External noise is independent from neuron

to neuron. Each neuron also receives synaptic inputs from other

neurons in the network. The connection probability between any

two neurons is 0.05 and uniform in space and across neuron types.

Synapses between excitatory neurons are plastic according to the

calcium-based plasticity model (Eq. 1), while all synapses involving

inhibitory neurons are fixed. Parameters of the network are chosen

so that the network settles in a stable asynchronous irregular state

[44]. Hence, correlations between neurons are weak. See Methods

for more details of the network model.

The fixed point of the network can be determined analytically

by solving a set of three self-consistent equations for the excitatory

Figure 3. Memory decay for a bistable synapse in the presence of uncorrelated pre- and postsynaptic Poisson firing. (A) Steady-states
of synaptic efficacy as a function of firing rate for the in vitro (blue) and the in vivo (red) parameter sets. Stable states are shown by solid lines and
unstable states by dotted lines. Synaptic efficacy is bistable at low rates (v0:04/s for in vitro and v1:3/s for in vivo) and monostable at high firing
rats. The effective potential of synaptic efficacy is shown for three firing rates (0.1/s - magenta line; 1/s - orange line; 2/s - green line) and the in vivo
parameter set in the inset (firing rates indicated by vertical lines). (B) Decay time constant as a function of the firing rate for the in vitro and the in vivo
parameter sets. For the in vivo parameter set below *1:3/s, the bistability greatly extends memory time scale compared to a synapse with flat
potential (red line) and can be predicted using Kramers escape rate (magenta line). The vertical dashed line illustrates the frequency at the in vivo
bifurcation point. For the in vitro parameter set, the bistability has no influence on decay time constants for firing rates above 0.1/s. The points show
exponential decay times obtained by fitting single exponential decay functions to the mean synaptic dynamics. (C) Individual synaptic efficacy traces
for the in vivo parameter set at 1/s pre- and postsynaptic firing. The synapses remain in the upper potential well for a long time and stochastically
cross the potential barrier to the low efficacy state. (D) Averaged synaptic efficacy trace of many synapses for the in-vivo parameter set at 1/s. The
bistability extends the memory time scale from hours for a flat potential to days.
doi:10.1371/journal.pcbi.1003834.g003
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and inhibitory mean rates as well as for the mean excitatory-to-

excitatory (E?E) synaptic efficacy (see Methods). Two of these

equations give the stationary firing rates of excitatory and inhibitory

populations (Eqs. (32) – (33)), as a function of the mean E?E

synaptic efficacy [44,45]. The third equation gives the mean E?E

synaptic efficacy as a function of the firing rate of the excitatory

population, assuming Poisson firing statistics of neurons (Eq. (22)).

Starting from the analytically determined initial conditions, the

recurrent network converges to a steady-state of constant average

firing rates of all neurons in the network, and constant average

synaptic efficacy of the plastic connections. Figure 4,A shows how

the firing rates observed in the simulations compare with the

analytically predicted firing rates. It shows that at sufficiently low

rates, the analytical prediction gives a very good estimate of the

observed rates; however, for rates above 3Hz the observed rates are

significantly lower than the analytical prediction. Likewise, the

analytical prediction for the mean E?E synaptic efficacy signifi-

cantly overestimates the observed efficacies (green dots in 4,B).

Figure 4. Steady-state behaviour of a recurrent network with plastic synapses between excitatory neurons. (A) Firing rate mean-field
predictions compared with network simulation results. The mean-field theory predicted firing rate is higher (black line) than the actual firing rate of
the excitatory neurons (green dots) in the recurrent network of 8000 exc. and 2000 inh. LIF neurons. Network simulation with fixed synapses yield a
good match with the theory (blue dots). (B) Average synaptic weight prediction compared with asymptotic average synaptic weights in the network
simulation. The observed average synaptic efficacy of excitatory to excitatory connections is smaller (mustard dots) than the theoretical prediction
(black line). Even when using the asymptotic firing rate of the network in the calculations (green dots), the average synaptic efficacy is overestimated
by the theory. (C) Mean and standard deviation of synaptic weights vs. firing rate for independent LIF neurons (magenta), networked LIF neurons
(green) and LIF neurons in a network in which actual weights are held constant but we examine how their efficacy would have evolved in the
presence of observed firing (blue dots). Asymptotic synaptic weights for LIF neurons underestimate the efficacy predicted by the theory (blue line).
(D) Average synaptic weight vs. firing rate for independent LIFs with different reset potentials. The analytical prediction of the asymptotic synaptic
weight based on Poisson firing is shown by the blue line (same as in C). The reset potential in the LIF model, Vreset, has a marked influence on the
observed average synaptic efficacy. Depolarised/hyperpolarised reset potentials (e.g. 255/270 mV, cyan/green dots) lead to an over/under-
representation of short ISIs (left/right inset) compared to Poisson neurons (red line in insets). ISI histograms in inset are shown for LIF neurons firing at
1/s.
doi:10.1371/journal.pcbi.1003834.g004
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What is the source of the difference between theory and

simulations in predicting the steady network state? When synapses

are fixed in the network at the efficacies predicted by the

corresponding firing rate, the analytically predicted network firing

rates provide a good approximation of the observed activity (blue

dots in 4,A). This suggests that the underestimation of firing rates

and synaptic efficacy emerges from the mapping of firing rates

onto synaptic efficacy, and not due to correlations between spike

trains of different neurons. We examine this effect in Fig.4,C,

where we show asymptotic mean synaptic efficacy results under

three different conditions. First, we simulated a population of

disconnected, independent LIF neurons, receiving stochastic

independent inputs with the same mean and variance as in the

‘real’ network simulation (magenta dots). By definition, this

simulation led to uncorrelated spike trains. In this simulation,

fake synaptic connections between neurons obeyed the plasticity

rule, but had no effect on the dynamics of the neurons. Second, we

simulated a connected recurrent network with constant synaptic

weights. As in the first case, we simulated ‘fake’ synaptic

connections that obeyed the standard plasticity rule, but these

fake synapses had no effect on the dynamics (blue dots). Third, we

simulated a standard recurrent network in which synaptic weights

are plastic according to the plasticity rule (green dots). All three

simulations show indistinguishable results, and in all three cases

the average (real or fake) synaptic efficacies are consistently smaller

compared to the analytical shot noise prediction (4,C, blue line).

This suggests that correlations have a negligible effect on mean

efficacies and firing rates, and that the differences between

simulations and theory are due to differences in spiking statistics

between the LIF model and a Poisson process.

To investigate further how the spiking statistics of the LIF model

and in particular the interspike-interval (ISI) distribution causes

the differences seen in Fig. 4, we varied the ISI distribution of the

LIF neuron by changing the reset potential (Vreset, see Methods).

