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Abstract

The notion of attractor networks is the leading hypothesis for how associative memories are stored and recalled. A defining
anatomical feature of such networks is excitatory recurrent connections. These ‘‘attract’’ the firing pattern of the network to
a stored pattern, even when the external input is incomplete (pattern completion). The CA3 region of the hippocampus has
been postulated to be such an attractor network; however, the experimental evidence has been ambiguous, leading to the
suggestion that CA3 is not an attractor network. In order to resolve this controversy and to better understand how CA3
functions, we simulated CA3 and its input structures. In our simulation, we could reproduce critical experimental results and
establish the criteria for identifying attractor properties. Notably, under conditions in which there is continuous input, the
output should be ‘‘attracted’’ to a stored pattern. However, contrary to previous expectations, as a pattern is gradually
‘‘morphed’’ from one stored pattern to another, a sharp transition between output patterns is not expected. The observed
firing patterns of CA3 meet these criteria and can be quantitatively accounted for by our model. Notably, as morphing
proceeds, the activity pattern in the dentate gyrus changes; in contrast, the activity pattern in the downstream CA3 network
is attracted to a stored pattern and thus undergoes little change. We furthermore show that other aspects of the observed
firing patterns can be explained by learning that occurs during behavioral testing. The CA3 thus displays both the learning
and recall signatures of an attractor network. These observations, taken together with existing anatomical and behavioral
evidence, make the strong case that CA3 constructs associative memories based on attractor dynamics.
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Introduction

Theoretical work has shown how networks with excitatory

recurrent connections can function as an associative memory [1–

4]. Specifically, Hebbian plasticity at the synapses of recurrent

connections leads to the association of the elements of a memory.

Information stored in this way can be recalled given external input

of a partial pattern, thus displaying ‘‘pattern completion’’ [5,6].

This ‘‘attraction’’ of network activity to a stored pattern provides a

useful form of associative memory and has inspired much

theoretical and experimental work. Among hippocampal sub-

regions, CA3 is unique in having extensive excitatory recurrent

connections [7,8]. This property, together with the finding that the

synapses of these recurrent connections can undergo Hebbian

plasticity [9,10], has led to the hypothesis that CA3 has attractor

dynamics and serves as the main site for associative memory

storage in the hippocampus [11–16].

Despite the influence of the attractor concept, it has been

difficult to obtain direct experimental support for attractor

networks in the hippocampus. Experiments specifically designed

to observe the electrophysiological signature of attractor dynamics

in CA3 have been problematic (for a review, see [17]). The

experiments designed to identify attractors first established

memories of two environments with different shapes (square/

round) but unaltered distal cues; the environment was then

gradually morphed from one to the other [18–20]. Given that

attractor networks can display winner-take-all dynamics, the

expectation was that, during such morphing, the network would

first be attracted to one stored memory and would then make a

sudden transition to the other. Because the firing patterns in CA3

changed gradually rather than suddenly, it has been argued that

the results are inconsistent with the properties of attractor

dynamics and that a different function of CA3 should be

entertained [21]. Alternatively, it has been suggested that sudden

transitions may not be an appropriate criteria for identifying

attractor networks [22]. Here, we directly address this issue, which

is central to understanding the hippocampal contribution to

associative memory.

We have developed a computational model of CA3 and its input

structures and have used this model to simulate the morphing

experiments described above [18–20]. This model was constrained

not only by the properties of CA3, but also by the properties of the

input to CA3 from the dentate gyrus (DG) and entorhinal cortex

(EC). Furthermore, because CA3 cells fire selectively during only a
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small fraction of the theta cycle [23,24], we modeled the dynamics

of CA3 that could occur in a comparable short time segment. With

this model, we have been able to account for the results obtained

during morphing experiments and to analyze how the CA3

recurrent connections affect network function and dynamics. Our

analysis clarifies the criteria that should be applied to identify

attractor dynamics under the conditions of morphing experiments.

These criteria are satisfied by the data. Our simulations show that

CA3 only satisfies these criteria when recurrent excitation is

present, leading us to conclude that intra-CA3 processes in fact

support attractor dynamics. Notably, for small morphs, the pattern

of activity in CA3 is attracted to a stored pattern, whereas the

pattern in DG, a region that provides input to CA3, is not. We

have also analyzed an additional experimental observation, the

hysteresis observed in CA3 recordings during morphing [19]. Our

analysis suggests that this hysteresis arises from CA3 plasticity, thus

suggesting a new method for observing how experience affects

CA3 attractor dynamics.

