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Abstract

Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To
elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line
protein abundance and variability, and evolutionary conservation onto functional pathway components and topological
layers in the pathway hierarchy. We found that the input (receptors) and the output (transcription factors) layers evolve
more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from
the input to the output layer. We observed that the differences in protein variability between the input and transmission
layer can be attributed to both the network position and the tendency of variable proteins to physically interact with
constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by
the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations
tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a
fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the
core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We
hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to
the specificity of the signal response in different cell types.
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Introduction

Proteins do not act in isolation but interact with other proteins

to fulfill important cellular functions. Often proteins are organized

into pathways, which are tightly controlled cascades of protein

binding events (and those of other biomolecules). One important

cellular function controlled by pathways is the transmission of

extra-cellular signals from the cell membrane to the nucleus to

provoke a response to changes in the environment of the cell.

Signaling pathways are often active in many different cell

types and are conserved at a large evolutionary scale [1].

Therefore, the characterization of mechanisms by which these

ubiquitous pathways achieve specificity and fulfill largely different

functions in different cell types or organisms is of crucial

importance.

One characteristic of signaling pathways is the bow-tie (or

hourglass) architecture in which signals sensed by receptors

converge onto a core consisting of a smaller number of proteins

followed by a diverse response of transcription factors. The bow-tie

property has been observed in different human signaling pathways

such as those downstream of epidermal growth factor receptor [2]

and of toll-like receptor [3]. It is generally believed to confer

pathways with robustness and evolvability by buffering input

signals and modularizing the response [4]. However, robustness by

hierarchy comes to a price: mutations in the central core proteins

might easily hijack the behavior of the entire system [5].

The robustness of pathways needs to be in balance with

flexibility allowing pathways to vary their response to similar

stimuli at different time points or in different cell types of the same

organism. One intuitive though largely unexplored link to the bow

tie model comes from investigations of protein-protein interaction

(PPI) networks associated with gene expression information: it was

observed that tissue-specific proteins tend to bind to core cellular

proteins, possibly to modulate housekeeping cellular processes in a

cell type-specific manner [6].

The mechanistic understanding about how activation of the

same signaling pathways can lead to cell type-specific responses is

rather anecdotal and involves diverse mechanisms such as cell

type-specific feedback loops [7], different abundances of tran-

scriptional cofactors [8,9] or cell type-specific chromatin states

[10]. However, it is largely unknown if there are functional or

(network) topological signal protein classes that preferentially act as

tissue-specific modulators of signaling. Therefore, we will explore

here if we can adapt the bow-tie model to identify protein classes

that show distinct evolutionary and abundance variability patterns.

Recently a mass spectroscopy analysis accomplished by Mann

and co-workers [11] has determined absolute protein copy
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numbers for 11 common human cancer cell lines with high

coverage. The analyzed cell lines covered distinct tissue origins,

such as lung carcinoma, hepatoma, osteosarcoma, colon carcino-

ma, and leukemia [11]. Multiple technical replicates allow to make

robust estimates of protein expression variability by contrasting the

inter-cell line with the intra-cell line variability and, therefore,

make this dataset a perfect choice for quantifying differences in

protein expression among different cell types. Using this dataset

and defining a measure of protein conservation covering a broad

set of species, we systematically investigate patterns of protein

expression variability and phylogenetic conservation in human

pathways. We observe large differences in protein expression and

in phylogenetic conservation between and within different human

pathways. Focusing on human signaling, we identify components

of signaling pathways with distinct properties in respect to these

features. By incorporating germline and somatic disease muta-

tions, we show how the thereby identified pathway components

underlie different selective constraints.

Results

Protein abundance variability across cancer cell lines and
healthy tissues

To estimate mean abundance and abundance variability of

human proteins, we processed a recent proteomics study

quantifying protein expression levels in 11 human cell lines [11].

Due to technical limitations of the mass spectrometry approach,

lowly abundant proteins are associated with higher standard

deviations (Figure S1A). To correct for this, we computed F values

to estimate the biological variability among cell lines. F values were

computed by dividing the between-cell variation by the within-cell

variation. Thereby we successfully eliminated any dependencies

between the protein abundance and variability caused by technical

biases (see Figure S1B).