This change had a strong effect on the average synaptic efficacy

(4,D). A reset potential close to threshold (Vreset~{55 mV,

Vthreshold~{50 mV) yields an overrepresentation of short ISI

compared to Poisson firing (4,D, inset) and in turn overestimates

the average synaptic efficacy (4,D; cyan dots). Conversely, more

depolarised reset potentials lead to an under-representation of

short ISIs with regard to Poisson firing and consequently to an

underestimation of the average synaptic efficacy (4,D; magenta,

red and green dots). We use an intermediate value of Vreset~{60
mV in the following network investigations.

To conclude this section, the calcium-based synaptic plasticity

rule does not affect the stability of the asynchronous irregular state

in a large recurrent network of LIF neurons. Since LIF neurons in

the network exhibit ISI distributions which deviate from those of

Poisson neurons, the accuracy of our calculation of the average

synaptic efficacy which is based on Poisson firing decreases with

increasing firing rates up to a certain point. At high firing rate,

calcium remains above the plasticity thresholds most of the time

and the fraction of time spent above the thresholds converges to

one, irrespective of the underlying neuron model.

Memory decay in a recurrent network of LIF neurons
Finally, we examine the decay of a memory trace in a network

for the in vitro and the in vivo parameter set. We initialise all

excitatory-to-excitatory synaptic weights at their theoretically

predicted asymptotic weights, except for a randomly selected

subset of 5% which are set to a weight of 1. With the in vitro
parameter set, the potentiated synapses decay relatively quickly to

their asymptotic value (Fig. 5,B). The time course of the average

decay can be described by a single exponential function and the

decay time constant is well approximated by the time constant,

teff , of synaptic decay from the truncated OU process (see Eq. (3);

Fig. 5,C). This means that the average dynamics of synaptic decay

in the network is equivalent to synapses driven by independent

pre- and postsynaptic Poisson neurons firing at the same rate as

the excitatory neurons in the network (compare to Fig. 3,B). The

addition of the double-well potential does not change the decay

time constant for the in vitro parameter set, as for a single synapse

driven by independent pre- and postsynaptic Poisson firing

(Fig. 5,C orange stars; compare with Fig. 3,B). The lack of short

ISIs in LIFs compared to independent Poisson neurons leads to a

small increase in observed decay times in the network as compared

with the OU theory (see Fig. 5,C).

In contrast, when using the in vivo parameter set with the

double-well potential, we observe that the potentiated synapses get

locked in the UP state for the duration of the network simulation

with an excitatory neuron firing rate of 1/s (Fig. 6,C). None of the

synapses in the potentiated subset crosses the unstable fixed point

and converges to the DOWN state during a network simulation of

120 min, neither does the reverse transition occur. We expect that

the escape from the UP state will be predicted by Kramers escape

rate (Eq. (26)) which correctly accounted for escape dynamics of an

isolated synapes driven by independent pre- and postsynaptic

Poisson processes (Fig. 3B). There, the decay time constant for a

firing rate of 1/s is on the order of a month, a time scale that

cannot be reached by our network simulation.

Hence, as in case of independent Poisson neurons, the

combination of a double-well potential with the in vivo parameter

set leads to several orders of magnitude longer memory time

constants, compared to the in vitro parameter set and a flat

potential.

Discussion

In this paper, we studied the stability of synaptic efficacy, in a

plastic synapse subjected to background activity of pre- and

postsynaptic neurons. We used a calcium-based plasticity model

that has been shown to fit experimental data in hippocampal and

neocortical preparations [28]. The model was investigated

numerically, using an event-based implementation of the plasticity

rule, as well as analytically, using a diffusion approximation.

Thanks to this formalism, we derived scaling laws that describe

how memory time scale is related to the firing rates of pre- and

postsynaptic neurons. At low firing rates, we find that, when

synapses are monostable, synaptic efficacies decay to an equilib-

rium value with a time scale that depends on the firing rates as a

power law, teff*1=nk, where k is the number of simultaneous

spikes needed to cross the depression threshold. When synapses

are bistable, memory decay is akin to diffusion of a particle out of a

potential well, which leads to much stabler memories, with time

scales that increase exponentially with the inverse of the firing

rates, teff* exp (a=n), at low rates. We showed that these

estimates accurately reproduce the results of simulations, both of

a synapse connecting two isolated independent Poisson neurons,

and of a large network of LIF neurons.

We have focused here on how changes in the amplitudes of the

calcium transients affect memory time scales. A change in other

model parameters also affects these time scales. Changing the

depression threshold, for example, has a similar pronounced effect,

since the exponent in the scaling law between memory time scale

and background rate depends on the ratio between this threshold

and the amplitudes of the calcium transients (see (9)). On the other

hand, changing other parameters of the model (such as the time

constants and the potentiation and depression rates) have much
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milder effects, in the flat potential regime, since the time scale

depends algebraically on such parameters, rather than exponen-

tially. In the absence of further data, we have assumed a linear

relationship between the external calcium concentration and the

calcium influx to explore the in vivo regime. A non-linear

relationship between the extracellular calcium concentration and

the concentration in postsynaptic microdomains - conjectured to

be relevant for synaptic plasticity - should modify our results

quantitatively rather than qualitatively.

Previous studies have investigated memory maintenance in

networks of neurons connected by synapses endowed with

standard spike-timing dependent plasticity rules [46]. Billings

and van Rossum (2009) demonstrated that the memory time scale

depends dramatically on whether the rule is additive or

multiplicative. In a multiplicative STDP rule, in which synaptic

change depends on the current value of the weight such that

synaptic changes decrease when the weights approach the bounds,

distributions of weights are unimodal [46–48] and the memory of

synaptic changes decay as 1=n2, since synaptic changes occur upon

coincidence of pre- and postsynaptic spikes in the characteristic

time window of the STDP rule. These behaviours are very similar

to the behaviour of the calcium-based rule in the flat potential

case, in the parameter region in which two spikes are needed to

cross the depression threshold. This is due to the fact that the

calcium-based rule defined by Eq. (1) is multiplicative. In the

calcium-based rule however, the exponent describing the memory

decay at low rates can be set to an arbitrary integer number,

through an appropriate rescaling of the ratio between the

amplitude of the calcium transients and the depression threshold.

In additive STDP rules, the picture changes dramatically and the

synaptic weight distributions become bimodal, with weights

attracted either to the lower or upper bounds through a symmetry

breaking mechanism [23,46]. In this situation, the memory time

scales are much longer, and decay of synapses is similar to

diffusion in a double well potential.