Materials and Methods

EC/DG/CA3 network model
The model that we developed is illustrated in Figure 1A. We

modeled pyramidal cells of CA3 (NCA3 = 10,000) and the granule

cells of the dentate gyrus (DG, NDG = 800,000) as one-compart-

ment integrate-and-fire neurons [25]. The voltage Vi
N of each

neuron i is determined by the input feedforward excitatory input,

IFF, the recurrent excitatory input, IREC, the recurrent inhibitory

input, IGABA, and the after-hyperpolarization, IAHP, currents. Both

DG and CA3 cells receive feedforward excitatory current from the

EC (NEC = 160,000), IEC, and recurrent inhibition from their

respective interneuron networks, IGABA. CA3 cells also receive

feedforward excitatory current from DG cells, IDG, and recurrent

excitatory current from the recurrent collaterals of CA3, ICA3. We

use as parameters the average input resistance (Rn = 33 MV) [26],

the membrane time constant (tn = 30 ms), and the firing threshold

(T = 250 mV). Voltage is reset to rest (VREST = 265 mV) after

each spike. The after-hyperpolarization maximum current is set to

AAHP = 22 nA with tAHP = 7 ms decay [27]. To emulate an

absolute refractory period caused by sodium channel inactivation,

cells that emitted a spike were not allowed to spike for the

following period tSPIKE = 2 ms. Inhibition is global within each

region (CA3 and DG) and occurs with a delay of 3.360.4 msec

[28] relative to the first spike succeeding the previous inhibitory

current discharge [29]. The membrane potential of neuron i

evolves according to:

tN
dVi

N

dt
~RN (IGABAzI i

FF zI i
RECzI i

AHP){Vi
NzVREST ð1:1Þ

The feedforward excitatory input current of cell i, I i
FF (t), is

computed through the arithmetic sum of all excitatory post-

synaptic currents from synapses reaching i multiplied by a

feedforward gain factor g. For DG cells: I i
FF (t)~gI i

EC(t); while

for CA3 cells: I i
FF (t)~g(I i

EC(t)zI i
DG(t)). g was estimated as

0.68 nA in order to allow network oscillation within gamma

frequency (,35 Hz).

The entorhinal input current, IEC, of each CA3 and DG cell is

computed as a linear combination of the inputs from the lateral

and medial entorhinal cortices regulated by a mixing factor a
(Equation 1.2). There is no data available to directly estimate a, so

we quantitatively estimate it through a parametric search

methodology. The inputs of the lateral and medial entorhinal

cortices are computed independently and are normalized by the

mean maximum value considering all positions (Equations 1.3 and

1.4). Normalization of the input allows an interpretation of a with

respect to the overall size of the EPSC originated in each of the

entorhinal cortices. Feedforward synaptic weights, WMEC and

WLEC, are randomly assigned from a distribution that corresponds

to the measured distribution of synapse size [30,31]. The number

of EC cells that converge into the DG and CA3 can be estimated

from the measured spine density of 2.3 spines/mm and dendrite

length of 3000 mm [32]. Considering that each spine has one

synapse, we estimate for the measured spine density and dendritic

length [33] that each DG cell receives input from 1200 MEC and

1500 LEC cells, while CA3 cells receive inputs from 1400 MEC

and 1500 LEC cells [34,35]. To emulate the morphing experiment

(see below), the total EC input of each cell i, Ii
EC, is defined for

each of the Nr positions r(x,y) and Nc wall shapes c:

I i
EC(r,c)~(aI i

MEC(r)z(1{a)I i
LEC(r,c)) ð1:2Þ

I i
MEC(r)~

PMEC
j W

ij
MECA

j
MEC(r)P

r max
Vi

PMEC
j W

ij
MECA

j
MEC(r)

� ��
Nr

ð1:3Þ

I i
LEC(r,c)~

PLEC
j W

ij
LECA

j
LEC(r,c)P

c

P
r max

Vi

PLEC
j W

ij
LECA

j
LEC(r,c)

� ��
NrNc

ð1:4Þ

The DG input current to CA3 cells is set respective to the

normalized activity of a randomly selected presynaptic DG cell

multiplied by a relative gain factor b. Activity of DG cells is

computed a priori as a mean rate (see Data analysis section) and is

set constant for a specific position and morphing stage. The input

of the DG to CA3 neuron i is defined as:

Author Summary

A type of neural network called an ‘‘attractor network’’ is
thought to underlie memory associations. Importantly,
when such a network is presented with part of a memory,
the network activity is attracted to the complete memory.
However, it has been difficult to obtain clear experimental
evidence for such attractor networks. Indeed, recent
‘‘morphing’’ experiments that were specifically designed
to observe these attractor dynamics in the hippocampus
did not obtain the expected results, leading to a
controversy on the validity of the attractor hypothesis of
memory. Here, we have built a computational model of
the relevant hippocampal areas, including its core
anatomical and physiological features, and through the
use of large-scale computer simulations reveal in detail the
physiological properties expected of the hippocampal
attractor network during morphing experiments. We show
that the experimental results obtained are actually those
to be expected of an attractor network when the specifics
of the experimental protocol are taken into account. Most
importantly, the results directly demonstrate the attraction
of CA3 activity to a stored pattern. Our results, together
with previous behavioral and in vitro studies, provide
strong evidence that CA3 is an attractor network for
associative memory.
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Figure 1. The EC/DG/CA3 model. (A) In our model of the EC/DG/CA3 system, the excitatory granule cells of DG receive convergent input from EC
(2700:1) combined with a delayed feedback inhibition (delay: 3.360.4 msec) imposed by local interneurons. Excitatory cells in CA3 receive
convergent input from both EC (2900:1) and DG (,50:1) together with delayed feedback inhibition from local interneurons (delay: 3.360.4 msec) and
recurrent excitatory input (delay: 1 msec). (B) Delayed feedback inhibition mediates internal competition that selects which cell fires in a given
gamma cycle. Trace of three sample cells with different strength of excitatory feedforward currents. Time is represented at the horizontal axis. Gray
area designates the window between the first spike and the onset of global inhibition. Cell voltage and input currents are shown on the ordinate. (C)
Rate maps of sample EC neurons shown for both extreme shapes. (D) Action potentials (red dots) with overlaid trajectory (gray line) and equivalent
rate maps of sample DG and CA3 cells.
doi:10.1371/journal.pcbi.1003641.g001
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I i
DG(r,c)~b

Ai
DG(r,c)

max
Vr

Ai
DG(r,c)

� � ð1:5Þ

The recurrent CA3 input current of cell i, I i
CA3(t) is determined

by the non-linear threshold function of the arithmetic sum of the

recurrent excitatory current, mIi
CA3(t):

I i
CA3(t)~

mIi
CA3(t) , mIi

CA3(t)vd

c , mIi
CA3(t)§d

(
ð1:6Þ

where c = 20 nA is the asymptotic feedback excitatory current and

d is the recurrent excitation threshold, considering a non-linear

mapping from input to excitatory current [36]. Recall threshold is

defined as the threshold complementary (1{d). mIi
CA3(t) is

computed as the sum of the product of the afferent activity,

A
j
CA3(t), and the specific synaptic weight, W

ij
CA3. ACA3 tð Þ is

modeled as a step function with 3 msec duration and release lag,

dCA3, of 1 msec [37]:

mIi
CA3(t)~

XCA3

j
W

ij
CA3A

j
CA3(t{dCA3) ð1:7Þ

Environment morphing experiment
To emulate the experimental procedure and the ensuing

hippocampal neuronal dynamics, the activity of the model was

computed over the trajectory of real rats available online [38]. All

trajectories were obtained from sessions in a square environment,

and morphing was encoded in the activity of LEC neurons. We do

not implement any direct source of noise in our simulations.

Indirectly, noise arises naturally as fluctuation of EPSPs from the

combination of a high-resolution spatial representation (computed

bins of 1 cm2 compared to place fields of .200 cm2) with the

natural tracking of the position of the animal. Noise also arises

from the IPSP delay, which is set probabilistically with a normal

distribution. Neural activity was computed over sessions of 10

minutes (T = 600 sec). Each gamma cycle (t = 36.5 msec) was

computed independently with a randomly selected IPSP delay

determined by a normal distribution with specific SD

(d = 3.360.4 msec) and with the potential of all neurons initialized

at rest (Figure 1B). Different cells could assume multiple rate

values (see Data analysis section) because the release of action

potentials was probabilistic: the cells with the strongest input fire in

every such simulated cycle and thus show a high probability (rate,

l). Cells that fire just after the strongest cell will fire in most

simulated cycles approximating the maximum rate, whereas cells

with less excitation may fire late in the gamma cycle but often do

not fire at all, thus displaying a low rate. Recurrent excitation is

applied within the active window of the gamma cycle and can

cause a cell with low feedforward excitation to produce an action

potential, increasing its rate.

Activity of EC cells is dependent on the current position of a

virtual rat, r(x,y), which navigates through the environment

following empirically determined trajectories of real rats (see

below), and the current progression in the morphing procedure, c.

The computation is analogous to previous work [34]. The activity

of MEC cells is defined by a mathematical description of grid cells

[39] and is made insensitive to morphing [19,40] (Figure 1C, left),

unless when noticed otherwise. To simulate the conditions that

lead to global remapping in the CA3 [21,40], grid cell realignment

is implemented by setting a different angular and position phase

but letting the same spatial frequency. Both MEC and LEC rate

maps are tailored to fit the observed spatial information score [41].