In this study, we used the F values computed on cancer cell lines

to distinguish proteins that are stably expressed across different cell

types from those showing more diverse abundance profiles. We

validated the underlying assumption that we can generalize our

observations made on cancer cell line data to healthy tissues by

contrasting the computed F values with RNA (16 human tissues)

[12] and protein (28 mouse tissues) measurements [13] (see

Methods). In both cases there is generally a good agreement

between protein variability across the cell lines and healthy tissues

(Figure S2A–B). This supports the idea that we can generalize

from cancer cell lines to healthy human tissues with respect to

protein abundance variability.

Relation between protein abundance and phylogenetic
conservation

To analyze how protein conservation relates to protein

expression abundance and diversity of proteins involved in human

pathways, we analyzed the conservation of all proteins in the

expert-curated Reactome database [14] in selected species from

Plants, Yeasts, Worms, Insects, Fishes, Birds, and Mammals. We

transformed the information in which species a human protein is

conserved, as indicated by HomoloGene [15], into a phylogenetic

tree-based conservation score (see Methods and Figure S3), which

increases linearly with the amount of species in which homologous

proteins are found and estimates of evolutionary distance

separating these species from each other. We observed significant

positive correlation between the evolutionary conservation of

human proteins and their mean abundance (see Figure 1A) or

negative correlation in their variability in the different cell lines

analyzed (see Figure 1B and an example on the EGFR/MAPK

pathway containing both variable/lowly conserved and stably

expressed/conserved proteins in Figure 1C).

Protein abundance, variation, and conservation of
cellular processes

To identify cellular processes that differ in their phylogentic

conservation and cross-cell variability, we selected all Reactome

pathways that are expected to be general and not restricted to only

some cell types (ten pathways): Cell cycle, DNA replication, and

chromosome maintenance [DR], Extracellular matrix organiza-

tion [MO], Gene expression and RNA processing [GE],

Membrane trafficking [MT], Metabolism [MB], Signal transduc-

tion [ST], Apoptosis [AP], Developmental Biology [DB], Trans-

membrane transport of small molecules [TM], and Cell-Cell

communication [CO]. Several other Reactome pathways are

restricted to very specific body cell types (e.g., Neuronal system

and Muscle contraction), or are of low coverage (e.g, Circadian

clock proteins), and were neglected for further analysis (for details

on the selection see Materials and Methods and Table S1). We

associated all members of the ten pathways with mean protein

abundance, abundance variability and phylogenetic conservation

values.

A fraction of the proteins (18.7% from the 4069 Reactome

proteins that we could associate with at least one of the

investigated features) participates in more than one pathway. We

compared the distributions of mean abundance, abundance

variability and phylogenetic conservation among exclusive pro-

teins associated only with one pathway to the distributions

associated with proteins involved in several pathways. We

observed that exclusive proteins are significantly less conserved

(P,e216; Wilcoxon-Mann-Whitney), more variable (P,e212;

Wilcoxon-Mann-Whitney) and less abundant (P,e28; Wilcoxon-

Mann-Whitney) (see Figure S4A–C).

Next, to elucidate the common and variable elements in 11 cell

types with respect to the ten Reactome pathways, we considered

only proteins found exclusively in one pathway. We observed large

Author Summary

Cell function is determined by highly organized networks
of biological molecules. An important class of protein
pathways maintains the transmission of signals from the
cell membrane to the nucleus. These signaling pathways
are reused for different purposes at an evolutionary scale
and in different cell types of the same organism. However,
it is largely unknown how this flexibility is achieved and
how this flexibility is balanced with the high degree of
evolutionary conservation of some signaling proteins and
the need for robustness against intra- and extra-cellular
perturbations.We show how functional roles of signaling
proteins determine patterns of evolutionary conservation,
protein abundance (the average over different human cell
lines and its variability) and disease mutations. Projecting
pathway annotations on protein-protein interaction (PPI)
networks, a picture emerges in which PPIs between
variable and less conserved receptors and stable and
conserved proteins of the core signal transmission
machinery largely modulate signaling activity in a tissue-
specific manner. This has important implications for the
distribution of disease mutations in signaling pathways,
which need to be considered for the understanding of
their effect.
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differences with respect to the three investigated features among

human functional pathway classes (Figure 2A). In general, we

found two opposing groups of behavior. Housekeeping pathways

(GE, MB, MT and DR) are enriched in conserved proteins

(Figure 2B), have low to average variability (with GE being the

only pathway class with a significant depletion in variability;

Figure 2C) and (except for DR) higher abundance (GE and MB

are significantly enriched in highly abundant proteins; Figure 2D).

Specific pathways (ST, MO, CO, DB) tend to have less conserved

proteins (ST and MO show a significant depletion; Figure 2B),

have higher variability (Figure 2C) and less abundance (ST and

DB are significantly associated with lower abundance; Figure 2D).