Several studies have shown that synaptic bi- or multi-stability

can emerge from a number of mechanisms such as positive

feedback loops in extensive protein signaling cascades [49],

autophosphorylation of CaMKII [50–54], self-sustained regulation

of translation [55], or modulation of receptor trafficking rates [56].

Such mechanims of bistablity are effectively implemented here in

the form of the double well potential. Miller et al. (2005) studied

the stability of the up state in a model of the bistable calcium/

calmodulin-dependent protein kinase II system with respect to

stochastic fluctuations induced by protein turnover [57]. They

show that the CaMKII switch composed of a realistic number of

CaMKII proteins is stable for years even in the presence of protein

turnover, phosphatase as well as free calcium fluctuations. The

transitions induced by background activity investigated here

impose an upper limit on memory life-time which is typically

lower, indicating that in vivo neuronal activity, not protein

turnover, will be the limiting factor of memory life-times.

In vivo, memory in synaptic connectivity structures will be

affected both by ongoing background activity, but also by changes

Figure 5. Memory decay for a subset of potentiated synapses in a recurrent network with the in vitro parameter set. (A) Temporal
evolution of the average excitatory (red) and inhibitory (blue) firing rate. A network of 10,000 LIF neurons is initialised at the theoretically predicted
steady-state and simulated for 20 min real time. (B) Temporal dynamics of synaptic efficacies in the network. The majority of synapses are initialised
to the theoretically predicted asymptotic synaptic efficacy (mean: magenta; single synapse example: dark gray). A randomly selected subset of 5% are
set to 1 at the beginning of the simulation (mean: green; single synapse example: light gray). (C) The exponential decay time constant of the
potentiated synapses. The value obtained from fitting a single exponential to the mean decay (green dots) is well approximated by the analytically
calculated decay time constant from the OU process (Eq. (3)). Introduction of a double-well potential does not modify the memory time constant for
the in vitro parameter set (orange stars). The slight deviation of the decay time constants with respect to the OU theory, that is, the network decay
time constants are slower, are due to the LIF firing statistics as can be seen from the comparison with independent LIF neurons (magenta dots).
doi:10.1371/journal.pcbi.1003834.g005
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in network activity induced by external stimuli. How ongoing

presentations of external inputs affect memories of past stimuli has

been the subject of several studies in recent years (e.g. [15,20,58]),

in simpler networks of binary neurons. A detailed exploration of

this issue in the model studied here is outside the scope of the

present paper, but we anticipate that parameter regions that

extend the robustness of synaptic memories in the face of

background activity will also tend to protect the network against

changes induced by external inputs.

Distributions of synaptic weights have been examined in a

number of studies [4,6,59–62]. In all of these studies, distributions

of synaptic weights appear unimodal and skewed, and peak at a

low weight. In some cases, the distribution has been shown to be

well fitted by a lognormal distribution [60,62]. This seems at first

sight at odds with the distributions of weights shown in the present

paper, which are either a truncated Gaussian in the flat potential

case, lacking the fatter tail of the lognormal distribution, or

bimodal in the double-well case. However, the model in the flat

potential case can be made consistent with the data, by choosing

synaptic efficacy variables which are an exponential of the r
variable, rather than being linearly related to r. In this case,

synaptic efficacies themselves become exponentiated Ornstein-

Uhlenbeck processes, consistent with [62]. The model with a

double-well potential could also be made consistent with a

unimodal distribution, provided the synaptic up and down states

are highly heterogeneous from synapse to synapse. Finally, we

should point out that the distributions we observe are asymptotic

distributions under a statistically constant distribution of inputs.

Synapses in vivo are typically subjected to highly non-stationary

firing rates of pre and post synaptic neurons. These non-

stationarities can also potentially strongly affect distributions of

synaptic weights in our model.

A large number of distinct learning rules that capture

quantitatively both spike-timing and firing rate effects have been

proposed recently [25–31]. Our rule can be distinguished from

most of those rules by the fact that it includes calcium

concentration as its primary dynamic variable, which allows us

to extrapolate parameters of the rule from in vitro to in vivo
conditions, as we have explained here. Scaling laws derived here

can be expected to hold also in those other models: at low rates,

the time scales of memory decay are expected to be inversely

proportional to the rates to a power equal to the number of spikes

needed to provoke plasticity. This power should be equal to 2 for

standard STDP rules, triplet rules [25], and calcium-based rules in

which 2 spikes are needed to cross the depression threshold

[24,27]; 1 for spike and voltage based rules [26].

In this work, we have made the hypothesis that synaptic weights

are altered during background activity, and that one can treat

background activity as being essentially uncorrelated with the

synaptic connectivity structure. Memory time scales could in

principle be further extended by two factors. A first mechanism

would be to gate plasticity by specific neuromodulator(s) that are

present only during stimulus presentation. This idea is consistent

with a growing body of experimental data showing how plasticity

is modulated by dopamine [63], acetylcholine [64,65], noradren-

aline [66] (see also [67] and references therein). However, we note

that the model we have used here is built from in vitro plasticity

data where these neuromodulators were present at very low

concentrations, if at all. Hence, we believe that these neuromod-

ulators are likely to enhance plasticity during behaviourally

relevant epochs, but that the memory time scales discussed here

are likely not to be affected if neuromodulators are not present at

high levels during background activity.

A second mechanism that would extend memory time scales

would be a scenario in which background activity is in fact strongly

correlated with the connectivity structure, and wanders stochas-

tically between network states that are strongly correlated with the

states of the network during stimuli presentation. This idea is

consistent with a growing experimental literature [68–70] showing

how spontaneous activity is transiently strongly correlated with

sensory responses in visual and auditory cortices, and it is also

consistent with the ubiquitous supra-Poissonian variability, poten-

tially due to the doubly-stochastic process of combined rate

stochasticity and individual neuronal Poisson spike processes, seen

in background activity in cortex [13,71]. Recurrence of activity

states resembling the network activity during stimulus presentation

could refresh existing memory traces and therefore prolong their

lifetimes.