Morphing is encoded in the activity of the LEC cells by allowing a

sharp transition between two independent rate maps at a

morphing degree specific for each cell defined randomly following

a uniform distribution [34] (Figure 1C, right). The LEC selectivity

to morphing is grounded in the observed selectivity of LEC cells to

objects [42,43], the fact that it receives strong input from sensory

driven areas [44–46], and the finding that rate remapping in the

CA3 is impaired by LEC lesions [20]. Importantly, although we

assume a sharp transition for the response of LEC cells during

morphing, the fact that the point of the transition is different for

each cell and that the activity of many cells is summed makes our

implementation equivalent to the case in which each cell had a

smooth or non-uniform response to morphing. LEC and MEC

activity was produced with a resolution of 1 cm61 cm.

Excitatory input for the EC and DG was computed using the

virtual rat’s position as a reference (x,y). The model was updated

with a step size of 1 msec from the beginning of the gamma cycle

and the time of the first spike and 0.1 msec steps in the interval

between the first spike and the release of GABA. Spikes were time

stamped for further analysis. Due to the expected low activity

levels of the DG [47,48], only the cells with mean weight strengths

within the upper 10% percentile were simulated.

To emulate the rat’s exposure to the square and round

environments, the recurrent CA3 weight matrix is defined based

on the history of the firing of cells on the square and round

environments without recurrent excitation. As we are not

interested in the dynamics of plasticity prior to morphing

experiment, we used an interleaved procedure to define the

recurrent CA3 weight matrix as follows: to enhance orthogonal-

ization of CA3 activity following the CA3-DG interaction [16],

each CA3 cell is assigned to a cluster through a k-means algorithm

using spatial correlation as a distance metric. The number of

clusters is set to maximize the grouping of the data [49]. Cells

belonging to the same cluster (C) are interconnected with a weight

inversely proportional to the size of the cluster (n(C)) so that the

sum of all synaptic weights to each cell is equal to 1:

W session
ij ~

1=n(C) , fi,jg[C

0 , i [C, j =[C

�
ð1:8Þ

The training is performed for the two extreme shapes of the

environment, and the synaptic weight between two cells is defined

as the maximum value over the two conditions:

W init
ij ~ max (W%

ij ,Wp

ij ) ð1:9Þ

Recurrent CA3 weights are updated at the end of every session: a

temporary connection matrix is built using the above clustering

method, and the weights interconnecting active cells are updated by a

convex sum-ruled by a learning factor (LRATE) between the previous

weights and the weights in the temporary connection matrix:

Wij(n)~(1{LRATE) �Wij(n{1)zLRATE �W session
ij ð1:10Þ

Data analysis
Data analysis includes construction of 16616 bin rate maps,

place fields analysis, population vector correlation, rate overlap,

A Signature of Attractor Dynamics in the CA3
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and spatial correlation and is performed following the same

procedures and methods as reported for the experimental data

[19]. In summary, the outcome of the simulations was a list of

time-stamped spikes that could be related to the r(x,y) coordinate

in which they were emitted (r(t)). Space was discretized in 16616

bins (Nr = 256, equivalent to 565 cm). For the specific case of the

DG input to CA3 and the activity map of MEC and LEC cells,

space was discretized in 80680 bins (Nr = 6400, equivalent to

161 cm). For each bin, the firing rate was calculated by averaging

the number of spikes at a certain position and dividing it by the

average occupancy of that bin (Figure 1D). Rate maps were

smoothed by a Gaussian kernel (g) of h = 5 cm sd:

l(r)~
PNr

i g
ri{r

h

� ��Ð T

0
g r(t){r

h

� �
dt ð1:11Þ

Cells with a mean firing rate above 0.1 Hz in at least one of the

morphing steps were considered active. Place fields were

determined by the existence of continuous bins (n.8 and n,

128) with a peak rate no less than 2 Hz, with all units above 20%

of this peak value.

The population vector (PV) correlation was calculated by

correlating the response vector of all cells in a specific bin and

correlating it to: (a) the same response vector under a different

morphing condition and (b) a response vector of a different bin

localized 50 cm away under the same morphing condition. Only

active cells with a firing rate above 1 Hz in the two conditions

were considered for the PV.

The overlap between two rate maps was measured by dividing

the mean rate displayed in the less active condition by the mean

rate in the more active condition. The spatial correlation was

defined as the pair-wise correlation of the rate maps considering

each bin. In our simulations, to correct for sampling error, all

comparisons in the morphing experiment between rate maps were

performed using simulation data from different trajectories.