The remaining two pathways (AP and TM) showed a rather

average behavior, with exception of the significantly lower

abundance of TM proteins. Signal transduction (ST) shows in all

three categories (mean abundance, abundance variability and

conservation) a significant deviation from random expectation and

has a larger than average spread of the distribution of variability

values (fourth highest inter-quartile range among the ten

variability distributions). This indicates that while average

variability of signaling proteins is high, we will also find a large

proportion of proteins with low variability in signaling pathways.

Hence, we studied the variable and constant parts of signaling

pathways.

Protein abundance, variation, and conservation in
signaling-related pathways

To elucidate in more depth the protein abundance variability in

signal transduction pathways, we investigated whether we can

relate the molecular function of proteins in signaling pathways to

Figure 1. Relation between protein conservation, abundance and variability. (A) Conservation is correlated with protein abundance
(correlation = 0.42, P,0.0001) and (B) inversely related to protein abundance variability (correlation = 20.11, P,0.0001). The conservation values have
been binned into 20% quantiles (Q). (C) Human signaling pathways are composed of conserved proteins with low abundance variability and variable
proteins with low conservation. The figure shows the largest cluster of interacting proteins from the human EGFR pathway (participating proteins as
indicated by Reactome, PPIs taken from HIPPIE). The node size is proportional to the abundance variability and conservation is encoded by a color
gradient ranging from blue (non-conserved) to yellow (conserved).
doi:10.1371/journal.pcbi.1003659.g001
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their abundance, variability and conservation. For this purpose,

we chose two complementary protein classification strategies and

signaling resources. (a) We assigned, where non-ambiguously

possible, signaling proteins in Reactome to one of the following

Gene Ontology and UniprotKB categories: membrane-bound

receptor, phosphatase, kinase, transcription factor, adaptors, and

GTPase binding (see Methods for details). (b) We retrieved the full

set of proteins and their classification into signaling-related sections

(ligand, receptor, mediator, cofactor, transcription factor) from the

signaling pathway database SignaLink [16], which is another

manually curated resource classifying proteins into pathway

sections based on their role in signal transmission and topological

properties. For example, SignaLink distinguishes between medi-

ators and cofactors of signal transduction, where mediators are

core pathway members and the cofactors merely modulate the

function of signaling proteins. We only considered signaling

proteins in SignaLink that are uniquely assigned to one class. Due

to different curation strategies (discussed in [16]), the sets of

proteins associated with pathways largely differ between Reactome

and SignaLink: we could automatically assign pathway functions

to 802 proteins from Reactome while the SignaLink database

contains 667 proteins with unique roles in signaling. The overlap

between the two sets consists of only 80 proteins. The differences

in protein composition and in the way proteins are associated with

pathway functions allow us to study the evolution and expression

of signaling proteins on two largely independent datasets.

We observed large differences in conservation, mean abundance

and abundance variation for different classes within both sets of

annotated signaling proteins (see Figure S5). Next, we pooled all

functional and topological classes into three layers: input

(receptors), transmission (SignaLink: mediators and cofactors;

Reactome: kinases, phosphatases, adaptors and GTPase binding

proteins) and output (transcription factors). We compared the

resulting feature distributions. With respect to protein abundance

Figure 2. Protein abundance, variability and conservation associated with general cellular processes. We investigated properties of
proteins involved in ten Reactome top-level pathways (A): Cell cycle, DNA replication, and chromosome maintenance [DR], Extracellular matrix
organization [MO], Gene expression and RNA processing [GE], Membrane trafficking [MT], Metabolism [MB], Signal transduction [ST], Apoptosis [AP],
Developmental Biology [DB], Transmembrane transport of small molecules [TM], and Cell-Cell communication [CO]. Several pathways were
significantly higher conserved (yellow letters) or showed a significant lower conservation (blue letters). Similarly, several pathways showed
significantly higher protein abundance variability (large font size) or significantly lower variability (small font size). (B–D) shows the precise
distributions for the different investigated protein features. Colored boxes indicate a significantly (p,0.01; Mann-Whitney-Wilcoxon test) lower
(purple) or higher (red) abundance/variability/conservation of the proteins within the class as compared to proteins not in the class. The horizontal
red line marks the median value for all proteins in Reactome.
doi:10.1371/journal.pcbi.1003659.g002
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variability we observed for both the Reactome and the SignaLink

proteins significantly higher values associated with the input layer

than with the transmission layer (P,0.01, Wilcoxon-Mann-

Whitney). The difference between the transmission and the output

layer was for both data sources not (Reactome) or only marginally

(P = 0.03; Wilcoxon-Mann-Whitney; SignaLink) significant. The

conservation of proteins of the transmission layer was significantly

larger than of proteins of both the input and the output layer (for

all comparisons: P,0.00001; Wilcoxon-Mann-Whitney). In sum-

mary, taking a mechanistic view on signaling pathways where an

input layer receives signals from the environment, a transmission

layer integrates and proceeds the signal and an output layer

orchestrates the transcriptional response, two patterns emerge: (i)