We showed here that the low extracellular calcium concentra-

tions in vivo could have a strong impact on plasticity. A first

prediction of calcium-based rules is that plasticity seen in standard

protocols should be greatly reduced (and even possibly vanish

altogether) at physiological calcium concentrations. While to our

knowledge no study has explicitly compared plasticity results at

different extracellular calcium concentration, comparisons be-

tween different studies using different extracellular concentrations

seem to be consistent with this prediction. In hippocampal slices, a

standard low frequency STDP protocol produces LTD for all time

differences with 2 mM extracellular calcium [9], while it produces

the standard STDP curve with 3 mM calcium [10]. A second

prediction is that induced synaptic changes should be much more

stable in the face of ongoing pre- and postsynaptic activity. These

Figure 6. Memory decay for a subset of potentiated synapses
in a recurrent network with the in vivo parameter set and
double-well potential. (A) Temporal evolution of the average
excitatory (red) and inhibitory (blue) firing rate. A network of 10,000
LIF neurons is initialised at the theoretically predicted steady-state and
simulated for 120 min real time. (B) Temporal dynamics of synaptic
efficacies in the network. The average dynamics of the 95% initialised in
the DOWN state (blue) and the 5% initialised in the UP state (red) is
shown. The shaded gray region represents the range of values visited
by synapses in the UP and in the DOWN state populations, indicating
that no transition occurs.
doi:10.1371/journal.pcbi.1003834.g006
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results emphasise the need for experimental studies at physiological

calcium concentrations *1:5 mM [72], unlike most published

studies that used concentrations in the range 2{3 mM. Our

predictions could be easily tested in slice experiments, by providing

background activity at a specified rate after the plasticity-inducing

protocol. Similar experiments have been performed in the

developing Xenopus retino-tectal system in vivo [73], where

activity-induced modifications were shown to be erased by

subsequent 10 minutes of spontaneous activity. Our model would

predict that in cortical slices, at 2.5 mM calcium, induced synaptic

changes should disappear on a time scale of minutes, while at

1.5 mM calcium, they should be stable on a time scale of *1 hour.

We provided here an event-based update scheme of plastic

synapses which greatly accelerates simulations and should strongly

facilitate future studies of the dynamics of recurrent networks with

plastic calcium-based synapses. On the theoretical front, it would

be interesting to extend the theory to non-Poissonian renewal

processes [74] such as for leaky integrate-and-fire neurons used

here, which would give a better approximation of average synaptic

efficacies, especially at higher firing rates. It would also be of great

interest to examine how synaptic connectivity is modulated by

non-stationary external inputs, and how such changes in

connectivity affect in turn the intrinsic dynamics of the network.

Our investigations show that realistic external calcium concen-

tration and multi-stability of synapses might stabilise memory

traces against the potentially deleterious effect of ongoing

background activity. These results call for studies of synaptic

plasticity induction and maintenance in more realistic conditions

and ideally in the intact animal. They provide a glimpse of how

plasticity results obtained in vitro might translate to the living

organism.

Materials and Methods

Calcium-based plasticity model
The temporal dynamics of the synaptic efficacy in the calcium-

based model are given in Eq. (1) (for details see [28]).

Changes in r are driven by the postsynaptic calcium concentra-

tion, c. The calcium dynamics are modelled using instantaneous

increases of size Cpre and Cpost in response to pre- and postsynaptic

spikes, respectively, followed by an exponential decay

dc

dt
~{

c

tCa
zCpre

X
i

d(t{ti{D)zCpost

X
j

d(t{tj), ð11Þ

where tCa is the calcium decay time constant, and Cpre, Cpost the

pre- and postsynaptically evoked calcium amplitudes. The sums go

over all pre- and postsynaptic spikes occurring at times ti and tj ,

respectively. The time delay, D, between the presynaptic spike and

the occurrence of the corresponding calcium transient accounts for

the slow rise time of the NMDAR-mediated calcium influx.

We use two parameter sets in this paper. The in vitro parameter

set is obtained by fitting the calcium-based plasticity model to

plasticity data obtained in cortical slices ([6]; see [28] for details of

the fitting procedure). These experiments were performed with

2.5 mM extracellular calcium concentration. The in vivo calcium

amplitudes are obtained by scaling Cpre and Cpost according to the

extracellular calcium concentration in vivo, estimated to be

1.5 mM [41] (see Results).

Probability density function of the calcium concentration
We shortly describe here how the probability density function

(PDF) of the calcium concentration can be calculated if pre- and

postsynaptic neurons fire as independent Poisson processes at rate

n~npre~npost (see [28,43] for more details). In these conditions,

the calcium concentration is a shot noise process, whose

probability density function is given by the master equation [43],

cP’(c)~(2ntCa{1)P(c){ntCaP(c{Cpre){ntCaP(c{Cpost):ð12Þ

The probability density function P(C) allows us to calculate the

fraction of time spent above the depression and potentiation

thresholds according to aD(n)~1{
Ð hD

0
P(c)dc and aP(n)~1{Ð hP

0
P(c)dc.

In the simple case Cpre~Cpost~1, the solution to Eq. (12) is

given by

P(c)~Ac2ntCa{1 c[½0,1�; ð13Þ

~Ac2ntCa{1 1{2ntCa

ðc{1

0

z2ntCa{1

(zz1)2ntCa
dz

� �
c[½1,2�; ð14Þ

~Ac2ntCa{1 1{(c{1)2ntCa
2F1(2ntCa,2ntCa;

�
2ntCaz1; 1{c)Þ c[½1,2�;

ð15Þ

~c2ntCa{1 A{2ntCa

ðc{1

0

P(z)

(zz1)2ntCa
dz

� �
cw2, ð16Þ

where 2F1(a,b,c,z)~
X?

n~0

(a)n(b)n

(c)n

zn

n!
is the ordinary hypergeo-

metric function [75],

A~
exp ({2ntCac)

C(2ntCa)
, ð17Þ

c is Euler-Mascheroni constant, c*0:577215665, and C is the

gamma function.

Fitting the calcium-based model to cortical plasticity data yields

CprevCpost (see Table 1). In this case, the solution of Eq. (12)

reads

P(c)~Bc2ntCa{1, c[½0,Cpre� ð18Þ

~Bc2ntCa{1 1{ntCa

ðc{Cpre

0

P(x{Cpre)

(xzCpre)2ntCa
dx

 !
,

c[½Cpre, min (2Cpre,Cpost)�

ð19Þ

~Bc2ntCa{1 1{
1

2

(c{Cpre)

Cpre

� �2ntCa

2F1(2ntCa,2ntCa;

 

2ntCaz1;
(Cpre{c)

Cpre
)

�
, c[½Cpre, min (2Cpre,Cpost)�

ð20Þ

where B~A=(CpreCpost)
ntCa is a normalisation parameter which

assures that
Ð

P(I)dI~1. The PDF for cw min (2Cpre,Cpost) is

obtained from a numerical integration of Eq. (12).
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Diffusion approximation for the synaptic efficacy with a
flat potential

Performing a diffusion approximation of the synaptic efficacy r
turns Eq. (1) into an Ornstein-Uhlenbeck process (see [28] for

details). The temporal evolution of r is then described by

t
dr

dt
~CP(1{r){CDrzs

ffiffiffi
t
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aPzaD

p
g(t), ð21Þ

for the case of a flat potential (i.e. LU=Lr~0). CP(n)~cPaP and

CD(n)~CDaD are the mean potentiation and depression rates,

respectively.