Results

In the experiments of Leutgeb et al. [18,19], the walls defining

the environment were morphed from a square shape (1) into a

circular shape (7) over five intermediate shapes (2–6) while distal

cues were kept constant. Morphing occurred after the animals

were initially exposed to both the square and circular environ-

ments, thereby establishing a memory for these extremes. The

classic notion of attractor dynamics specifies that there will be an

abrupt transition in the cell firing pattern as the environment is

gradually morphed [21]. However, no such transition was

observed (Figure 3A of [19]). To the contrary, the population

vector (PV) correlation, which can be used to quantify the

difference in recorded CA3 population responses in two different

environments, changed gradually. These changes were caused by

alterations in the cells’ peak firing rate (either up or down) without

modification of the identity of the active cells, a process called rate

remapping [19,34]. Importantly, DG and CA3 behaved differ-

ently; for the smallest morphs (environments 1 to 2 or 7 to 6), the

change in the PV correlation was much larger in the DG than in

CA3 (Figure 3A of [19]), even though CA3 is a monosynaptic

target of DG [50]. However, for large morphs (environments 1 to

5 … or 7 to 3 …), the observed PV changes were the same for the

two regions.

To simulate these morphing experiments, we constructed a

model of the DG and CA3 networks (Figure 1A). CA3 cells were

modeled as having input from DG, both lateral and medial parts

of the EC, and recurrent excitatory input from other CA3 cells.

DG cells were modeled as having input only from the EC. We

modeled these inputs using a realistic number of contacts and

realistic synaptic strength distributions (see Methods). Feedback

inhibition was modeled separately in DG and CA3, giving rise to

gamma frequency oscillations, as observed in these structures

[29,51,52]. The delay of feedback inhibition (3.360.4 msec) [28]

was made slower than that of recurrent excitation (1 msec)

[25,37]. Memories of environments 1 and 7 were set in the

recurrent CA3 connections (see Methods). Rate was determined as

follows (Figure 1B). The cell with strongest input will be the first to

fire in a gamma cycle, triggering feedback inhibition. Other

neurons that reach threshold may fire at some later time; still

others with low excitation are unlikely to fire at all. However,

because of noise in the system, firing is determined probabilisti-

cally. We thus take this probability of firing during a gamma cycle

as measure of rate (see Methods).

Simulation of the DG and CA3 model
With this biologically constrained model, we computed the

activity of CA3 and DG cells in different morph states by

analyzing the spike probability as the simulated rat traversed the

environment (paths were taken from experimental data [38,53]).

The rat’s location was represented by the activity of grid cells of

the medial entorhinal cortex (MEC) (Figure 1C, left) [38,53],

whereas sensory information about the walls of the environment

was represented by the activity of the cells of the lateral entorhinal

cortex (LEC) (Figure 1C, right) [42,43]. Both MEC and LEC

maps were constrained by data (see Methods). Rate maps were

computed from the simulated neural activity and the trajectories

(Figure 1D). There were three open variables that we could not

obtain from the literature: the relative strength of the input from

LEC or MEC (a); the ratio of DG-to-EC input (b); and strength of

the recurrent synapses (1-d). We estimated these parameters

computationally by searching the best fit to the experimental data

using as reference the available metrics of both population and

single-unit activity. This strategy allowed a direct comparison

between the simulated data and experimental data using exactly

the same methods. If the reader is not interested in the technical

issue of parametrical optimization, he or she may wish to go

directly to the next section, where we apply the model to the

morphing data and analyze the evidence of attractor dynamics in

the CA3.

Through the parametric optimization of the relative strength of

the input from LEC or MEC (a), the simulated DG population

data reproduced the main features of the experimental data

(Figure 2). In our simulations, an average of 3.5% of DG cells were

active at each session, in accordance with experimental measure-

ments [47,48]. DG cells exhibited place fields that independently

rate remapped during morphing (Figure 2A), as observed in

previous modeling studies [31,34] and in the experimental data

[19]. The distribution of the number of place fields per active cell

was similar to that observed experimentally (Figure 2B). Simulated

place fields had a peak rate of 11.92 Hz67.87, comparable to

11.54 Hz68.16 in Leutgeb et al. (2007).

The parameter a was optimized by searching in the range of

valid a values (0–1) the value with which the simulated neural

activity of the DG would better fit experimental data [19]. Both

individual neurons, cumulative change in the average firing rate

(rate overlap) and spatial correlation, and population activity

metrics, PV correlation and PV autocorrelation, were used as

metrics for the optimization process (see Methods). When we

analyzed the activity of individual neurons, we observed that, for

small and large morphs, strengthening LEC influence (high a) led

A Signature of Attractor Dynamics in the CA3
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Figure 2. Rate remapping in simulated DG neurons reproduces the main features of experimental data. (A) Rate maps of selected
simulated DG cells shown for different morphing shapes. Rate ranges from zero (blue) to maximum rate of specific cell in all shapes (red) (see
Methods for the definition of the maximum rate). (B) Histogram of the number of place fields in each active DG cell in simulation (top) and in
experimental data [19, bottom]. (C) Mean spatial correlation and (D) mean rate overlap between rate maps of the same cell in different environments;