In terms of conservation, we see a bell shaped curve with a high

conservation of the transmission layer and lower conservation of

the input and output layer (Figure 3A and S5). (ii) With respect to

protein abundance variability, signaling pathways show a gradient

with decreasing variability from the input to the output layer

(Figure 3B). There is a sharp drop in variability between the input

and the transmission layer while the transmission and the output

layer are rather similar in terms of variability (Figure 3B). These

results are schematized in Figure 3C. The difference in terms of

protein abundance between different functional classes was less

pronounced. Interestingly, the variability and conservation of

mediators and cofactors of signaling is almost the same (Wilcoxon-

Mann-Whitney test does not yield P,0.05). This suggests that

modulators in the transmission layer contribute less to cell type

specific differences.

We also compared the investigated features associated with

proteins exclusively members of one signaling pathway (1253

proteins) to those associated with proteins re-used in several

signaling pathways (235 proteins) (see Figure S4D–F). We

observed a significantly higher conservation of proteins that are

members of several signaling pathways (P,e216; Wilcoxon-Mann-

Whitney), while mean abundance and abundance variability did

not show significant differences between the protein sets. This is in

agreement with the higher number of proteins of the transmission

layer among the proteins associated with multiple pathways (e.g.,

14 adaptors and 49 kinases, which exceeds random expectation 3-

and 1.5-fold, respectively).

Protein interactions between the input and the
transmission layer

To investigate how our observation of a lowly variable and

strongly conserved transmission layer might help to understand

general principles by which signaling pathways are modulated in a

tissue-specific manner, we overlaid our sets of signaling proteins

(merged from Reactome and SignaLink) with PPI network data

from the database HIPPIE [17,18]. As we observed the highest

protein abundance variability in the input layer (Figure 3B), we

hypothesized that this variability affects the dynamics of physical

interactions between the input and the transmission layer (by

removing signaling links in certain tissues or modulating compe-

tition for binding in others).

We tested the hypothesis that PPIs between input and

transmission layer tend to happen between proteins with a larger

difference in variability than for PPIs between the transmission

and the output layer, within one layer, or randomly chosen PPIs

(Figure 4A). To test this, we randomly sampled interacting protein

pairs between and within the specified layer (each distribution of

differences in protein abundance variability consisted of 1000

randomly sampled interacting protein pairs). We found the largest

difference between the variability of the interacting proteins for

PPIs between the input and the transmission layer (Figure 4B).

Figure 3. Conservation and abundance variability of compo-
nents of human signaling pathways. Different components of
signaling pathways show significant differences with respect to
conservation (A) and protein abundance variability (B). Layers are
generated by pooling different functional pathway classes. Here, we
show the values for signaling proteins and their annotations from the
Signalink database. We assigned receptors to the input layer,
transcription factors to the output and mediators and cofactors (that
are neither receptors nor transcription factors) to the transmission layer.
Trends are schematized in (C).
doi:10.1371/journal.pcbi.1003659.g003
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The distribution of differences in variability was significantly larger

than all other distributions (P,10216; Wilcoxon-Mann-Whitney).

As the difference in variability is highest between the input and the

transmission layer, the results met our expectation.

To test if the observed difference in variability between

interacting proteins between the input and the transmission layer

can be solely attributed to the membership of the participating

proteins in different layers, we compared the distribution of

variability differences for interacting proteins to those of randomly

sampled, non-interacting protein pairs where one protein is from

the input and one is from the transmission layer (Figure 4C).

Strikingly, the differences in variability of interacting protein pairs

are significantly higher than for those of non-interacting protein

pairs (P,10216; Wilcoxon-Mann-Whitney). We can reproduce the

same results when permuting the links between randomly sampled

interacting protein pairs between the input and the transmission

layer. This demonstrates that the observed differences can be

attributed to both the different network positions of proteins in

signaling pathways and a tendency of variable input layer proteins

to physically interact with stably expressed transmission layer

proteins.