The bounds at r~0 and r~1 lead to a truncated Ornstein-

Uhlenbeck process, whose distribution is a truncated Gaussian,

whose mean converges exponentially to

�rr(n)~
CP(n)

CD(n)zCP(n)
zsr

G
{�rr

sr

� �
{G

1{�rr

sr

� �

H
{�rr

sr

� �
{H

1{�rr

sr

� � ð22Þ

where s2
r~

s2(aP(n)zaD(n))

2(CP(n)zCD(n))
, G(z)~

1ffiffiffiffiffiffi
2p
p exp

{z2

2

� �
is the

Gaussian with zero mean and unit variance, and

H(z)~
1

2
1{erf(

zffiffiffi
2
p )

� �
is the complementary cumulative den-

sity function of G. The time constant, teff , of the exponential

decay to �rr is defined in Eq. (3).

Kramers expected escape time from a double-well
potential

In the case of a double-well potential, the diffusion approxima-

tion turns Eq. (1) into a Fokker-Planck equation

t
LP

Lt
~

(aDzaP)

2
s2 L2P

Lr2
z

L
Lr

(CPzCD)rzCPz
LU

Lr

� �
P

� �
: ð23Þ

This equation can be rewritten as

t
LP

Lt
~

1

2
s2

eff

L2P

Lr2
z

L
Lr

LUeff

Lr

� �
P

� �
: ð24Þ

where the effective potential, Ueff , is the sum of the ‘bare’ potential

U and two quadratic terms proportional to the potentiation and

depression rates, respectively (see Eq. (10)), and s2
eff is the

amplitude of the effective noise

s2
eff (n)~s2(aD(n)zaP(n)): ð25Þ

When the effective potential is dominated by the double-well term

(first term on the rhs of Eq. (10)), the ‘escape’ rate from the UP

state is driven by noise and can be estimated using Kramers theory

[76,77]. The height of the potential barrier, DUeff~Ueff

(run){Ueff (rup), determines the mean dwell time in the UP

state, where rup and run are the local minima and maxima of the

effective potential and are obtained solving
LUeff

Lr
~0. This allows

us to calculate the expected escape time from the potential well

E(teff )~
2ptffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U ’’eff (rup)DU ’’eff (run)D
p exp

2DUeff

s2
eff

� �
: ð26Þ

Numerical methods: Event-based implementation
The temporal evolution of individual synaptic weights in the

calcium-based model can be calculated in an event-based manner

(as opposed to a finite difference method with a fixed time step Dt)

in an analytically exact way. This greatly accelerates network

simulations since the network variables are updated at the

occurrence of spikes only. In the following we describe the

practical implementation of the event-based update.

For the event-based update, three variables have to be stored

per synapse: the calcium concentration, c, the synaptic efficacy

variable, r, and the time of the last spike seen by the synapse, t.
The synapse variables c and r must be updated on the occurrence

of three events: (1) at the presynaptic spike when the postsynaptic

voltage is increased, (2) with delay D after a presynaptic spike

when the presynaptically evoked calcium increase occurs (see Eq.

(11)), (3) and at the postsynaptic spike when the postsynaptic

calcium increase occurs.

Calcium update. The calcium concentration decays expo-

nentially between events and is instantaneously increased by the

amplitude Cpost when a postsynaptic spike occurs. In the case of a

presynaptic spike, the calcium increase Cpre occurs after the delay

D (Eq. (11)). In consequence, we update the calcium concentration

as a decay followed by a calcium concentration increase where the

amplitude depends on the identity of the spike and the delay D (at

time tm for pre-synaptic spikes and tn for post-synaptic spikes). The

calcium update for time tiz1 (after the last update at ti ) at the three

update events described above reads

ciz1~ci exp ({(tiz1{ti)=tCa)

z

0 (1) at the presynaptic spike

Cpred(tiz1{D{tm) (2) after delay of the presynaptic spike

Cpostd(tiz1{tn) (3) at the postsynaptic spike:

8>><
>>:

ð27Þ

Synaptic efficacy update. For the propagation of the

synaptic efficacy variable, we distinguish between two different

regimes, that is, stochastic and deterministic. When the calcium

concentration at time ti is lower than both thresholds, civhD,hP,

the dynamics of r are described deterministically. When the

calcium concentration crosses either or both thresholds, the update

is stochastic, for the duration of the suprathreshold period, and the

dynamics of the mean and the standard deviation of the synaptic

efficacy are described by the corresponding Ornstein-Uhlenbeck

process. The different regimes may be updated sequentially in a

piecewise manner, accounting for first suprathreshold and then

subthreshold behaviour.

Here, we determine the possible potentiation/depression

threshold crossings of the calcium trace between events i and

iz1 with the inter-event interval Dt~tiz1{ti. tP is the time the

calcium trace spends above the potentiation threshold within that

interval, tD is the time the calcium trace spends between the

potentiation and the depression threshold, and t0 the time the

calcium trace spends below the depression threshold given by

t0~Dt{tP{tD. Here, we consider hPwhD only. The updates for

the case hPvhD are equivalent. cend refers to the calcium
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concentration right before the update at event iz1, that is

cend~ci exp ({Dt=tCa).

Between events at ti and tiz1, the following six possible

threshold crossings can occur (see Fig. 7):

I ciwhP and cendwhP tP~Dt and tD~0

II ciwhP and hDvcendƒhP tP~tCa ln
ci

hP

� �
and tD~Dt{tCa ln

ci

hP

� �

III ciwhP and cendƒhD tP~tCa ln
ci

hP

� �
and tD~tCa ln

hP

hD

� �

IV hDvciƒhP and hDvcendƒhP tP~0 and tD~Dt

V hDvciƒhP and cendƒhD tP~0 and tD~tCa ln
ci

hD

� �

VI ciƒhD tP~0 and tD~0

The efficacy, r, is updated in a piece-wise fashion. Stochastic

updates are performed when the calcium trace spent time above

the potentiation threshold (tPw0, cases: I, II, III), or between the

potentiation threshold and the depression threshold (tDw0, cases:

II, III, IV, V; and for hPwhD). A deterministic update is

performed if the calcium trace spent time below the depression

threshold (t0w0, cases: III, V, VI).

In case one or both thresholds are crossed in the interval

(ti,tiz1], the temporal evolution of r cannot be solved

analytically in the double well potential case, because of the

combined presence of the stochastic term and the quartic

potential. However, for the parameters used in this paper the

double-well potential can be neglected in the suprathreshold

regions because cD,cP&max DLU(r)=LrD (see Table 1). We can

therefore approximate the temporal evolution of r by an

Ornstein-Uhlenbeck (OU) process, for which the potential of r
during stimulation is quadratic with the minimum at �rr. We

confirmed the validity of this approximation by comparing the

event-based simulation based on this approximation, with a

simulation which was event-based only in sub-threshold epochs,

and based on a forward Euler method in the supra-threshold

epochs. The results of both simulations were indistinguishable,

which confirms that we can ignore the potential well during the

suprathreshold period.