A Signature of Attractor Dynamics in the CA3
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to a higher decorrelation between firing rate distributions of

individual cells than when MEC influence was high (low a)

(Figure 2C). In the extreme case when considering only the LEC

input (a= 1), the rate maps of individual DG cells in the two

extreme shapes were uncorrelated. Strong LEC influence led to a

higher change in the average firing rate of individual cells (lower

rate overlap) compared to the condition of strong MEC influence

(Figure 2D). If we interpret these results in terms of rate remapping

(in which non-spatial information is encoded in the rate of spatially

stable place fields) [34,54], we observe that there is a trade-off

between the ability of the DG cells to encode the wall shape

information in the peak rate of place fields and the maintenance of

the position of place fields. Interestingly, the experimental

observation indicates that there is a compromise with balanced

MEC and LEC influence (Figure S5 of [19]).

When we analyzed the population activity of DG neurons, we

observed that stronger LEC contribution yielded stronger PV

decorrelation for every pair of box shapes if compared to

conditions in which the MEC input was greater (Figure 2E) with

the best model fit, as in the analysis of single cells, obtained with a

balanced MEC and LEC input (a= 0.5). We next investigated

whether the encoding of the wall shape information disturbed the

ability of the DG population to produce orthogonal representa-

tions of unrelated positions by measuring the autocorrelation of

PVs obtained in the same box shape but at positions located 50 cm

away (Figure 2F). High correlation would indicate a high overlap

between representations of different positions, and a lower

correlation would imply otherwise. We observed that strong

LEC input resulted in PVs more strongly correlated at distant

positions if compared to the condition with higher MEC influence.

This observation indicates that also at the population level there is

a trade-off between the ability of the DG to encode a specific

position and a wall shape. Importantly, considering all population

and individual cell metrics, an input with balanced MEC and LEC

contribution provided the best fit to the experimental data

[19].

Having established how to correctly simulate the DG and thus

its input to CA3, we analyzed CA3 responses during morphing.

We first analyzed the CA3 population response without recurrent

connections. In our simulations of such a network, CA3 cells

exhibited several properties consistent with the data. The

distribution of the number of place fields per active cell were

similar to that observed experimentally (Figure 3A,B). Peak place

field firing was at 12.45 Hz67.73 in simulation, which is

comparable to 13.13 Hz67.97 reported by Leutgeb et al.

(2007). However, although rate remapping was observed during

morphing, it was not consistent with the experimental data

(Figure 3C–F), and this was true irrespective of the ratio (b) of DG-

to-EC input. With increase of b, there was a general reduction of

the correlation between rate maps in different environments

(Figure 3C) and virtually no change in the average rate of the cells

(Figure 3D). With respect to the population response to morphing,

high values of b resulted in an overall increase of PV decorrelation

when compared to the condition with low b (Figure 3E), thus not

fitting the data [18–20]. Yet stronger DG input decreased the CA3

PV autocorrelation in distant positions (Figure 3F). In conclusion,

we were unable to fit the CA3 data using a model without

recurrent collaterals.

We next analyzed whether the morphing data could be

accounted for if recurrent collaterals were included (Figure 4).

Synaptic weights of the CA3 recurrent collaterals were set based

on the population activity in environments 1 and 7 (see Methods),

emulating the experimental protocol in which the animals were

familiarized to the two extreme shapes before the experiments.

The addition of the excitatory feedback from the recurrent

collaterals did not impair the formation of place fields and their

ability to rate remap. Importantly, by increasing the strength of the

recurrent synapses (1-d), there was an increase of the correlation

between rate maps of the same cell between different environ-

ments (throughout all morphs), leading to an almost flat response,

as observed experimentally (Figure 4A). Such enhanced stability of

the firing rate distribution of individual cells indicates that the

place fields are present and unmoved throughout the morphing.

We next examined whether single cells were still responsive to

morphing by measuring the cumulative change in the average

firing rate of individual cells as morphing progressed. We found

that the addition of the recurrent collaterals affected the average

change in rate differently for small and large morphs (Figure 4B):

for small morphs, the average change in rate was less than in the

condition without recurrent collaterals; for large morphs, the

average change in rate was higher than in the condition without

recurrent collaterals. This indicates that not only are different wall

shape conditions successfully encoded in the individual cells rate

maps, but also that, for very similar inputs, the system attracts the

average rate response to the stored pattern. Thus, the addition of

the recurrent collaterals favors a code in which the information

about the environment is encoded by the peak rate of place fields

located at fixed positions. We found similar results when analyzing

the population response to morphing: there was an overall

increase in the PV correlation measured between sessions with

different wall shapes approximating experimental observations

(Figure 4C). For the parameters that led to the best model fit (1-

d= 95%), there was a stronger increase in the PV correlation for

the small morph than for the large morph (Figure 4D). Moreover,

we observed an additional reduction in the PV autocorrelation

obtained in distant positions, approximating the observed value

(Figure 4E). This indicates that the activity of the recurrent

collaterals enhances the ability of the network to discriminate

between unrelated positions. Altogether, these analyses show that

the addition of recurrent collaterals allows an accurate description

of rate remapping as seen in both the single-cell and population

responses.