These observations suggest that PPIs between the input and the

transmission layer might have an impact on the tissue-specificity of

signaling.

Abundance, expression variation, and conservation of
disease mutations in signaling pathways

The higher conservation of the signal transmission layer is in

agreement with the bow-tie (or hourglass) model proposing the

presence of a conserved core with variable input and output layers

modulating the signal response (e.g., as observed in the signaling

pathway downstream of EGFR [2]). The trade-off between

fragility and robustness of such architecture has been discussed

[5] and, hence, we studied the distribution of disease mutations

with respect to protein abundance, variability and conservation.

Both germline and somatic mutations can lead to disease by

perturbation of signaling pathways, e.g. in cancer [19]. Therefore,

we investigated the dependency between different mutation types

and protein abundance, variability and conservation. We found

signaling proteins with somatic mutations to be significantly higher

conserved than proteins with germline mutations (P = 0.001;

Wilcoxon-Mann-Whitney; see Figure 5A). Additionally, we

investigated how the average number of mutations changes for

proteins in different conservation intervals (Figure 5B). We found

that both the average number of somatic and the average number

of germline mutations peak for intermediate conservation values

with the distribution of somatic mutations being shifted towards

higher conservation values (resulting in the observed higher

conservation values associated with somatic mutations). To

compare the distributions of disease mutations to background

mutation rates, we also computed the average number of all

reported single nucleotide polymorphisms (SNPs) in UniProt

associated with the different conservation intervals. This distribu-

tion does not peak as sharply as the two disease mutation

distributions and is higher for low conservation values. To

investigate functional causes for the unexpected depletion of

mutations for extreme values of conservation, we computed

Figure 4. Absolute variability difference between interacting
proteins between or within signaling pathway layers. We
considered PPIs where one protein is from the input layer and the
other one from the transmission layer (PPI-IT), interacting proteins
where one is from the transmission layer and the other one from the
output layer (PPI-TO), interacting proteins where both proteins are from
the same layer (PPI-W) and random PPIs (PPI-Rand) (A). The distribution
of differences between the input and the transmission layer contains
significantly larger values than all other distributions (B). To exclude
that this observation is only caused by the higher variability among
proteins in the input layer as compared to proteins in the transmission

layer, we compared the distribution of difference in variability
associated with PPI-IT to randomly sampled, non-interacting protein
pairs where one protein is in the input layer and the other one is in the
transmission layer (Rand-IT) (C). Again, the PPI-IT distribution is
significantly larger.
doi:10.1371/journal.pcbi.1003659.g004
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enrichment of functional categories in the sets of very lowly and

very highly conserved proteins (see Methods). Among the most

highly conserved proteins functions with the strongest enrichment

were related to protein ubiquitination and the proteasome

complex (P = e230). The low occurrence rates for all mutation

categories (somatic, germline and all SNPs) indicate that no

mutations are tolerated in these proteins to maintain cellular

integrity. Among the lowly conserved proteins the most strongly

enriched functions were all related to sensory and olfactory

perception (P = e2195). The lower rate of disease mutations as

compared to all SNPs within this group likely reflects the tolerable

effect of mutations within the sensory system on cell viability.

With respect to protein expression, we found that signaling-

related proteins with somatic cancer mutations have a significantly

lower protein abundance variability (P = 0.0005; Wilcoxon-Mann-

Whitney; see Figure 5C) as those with germline mutations. The

distributions of mean number of somatic and germline mutations

associated with different intervals of variability values show

opposing behavior to each other (Figure 5D): While low variability

values are associated with high numbers of somatic mutations, the

mean number of germline mutations peak for larger variability

values (before the number of germline mutations drops for the

highest variability interval).

We also found a weak though significant tendency for disease

proteins with somatic mutations to be more highly expressed than

proteins with germline mutations in signaling pathways (P,0.05;

Wilcoxon-Mann-Whitney).