Using this approximations, the updates of the synaptic variable

after suprathreshold epochs are given by:

tPw0 : r(tiztP)~
cP

cPzcD

((1{ exp ({tP(cPzcD)=t))

zr(ti) exp ({tP(cPzcD)=t))

zszP

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ exp ({2(cPzcD)tp=t)

2(cPzcD)

s
,

tDw0 : r(tiztPztD)~r(tiztP) exp ({tDcD=t)

zszd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ exp ({2cDtD=t)

2cD

s
,

where zP and zD are Gaussian random variables of unit variance

and zero mean. Note that tD~0 in case I, and therefore only the

first update is performed. Equivalently, tP~0 in cases IV as well as

V and only the second update rule is performed.

When the calcium concentration, ci, is smaller than the

potentiation and the depression threshold (t0~Dt{tP{tDw0,

cases III, V and VI), the first two terms on the rhs and the noise

term of Eq. (1) are zero. That reduces the rhs of Eq. (1) to

{dU=dr which can be integrated analytically for the flat- and the

double well potential considered here. The update of r is therefore

deterministic and depends on the choice of the potential:

1. flat potential

r(tiz1)~r(tiztPztD) ð28Þ

2. double-well potential

r(tiz1)~

1

2
{

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z(x0et0=(2t){1){1

q
if rv0:5

1

2
z

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z(x0et0=(2t){1){1

q
if r§0:5,

8><
>: ð29Þ

with

x0~(r(tiztPztD){1=2)2=(r(tiztPztD)(r(tiztPztD){1)).

The network
We implemented and simulated a recurrent network of 10,000

leaky integrate-and-fire (LIF) neurons, 8,000 of which are

excitatory (E) neurons and 2,000 of which are inhibitory (I). Any

two neurons have a spatially uniform probability of connection of

0.05. Autapses are specifically disallowed. Synapses between E

neurons are plastic and their weight dynamics are described by the

Figure 7. Possible potentiation and depression threshold
crossing cases of the calcium trace (blue lines) between events
at time ti and tiz1. The six possible cases are depicted with respect to
the location of the potentiation, hP (orange dashed line), and the
depression thresholds, hD (cyan dashed line).
doi:10.1371/journal.pcbi.1003834.g007
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calcium-based plasticity model (Eq. 1, [28]). All other synapses

have fixed strength wab (a,b[fE,Ig). A presynaptic spike induces a

voltage jump of size wab in the postsynaptic neuron.

The membrane potential of neuron i of population a evolve

according to

tm
dVai

dt
~{(Vleak{Vai)zIaiX

ztm

X
b

X
j

X
k

waibjd(t{tbjk{tL)
ð30Þ

where

IaiX~maXz
ffiffiffiffiffiffiffi
tma
p

sgai(t) ð31Þ

is a common external drive to all neurons, comprising a constant

input, maX, and a white noise of amplitude s~5mV. gai(t) is a

Gaussian white noise process with unit variance and zero mean,

which is uncorrelated from neuron to neuron. In the absence of

synaptic inputs each membrane potential decays exponentially to

the leak potential, Vleak~{70 mV, with a time constant

tm~20 ms. Spiking occurs when the voltage crosses a threshold,

Vthr~{50 mV, after which it is reset to the reset potential,

Vreset~{60 mV. During all of our simulations, we set the

refractory period, during which the membrane potential is fixed at

Vreset after spiking, to zero. The three sums in the r.h.s. of Eq. (30)

go over the two populations b[{E, I}, all presynaptic neurons j,
and presynaptic spikes of neuron j in population b, that occur at

times tbjk. Each presynaptic spike of neuron j in population b

causes a jump of amplitude waibj in the voltage of neuron i after a

delay tL. Here, the delay is chosen to be equal to the integration

time step dt~0:01 ms (see below).

For all connections involving inhibition (i.e. all (a,b)=(E,E)),
the connectivity matrix is set as waibj~cijwab where cij are

independent, identically distributed (i.i.d.) Bernoulli variables,

cij~1 with probability 0.05, 0 with probability 0.95, and the fixed

synaptic weights are wIE~0:1mV, wII~{0:4mV and

wEI~{0:4mV. E-E synapses are given by waibj~cijrijwEE where

cij are again i.i.d. Bernoulli variables, cij~1 with probability 0.05,

0 with probability 0.95, rij obeys Eq. (1), and wEE~0:2mV. The

average value of r is initially, and remains throughout our

simulations, much smaller than 0.5, which means that with a 4 : 1
ratio in the E to I populations, for vrwƒ0:5 recurrent inhibition

dominates excitation, leading to a stable asynchronous irregular

state (see Fig. 8) [44].

Numerical methods: Network simulations
We numerically simulated the recurrent network of LIF neurons

using the forward Euler method with a time step of dt~0.01 ms.

Synapses were updated using the event-based implementation

described above. The simulations were implemented in C and

OpenCL and run on general-purpose GPUs. Parallel generation

of random numbers, for the Gaussian noise in the LIF equations,

was implemented using the Random123 library [78].

In order to initialise the simulations close to their steady-state,

with the in-vivo parameter set and the double-well potential, we

first calculate the probability distribution function (PDF) for the

synaptic weights assuming a 1/s pre- and post-synaptic Poisson

firing process. We then use a reverse lookup of the associated

cumulative distribution function (CDF) to determine the random

initial values for the synaptic efficacies.