Evidence of attractor dynamics in the comparison of DG
and CA3 neural activity during morphing

With all parameters set, we next directly compared the response

to morphing in DG and CA3. The simulated data not only

provided a model fit of the individual region response to

morphing, but also provided a reasonable description of the

relation between the population response of the CA3 and the DG

to morphing (Figure 5). The experimental finding that DG

population activity was more strongly affected by the small morph

than the CA3 population activity was only observed when

recurrent collaterals were present (Figure 5A). Notably, although

the CA3 PV correlation was increased during both small and large

morphs by the recurrent collaterals, this effect was stronger for

(E) PV correlation response to morphing, computed as the correlation between vectors of activity (PV1 and PV2) computed at the same position (x, y)
but on different sessions; and (F) PV autocorrelation for bins 50 cm away, computed as the correlation between vectors of activity (PV1 and PV2)
obtained at the different positions (x1, y1 and x2, y2) on the same sessions, as a function of a, the MEC/LEC ratio (solid black line), with overlaid
experimentally observed values [19, dashed blue line].
doi:10.1371/journal.pcbi.1003641.g002
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Figure 3. Rate remapping in simulated CA3 neurons without recurrent collaterals does not reproduce main features of
experimental data. (A) Rate color maps of selected simulated CA3 cells shown for different morphing shapes. Rate ranges from zero (blue) to
maximum rate of specific cell in all shapes (red). (B) Histogram of the number of place fields in each active CA3 cell in simulation (top) and in
experimental data [19, bottom]. (C) Mean spatial correlation and (D) mean rate overlap between rate maps of the same cell in different environments;
(E) PV correlation curve response to morphing; (F) PV autocorrelation for bins distanced 50 cm away in CA3 as a function of b, the DG input strength
relative to EC input (solid black/gray line), with overlaid experimentally observed curve [19, dashed blue line].
doi:10.1371/journal.pcbi.1003641.g003
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small morphs than for large morphs, indicating the existence of a

basin of attraction (DPV correlation of 0.35 for small morph

against 0.20 for large morph, Figure 4D). Further, we found

additional evidence for a basin of attraction by analyzing how

single CA3 cells changed their firing rate throughout morphing

(Figure 5B); for the large morphs (1–7) in which little effect of the

attractor dynamics is expected, we found a higher change in the

average firing rate in CA3 when compared to DG in the presence

of recurrent collaterals (rate overlap in CA3 is ,0.2 lower than in

DG), setting the baseline of how the rate of DG and CA3 cells is

affected by morphing. For the small morphs (1–2), the condition in

which the attractor dynamics would be effective, in the CA3 there

was a lower change (rate overlap in CA3 is ,0.05 higher than in

DG) in the average firing rate in CA3 than in DG when recurrent

collaterals were included. These results indicate that, even though

CA3 cells are naturally more sensitive to changes in the

environment when it is out of a basin of attraction (as seen by

the baseline results of the large morph), when we consider the

conditions in which attractor dynamics are effective, there is a

lower sensitivity to change in the CA3 cells. Notably, we also found

that the addition of collaterals contributed to the spatial stability of

place fields in the CA3; only in the presence of recurrent

collaterals were individual rate maps of CA3 cells less affected by

morphing than individual rate maps of DG cells (Figure 5C). The

analysis of the dynamics of CA3 rate coding also revealed the role

of the feedforward excitation and competitive inhibition in pattern

separation, as there is a considerable reduction in the PV

autocorrelation between two distant and unrelated areas

(Figure 5D). Also, consistent with previous findings that a two-

stage process increases spatial specificity [35], we observe a

reduction of the mean number of place fields in CA3 (Figure 5E).