Taken together these observations support our previous

hypothesis that the stably expressed and conserved core signaling

pathway may perform a fundamental general role in development

and generally in many cell types, and therefore germline mutations

seem to be not tolerated. In contrast, non-core proteins, which

Figure 5. Protein conservation and variability of signaling proteins having somatic and those having germline mutations. (A) Protein
conservation associated with signaling proteins carrying somatic disease mutations is significantly higher than for proteins with germline mutations.
(B) The protein conservation distribution is split into five approximately equal bins (Q) and the relative number of somatic (red line) and germline
(blue line) mutations associated with proteins in each bin is computed. As a comparison the respective values for all reported SNPs from UniProt are
shown (gray line). (C) Protein variability associated with signaling proteins carrying germline disease mutations is significantly higher than for
proteins with somatic mutations. (D) Proteins are binned according to their variability and the relative number of somatic (red line) and germline
(blue line) mutations, as well as all SNPs (gray line), is shown for each respective bin.
doi:10.1371/journal.pcbi.1003659.g005
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tend to be expressed more cell type-specific, may tolerate germline

mutations to a larger extend, presumably as the causing diseases

will affect only some tissues.

Discussion

We present here a systematic study of signaling proteins with

respect to protein level abundances and evolutionary conservation.

By doing so, we can confirm previous observations (mainly based

on mRNA levels) but also provide novel hypotheses on the

organization of human signaling pathways (as discussed in the

following). Some of our central findings are drawn from the

analysis of protein abundance variability across cancer cell lines.

As we are here interested in studying normal cellular properties,

we demonstrate that there is a good agreement between protein

variability across cancer cell lines and across normal cells.

We report significant correlations between phylogenetic con-

servation and both protein abundance (positive correlation) and

abundance variability (negative correlation). These observations

suggest on one hand that evolutionary conserved proteins could

have an essential general function for every cell type (see

Figure 1C). This is in agreement with previous proteomics studies

[20,21] identifying a central proteome of ubiquitously and

abundantly expressed proteins, which are correlated in their

abundances across different species. This central proteome was

found to have a higher than average conservation. On the other

hand, recent proteins exhibit less abundance and more cell to cell

type variability, suggesting they should be more involved in cell

type-specific differences. This agrees with previous studies

reporting that genes with RNA expression profiles restricted to a

small number of mouse tissues tend to be metazoan-specific

[22,23].

It has been observed before [6] that tissue-specific proteins tend

to interact with universally expressed proteins. To elucidate

mechanisms by which the interactions between tissue-specific and

general housekeeping proteins lead to tissue-specific modulation of

signaling pathways, we investigated patterns of protein expression

and conservation among signaling pathways. An important

implication of our analyses is that the interactions between

receptors and cytoplasmic proteins might have the strongest

impact on the modulation of tissue-specificity of signaling. We

observe a larger difference in protein abundance variability

between signaling proteins associated with the input and the

transmission layer than, for example, between cofactors and

mediators within the transmission layer. This difference is even

stronger for proteins that physically interact.

The decreasing protein abundance variability from the input to

the output layer might be surprising (especially since in many of

the known cases the cell type-specific response to signaling

pathway activation depends on the abundance of transcriptional

cofactors; see Introduction). However, the low variability of the

output layer is additionally supported by our observation that

cellular processes related to gene expression have the lowest

variability among all cellular processes. Also, it is in agreement

with previous studies reporting a lower mRNA variation for

intracellular signaling components [24] and demonstrating how

different cell types recruit a common effector network to

determine the cellular response [25].

Several computational and experimental studies suggested the

presence of a core signaling backbone (e.g., [25,26]), sometimes

referred to as the hourglass or bow-tie model of signaling [4,5] to

emphasize how signals converge from a larger input onto a

conserved core. However, the mechanisms by which the core

signaling machinery is modulated to respond in a cell type-specific

way remain largely unknown. Here, we propose that an

evolutionary conserved and stably expressed core of signaling

pathways, which is modulated by less conserved and non-

uniformly expressed receptors, extends the previous model and

provides means to understand cell type-specific signaling as the

consequence of a dynamic wiring logic between the input and the

transmission layer.

In addition, the conserved core is re-used in different pathways

as our analysis of the conservation among proteins unique to a

single pathway as compared to proteins being part of multiple

pathways revealed. This holds both for top-level cellular processes

as well as signaling pathways.

We show how this general pathway organization principle

shapes the distribution of disease mutations. As it has been

discussed before [5], the bow-tie architecture confers biological

systems with robustness but at the same time creates fragilities. It

allows (due to the modularization and central control units for

entire biological processes such as apoptosis or cell growth) its

hijacking by manipulating a single or a few nodes. In PPI

networks, most disease proteins are located in the network

periphery and are only expressed in a limited number of tissues

[27–29], likely due to developmental constraints selecting against

mutations in central and housekeeping proteins. However, somatic

mutations (not undergoing in utero selection) show contrary

patterns and are associated to a higher degree with central and

housekeeping genes [28]. In agreement, we report here that

signaling proteins harboring germline mutations differ from

proteins with somatic mutations with respect to protein abundance

variability (and to a weaker degree in conservation and

abundance). It is interesting to note that a recent study [30]

found mutations in the TGF-b and Wnt/b-catenin signaling

pathways to be often associated with only a single cancer type (as

opposed, for example, to mutations in proteins related to genome

integrity, which tend to be associated with different cancer types).