Computing analytically mean firing rates and E-E
synaptic efficacy

In a network of excitatory and inhibitory LIF neurons receiving

white noise inputs, the mean firing rates of excitatory and

inhibitory neurons are given by [44,45]

nE~W(mE,sE) ð32Þ

nI~W(mI,sI ) ð33Þ

where W is the standard LIF static transfer function [44,45,79,80],

1

W(m,s)
~trpztm

ffiffiffi
p
p ðVthr{m

s

vreset{m
s

eu2
(1zerf(u))du, ð34Þ

where erf(x)~
2ffiffiffi
p
p
ðx

0

e{t2 dt is the error function, ma are the

mean inputs to population a[fE,Ig,

mE~mEXzCEEtm,EnE�rr(nE)wEE{CEItm,EnIwEI ð35Þ

mI~mIX{CIItm,InIwIIzCIEtm,InEwIE ð36Þ

and sa is the amplitude of the fluctuations in the inputs to

population a[fE,Ig,

Figure 8. Example of network firing in asynchronous irregular
state. A sample of 1000 neurons from the network shows irregular
spiking behaviour in the raster (top) and the averaged firing rate of all
8000 excitatory neurons is steady artabound 1/sec (bottom).
doi:10.1371/journal.pcbi.1003834.g008
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sE~sextz(CEE�rr(nE)2w2
EEtm,EnE)z(CEIw

2
EItm,EnI) ð37Þ

sI~sextz(CIEw2
IEtm,InE)z(CIIw

2
IItm,InI) ð38Þ

Note that in Eqs. (35,37) �rr is given by Eq. (22). Note also that

for the parameters studied in this paper the effect of heterogene-

ities in numbers of inputs [81,82] have a negligible effect on the

mean firing rates of the network.
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6. Sjöström PJ, Turrigiano GG, Nelson S (2001) Rate, timing, and cooperativity

jointly determine cortical synaptic plasticity. Neuron 32: 1149–1164.

7. Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification

induced by natural spike trains. Nature 416: 433–438.

8. Wang HX, Gerkin RC, Nauen DW, Bi GQ (2005) Coactivation and timing-

dependent integration of synaptic potentiation and depression. Nat Neurosci 8:

187–193.

9. Wittenberg GM, Wang SS (2006) Malleability of spike-timing-dependent

plasticity at the CA3-CA1 synapse. J Neurosci 26: 6610–6617.

10. Campanac E, Debanne D (2008) Spike timing-dependent plasticity: a learning

rule for dendritic integration in rat CA1 pyramidal neurons. J Physiol (Lond)

586: 779–793.

11. Hebb DO (1949) Organization of behavior. New York: Wiley.

12. Burns BD, Webb AC (1976) The spontaneous activity of neurons in the cat’s

cerebral cortex. Proc R Soc Lond B 194: 211–223.

13. Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR, et al.

(2010) Stimulus onset quenches neural variability: a widespread cortical

phenomenon. Nat Neurosci 13: 369–378.

14. Amit DJ, Fusi S (1994) Dynamic learning in neural networks with material

synapses. Neural Computation 6: 957–982.

15. Fusi S, Drew PJ, Abbott LF (2005) Cascade models of synaptically stored

memories. Neuron 45: 599–611.

16. Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J

Math Biol 4: 303–-.

17. Bienenstock E, Cooper L, Munro P (1982) Theory for the development of

neuron selectivity: orientation specificity and binocular interaction in visual

cortex. J Neurosci 2: 32–48.

18. Lisman JE (1985) A mechanism for memory storage insensitive to molecular

turnover: a bistable autophosphorylating kinase. PNAS 82: 3055–3057.

19. Oja E (1982) A simplified neuron model as a principal component analyzer.

Journal of Mathematical Biology 15: 267–273.

20. Amit DJ, Brunel N, Tsodyks MV (1994) Correlations of cortical hebbian

reverberations: experiment vs theory. J Neurosci 14: 6435–6445.

21. Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal

learning rule for sub-millisecond temporal coding. Nature 383: 76–81.

22. Bhalla US, Iyengar R (1999) Emergent properties of networks of biological

signaling pathways. Science 283: 381–387.

23. Song S, Miller KD, Abbott LF (2000) Competitive hebbian learning through

spike-time-dependent synaptic plasticity. Nat Neurosci 3: 919–926.

24. Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-

dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99: 10831–

10836.

25. Pfister J, Gerstner W (2006) Triplets of spikes in a model of spike timing-

dependent plasticity. J Neurosci 26: 9673–9682.

26. Clopath C, Busing L, Vasilaki E, Gerstner W (2010) Connectivity reflects

coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:

344–352.

27. Kumar A, Mehta MR (2011) Frequency-Dependent Changes in NMDAR-

Dependent Synaptic Plasticity. Front Comput Neurosci 5: 38.

28. Graupner M, Brunel N (2012) Calcium-based plasticity model explains

sensitivity of synaptic changes to spike pattern, rate and dendritic location.
Proc Natl Acad Sci USA 109: 3991–3996.

29. El Boustani S, Yger P, Fregnac Y, Destexhe A (2012) Stable learning in
stochastic network states. J Neurosci 32: 194–214.

30. Albers C, Schmiedt JT, Pawelzik KR (2013) Theta-specific susceptibility in a
model of adaptive synaptic plasticity. Front Comput Neurosci 7: 170.

31. Yger P, Harris KD (2013) The convallis rule for unsupervised learning in cortical
networks. PLoS Comput Biol 9: e1003272.

32. Petersen CC, Malenka RC, Nicoll RA, Hopfield JJ (1998) All-or-none
potentiation at CA3-CA1 synapses. ProcNatlAcadSciUSA 95: 4732–4737.

33. O’Connor DH, Wittenberg GM, Wang SSH (2005) Graded bidirectional
synaptic plasticity is composed of switch-like unitary events. PNAS 102: 9679–

9684.

34. Nevian T, Sakmann B (2006) Spine ca2+ signaling in spike-timing-dependent

plasticity. The Journal of Neuroscience: The Official Journal of the Society for
Neuroscience 26: 11001–11013.

35. Mizuno T, Kanazawa I, Sakurai M (2001) Differential induction of LTP and
LTD is not determined solely by instantaneous calcium concentration: an

essential involvement of a temporal factor. European Journal of Neuroscience
14: 701708.

36. Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of
intracellular calcium predicts long-term potentiation and long-term depression.

The Journal of Neuroscience 24: 9847–9861.

37. Malenka RC, Kauer JA, Zucker RS, Nicoll RA (1988) Postsynaptic calcium is

sufficient for potentiation of hippocampal synaptic transmission. Science 242:

81–84.

38. Neveu D, Zucker RS (1996) Postsynaptic levels of [ca2+]i needed to trigger LTD

and LTP. Neuron 16: 619–629.

39. Yang SN, Tang YG, Zucker RS (1999) Selective induction of LTP and LTD by

postsynaptic [ca2+]i elevation. Journal of Neurophysiology 81: 781–787.

40. Nabavi S, Kessels HW, Alfonso S, Aow J, Fox R, et al. (2013) Metabotropic

NMDA receptor function is required for NMDA receptor-dependent long-term
depression. Proc Natl Acad Sci USA 110: 4027–4032.

41. Silver IA, Erecinska M (1990) Intracellular and extracellular changes of [ca2+]

in hypoxia and ischemia in rat brain in vivo. The Journal of general physiology

95: 837–866.

42. Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca(2+) ions in

dendritic spines. Neuron 33: 439–452.

43. Gilbert EN, Pollack HO (1960) Amplitude distribution of shot noise. Bell Sys

Tech J 39: 333–350.