This again highlights the importance of understanding the cell

type-specific dynamics of signaling for the elucidation of tissue-

specific disease mechanisms.

In summary, to understand cell type-specific signaling mecha-

nisms and, more general, to understand ‘‘what makes a cell type’’,

we need to distinguish between core proteins conserved through

evolution, and those recently acquired and incorporate informa-

tion on protein concentration to interaction networks. Ideally this

should be complemented by structural information to distinguish

between competing and compatible interactions [31] as well as

protein localization in the cell. The effect of receptor abundance

on their physical interactions with members of the transmission

layer (such as kinases, GTPase binding proteins and adaptors)

should be a major research focus to improve the understanding of

the combinatorial logic of cooperativity and competition for

binding.

Materials and Methods

Processing of the proteomics data
We retrieved a recently published proteomics dataset [11]

quantifying the abundances of almost 12,000 proteins in eleven

human cell lines (A549, GAMG, HEK293, Hela, HepG2, Jurkat,

K562, LnCap, MCF7, RKO, and U2OS). We standardized the

given mass spectrometry intensities (by subtracting from each

measurement the sample mean and dividing by the sample

standard deviation) and extracted mean abundance and variance

values. The mean abundance was computed averaging the

standardized iBAQ values. To estimate the variability, we

computed F values dividing the between-cell variability by the
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within-cell variability on the standardized label-free quantification

intensities, thereby eliminating the dependence between variation

and abundance (see Figure S1). Only proteins where considered

that were detected in at least 50% of the MS replicates and that

could be uniquely and unambiguously mapped to one protein

entry in UniProt/SwissProt. For visualization purposes, distribu-

tions of F values are shown in logarithmic scale throughout the

manuscript.

We contrasted the computed F values with gene expression

measurements from healthy tissues. First, we retrieved a set of

housekeeping genes defined based on uniformly distributed RNA

abundance measurements in 16 healthy human tissues [12].

Second, we retrieved protein quantifications from 28 healthy

mouse tissues [13]. As in the case of the mouse proteomics study

no replicates were available, we could not normalize the inter-

with the intra-sample variability. Therefore we only considered

highly abundant proteins (larger than average) to minimize the

confounding impact of protein abundance on variability. We also

required that the proteins had been detected in all samples. We

extracted the proteins falling in the lowest and the highest standard

deviation quartile and mapped these proteins to their human

orthologs.

Homology prediction and gene conservation
Homology information for proteins was extracted from the

NCBI database (http://www.ncbi.nlm.nih.gov/sites/entrez) using

the HomoloGene search tool. We considered conservation in Pan

troglodytes, Mus musculus, Rattus norvegicus, Gallus gallus, Danio rerio,

Drosophila melanogaster, Anopheles gambiae, Caenorhabditis elegans,

Schizosaccharomyces pombe, Saccharomyces cerevisiae, Eremothecium gossypii,

Arabidopsis thaliana, and Oryza sativa.

A phylogenetic tree was constructed using inferred phylogenetic

relationships between these species [32]. For the purpose of

associating each protein with a conservation score reflecting the

evolutionary distances across the species in which the protein is

conserved, we associated each human protein with a pruned

phylogenetic subtree containing only those species in which the

protein is conserved. The conservation score was computed as the

sum of all branch lengths present in the pruned subtree divided by

the sum all branch lengths present in the full phylogenetic tree. In

formal notation, for each protein i a pruned tree Ti is constructed

as a subtree of the full phylogenetic tree T. Branch lengths are

mapped as weights to the set of edges E. The conservation score is

then computed as:

Si~

P

e[Ei

w eð Þ
P

f [E

w fð Þ

where Ei is the set of edges associated with subtree Ti and w(e) the

weight corresponding to edge e. For an example of the

conservation score computation see Figure S3.

Analysis of proteins from the Reactome pathway
databases

Proteins involved in the 22 top-level pathway classes in the

Reactome pathways database [14] were downloaded (May 2013).

Several pathways were merged or removed. The complete 22

pathways defined in Reactome are listed in Table S1 together with

reasons for deletion or merging. To assign proteins from

Reactome to functional classes, we retrieved functional data from

GO and the UniProt Knowledgebase (UniProtKB). We consid-

ered the intersection of proteins being associated with the

UniProtKB term ‘Membrane’ and those associated with the

UniProtKB term ‘Receptor’ as membrane-bound receptors.

Proteins indicated as being ‘DNA-binding’ in UniProtKB were

considered as transcription factors. Kinase classification was also

retrieved from UniProtKB. The definitions of phosphatases

(GO:0016791), adaptors (GO:0035591), and GTPase binding

proteins (GO:0051020) were retrieved from GO.

Mapping of disease mutations on proteins
To construct the set of germline mutations, we retrieved all

disease mutations from OMIM [33] and excluded entries labeled

as somatic mutations. The set of somatic mutations was assembled

by retrieving cancer mutations from COSMIC [34] including only

somatic missense mutations.

Functional enrichment among lowly and highly
conserved proteins

We computed enrichment of functional categories among the

proteins falling into the first and the last quantile of the

conservation distribution. We used the web tool DAVID [35] to

identify gene ontology terms and domains enriched among these

protein groups. We used all signaling proteins as a background.

Indicated enrichment P-values correspond to the Bonferroni-

corrected values given by DAVID.

Supporting Information

Figure S1 Correction for relation between protein
abundance and variability. (A) Highly abundant proteins

are associated with a lower variability (correlation = 20.62, P,

e216). (B) Correcting with intra-cell variance eliminates this

dependence (after computation of the F value, no significant

association is detected).

(TIF)

Figure S2 F values associated with human housekeep-
ing genes and mouse lowly and highly variable proteins.
(A) We compared the distribution of F values associated with

housekeeping genes (defined by uniform RNA abundances over a

panel of healthy human tissues) versus all other human genes. The

protein products of the housekeeping genes were associated with a

significantly lower F values than other proteins (P,e216;

Wilcoxon-Mann-Whitney). (B) We compared the distribution of

F values associated with the least variable quarter and the highest

variable quarter of mouse proteins. Protein abundances were

measured in 28 healthy mouse tissues and proteins were mapped

to human. The lowly variable mouse proteins are associated with

lower variability across human cell lines (P,0.001; Wilcoxon-

Mann-Whitney).

(TIF)

Figure S3 Computation of a phylogenetic tree-based
conservation score. For each human protein we created a

phylogenetic tree of species in which the protein is conserved. The

conservation score is then computed as the sum of all branch

lengths present in the pruned subtree divided by the sum all all

branch lengths present in the full phylogenetic tree. As an example

the score computation is illustrated for a protein only conserved in

mammals. Blue edges constitute the phylogenetic subtree con-

necting mammalia (in which the protein is conserved). Branches

leading to taxa in which the protein is not conserved are shown in

gray. The score is computed as the sum of branch lengths

associated with edges in the subtree (0.11527) divided by the sum

of branch lengths in the full phylogenetic tree (2.33187). Hence, in
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the shown example the conservation score would be

si~
0:11527

2:33187
~0:04943243.

(TIF)

Figure S4 Features of exclusive and re-used pathway
proteins. The boxplots show distributions of conservation,

abundance variability, and mean abundance of proteins being

part of one (Exclusive) or several (Multiple) general cellular

pathways (A–C) or signaling pathways (D–F).

(TIF)

Figure S5 Conservation, mean abundance and variabil-
ity associated with different pathway classes. The plots on

the left are generated from SignaLink proteins and their annotations

(Ligand – ligands; Rec – receptors; TF – transcription factors; Co-F –

cofactors; Med - mediators). On the right, the respective

distributions for Reactome signaling proteins and their func-

tional annotations based on UniProt and GO are shown (Rec –

receptors; TF – transcription factors; Adapt – adaptor proteins;

GTP - GTPase binding proteins; Kin – kinases; Phos –

phospatases).

(TIF)

Figure S6 Protein conservation and abundance vari-
ability associated with different pathway layers
of Reactome signaling proteins. Protein conservation (A)

and abundance variability (B) are shown. The input layer

consists of receptors, the transmission layer of adaptors, kinases,

phosphatases and GTPases and the output layer of transcription

factors.

(TIF)

Table S1 Reactome pathways. The table lists

Reactome pathways and associated protein counts (total and

associated with proteomics data). The last column indicates

reasons for merging pathways or excluding them from the

analyses.

(XLS)
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