44. Brunel N (2000) Dynamics of sparsely connected networks of excitatory and

inhibitory spiking neurons. J Comput Neurosci 8: 183–208.

45. Amit DJ, Brunel N (1997) Model of global spontaneous activity and local

structured activity during delay periods in the cerebral cortex. Cerebral Cortex
7: 237–252.

46. Billings G, van Rossum MC (2009) Memory retention and spike-timing-
dependent plasticity. J Neurophysiol 101: 2775–2788.

47. van Rossum MCW, Bi GQ, Nelson SB, Turrigiano GG (2000) Stable Hebbian
learning from spike timing-dependent plasticity. J Neurosci 20: 8812–8821.

48. Rubin J, Lee DD, Sompolinsky H (2001) Equilibrium properties of temporally
asymmetric hebbian plasticity. Phys Rev Lett 86: 364–367.

49. Bhalla U, Iyengar R (1999) Emergent properties of networks of biological

signaling pathways. Science 283: 381–7.

50. Zhabotinsky AM (2000) Bistability in the Ca(2+)/calmodulin-dependent protein

kinase-phosphatase system. Biophys J 79: 2211–2221.

51. Hayer A, Bhalla US (2005) Molecular switches at the synapse emerge from

receptor and kinase traffic. PLoS Comput Biol 1: 137–154.

52. Delord B, Berry H, Guigon E, Genet S (2007) A new principle for information

storage in an enzymatic pathway model. PLoS Comput Biol 3: e124.

53. Pi HJ, Lisman JE (2008) Coupled phosphatase and kinase switches produce the

tristability required for long-term potentiation and long-term depression.

J Neurosci 28: 13132–13138.

54. Castellani GC, Bazzani A, Cooper LN (2009) Toward a microscopic model of

bidirectional synaptic plasticity. Proc Natl Acad Sci U S A 106: 14091–14095.

Synaptic Memory Maintenance in the Presence of Background Activity

PLOS Computational Biology | www.ploscompbiol.org 15 October 2014 | Volume 10 | Issue 10 | e1003834



55. Aslam N, Kubota Y, Wells D, Shouval HZ (2009) Translational switch for long-

term maintenance of synaptic plasticity. Mol Syst Biol 5: 284.
56. Shouval HZ (2005) Clusters of interacting receptors can stabilize synaptic

efficacies. Proc Natl Acad Sci U S A 102: 14440–14445.

57. Miller P, Zhabotinsky AM, Lisman JE, Wang XJ (2005) The stability of a
stochastic CaMKII switch: dependence on the number of enzyme molecules and

protein turnover. PLoS Biol 3: e107.
58. Tsodyks M (1990) Associative memory in neural networks with binary synapses.

Mod Phys Lett B 4: 713.

59. Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003) Pyramidal cell
communication within local networks in layer 2/3 of rat neocortex. J Physiol

551: 139–153.
60. Song S, Sjostrom PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom

features of synaptic connectivity in local cortical circuits. PLoS Biol 3: e68.
61. Barbour B, Brunel N, Hakim V, Nadal J (2007) What can we learn from

synaptic weight distributions? Trends Neurosci 30: 622–629.

62. Loewenstein Y, Kuras A, Rumpel S (2011) Multiplicative dynamics underlie the
emergence of the log-normal distribution of spine sizes in the neocortex in vivo.

J Neurosci 31: 9481–9488.
63. Zhang JC, Lau PM, Bi GQ (2009) Gain in sensitivity and loss in temporal

contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc

Natl Acad Sci USA 106: 13028–13033.
64. Seol GH, Ziburkus J, Huang S, Song L, Kim IT, et al. (2007) Neuromodulators

control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55:
919–929.

65. Couey JJ, Meredith RM, Spijker S, Poorthuis RB, Smit AB, et al. (2007)
Distributed network actions by nicotine increase the threshold for spike-timing-

dependent plasticity in prefrontal cortex. Neuron 54: 73–87.

66. Lin YW, Min MY, Chiu TH, Yang HW (2003) Enhancement of associative
long-term potentiation by activation of beta-adrenergic receptors at CA1

synapses in rat hippocampal slices. J Neurosci 23: 4173–4181.
67. Pawlak V, Wickens JR, Kirkwood A, Kerr JN (2010) Timing is not Everything:

Neuromodulation Opens the STDP Gate. Front Synaptic Neurosci 2: 146.

68. Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity

of single cortical neurons and the underlying functional architecture. Science
286: 1943–1946.

69. Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously

emerging cortical representations of visual attributes. Nature 425: 954–956.
70. Luczak A, Bartho P, Harris KD (2009) Spontaneous events outline the realm of

possible sensory responses in neocortical populations. Neuron 62: 413–425.
71. Litwin-Kumar A, Doiron B (2012) Slow dynamics and high variability in

balanced cortical networks with clustered connections. Nature Neuroscience 15:

1498–1505.
72. Silver RA (2010) Neuronal arithmetic. Nat Rev Neurosci 11: 474–489.

73. Zhou Q, Tao HW, Poo Mm (2003) Reversal and stabilization of synaptic
modifications in a developing visual system. Science 300: 1953–1957.

74. Takacs L (1956) On secondary stochastic processes generated by recurrent
processes. Acta Mathematica Academiae Scientiarum Hungarica 7: 17–29.

75. Abramowitz M, Stegun IA (1970) Tables of mathematical functions. Dover

Publications, NY.
76. Kramers HA (1940) Brownian motion in a field of force and the diffusion model

of chemical reactions. Physica 8: 284–304.
77. Gardiner CW (2009)Stochastic Methods: A Handbook for the Natural and

Social Sciences. Springer. 447 p.

78. Salmon J, Moraes M, Dror R, Shaw D (2011) Parallel random numbers: As easy
as 1, 2, 3. In: High Performance Computing, Networking, Storage and Analysis

(SC), 2011 International Conference for. pp.1–12.
79. Siegert AJF (1951) On the first passage time probability problem. Phys Rev 81:

617–623.
80. Amit DJ, Tsodyks MV (1991) Quantitative study of attractor neural network

retrieving at low spike rates I: Substrate – spikes, rates and neuronal gain.

Network 2: 259–274.
81. Amit DJ, Brunel N (1997) Dynamics of a recurrent network of spiking neurons

before and following learning. Network 8: 373–404.
82. Roxin A (2011) The role of degree distribution in shaping the dynamics in

networks of sparsely connected spiking neurons. Front Comput Neurosci 5: 8.

Synaptic Memory Maintenance in the Presence of Background Activity

PLOS Computational Biology | www.ploscompbiol.org 16 October 2014 | Volume 10 | Issue 10 | e1003834