These results allow the identification of the specific role of the

Figure 4. Rate remapping in simulated CA3 neurons with recurrent collaterals reproduces the main features of experimental data.
(A) Mean spatial correlation and (B) mean rate overlap between rate maps of the same cell in different environments; (C) PV correlation curve
response to morphing; (D) difference in PV correlation to the population response without recurrent collaterals; (E) PV autocorrelation for bins
distanced 50 cm away in CA3 as a function of 1-d, the recall threshold (solid black/gray line), with overlaid experimentally observed curve [19, dashed
blue line].
doi:10.1371/journal.pcbi.1003641.g004
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Figure 5. Recurrent collaterals explain the differences in the response of DG and CA3 to morphing observed experimentally [19]. (A)
Progressive change in the PV correlation of DG (dashed blue line) and CA3 (dashed orange line). (B) Average rate overlap and (C) mean spatial
correlation of individual cells rate maps as a function of morphing as observed experimentally (top) and its equivalent analysis of simulated data with
best model fit (bottom), including the response of CA3 without recurrent collaterals (light gray line). (D) PV autocorrelation for large distances (50 cm)
measured experimentally (left) and with model best fit (right). (E) Mean number of place fields measured experimentally (left) and with model best fit
(right).
doi:10.1371/journal.pcbi.1003641.g005
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neural circuits of DG and CA3 in memory: while the convergence

of excitatory feedforward input and the internal inhibitory

competition cause pattern separation, the recurrent excitation

has a major role in pattern completion.

Importantly, neither in the reported data nor in the simulation

was there any evidence that morphing produced a sharp rather

than a graded transition in any of the computed measurements

(Figure 5A). Thus, three important conclusions follow. First, the

recurrent connections in CA3 do have an attractor function;

during small morphs, they ‘‘attract’’ the dynamics toward a stored

pattern (e.g., the square or the round shape). Second, this attractor

dynamics modulates rate remapping, thereby leaving the spatial

information intact. Third, despite this attractor function, the CA3

firing pattern undergoes a graded rather than abrupt change

during morphing over intermediate states (i.e., 4 and 5).

To characterize the mechanisms by which the recurrent

collaterals affect the population response to morphing, we

analyzed the dynamics of single cells during small morphs in the

presence and absence of recurrent excitation. The small morph is

a condition in which there should be a moderate but still

noticeable change in the input pattern to CA3. In the presence of

attractor dynamics, the input pattern will be within the stored

pattern basin of attraction and thus pattern completion should be

observed. We analyzed the firing pattern produced under these

conditions and the subsequent influence of recurrent excitation.

The small morph had three important effects (Figure 6). First, in

cells whose total feedforward input, including the excitatory

current from EC and DG, was strong (0.9 nA) and led to a spike,

the presence of recurrent excitation did not yield a significant

increase in the probability of an action potential (Figure 6A).

Second, in CA3 cells that were part of the stored pattern but

received DG/EC input after morphing that was subthreshold

(0.6 nA), the recurrent input triggered a spike, thereby producing

pattern completion (Figure 6B). In the absence of recurrent

excitation, such cells would not fire. This explains why there is a

higher PV correlation between the population responses to a

stored pattern and a small morph in the presence rather than in

the absence of recurrent excitation (Figure 5A). Thus, in this way,

the internal dynamics provided by the CA3 recurrent synapses

attracts a cell toward a stored pattern, thereby producing rapid

pattern completion within a single gamma cycle [25]. Third, what

the dynamics of the attractor cannot do is erase spikes that have

already occurred. Consider that, after a small morph, a cell is

strongly excited by DG/EC that is not part of the nearby stored

pattern (Figure 6C). Because this spike has occurred and cannot be

erased, the total activity during the short firing period cannot be

identical to the stored pattern. Likewise, activity induced by

additive noise cannot be suppressed. Thus, although recurrent

excitation can attract CA3 to a stored pattern, this attraction

cannot be perfect.

Evidence of experience-dependent plasticity in the CA3
collaterals

The understanding that attractor dynamics cannot eliminate

spikes that are not part of the stored pattern has further

implications. In the morphing experiments, the smallest morphs

(1, 2) displayed a PV less than 1 (0.9). However, because two

measurements in environment 1 (albeit with intermediate sessions

in all other environments, i.e., 1-19 is obtained from the sequence

1-2-3-4-5-6-7-1 with six intermediate sessions) also showed a PV

correlation of 0.9 [19], it was suggested that an attractor

mechanism made the response in environment 2 identical to that

in environment 1. Our analysis, however, suggests that such

perfect attractor reconstruction cannot occur, and we suggest an

alternative explanation: that the intermediate sessions between the

two recordings in environment 1 altered the stored attractor,

thereby reducing the correlation in the 1-19 morphing to 0.9.

Thus, the 1-2 environments evoked different responses because the

attractor system does not work perfectly as explained above,

whereas the 1-19 environments evoked different responses because

of the learning produced in intermediate environments. We

simulated the morphing procedure with varying learning rates and

observed that the 1-19 (1-2-3-4-5-6-7-1) and the 1-2 correlation

were not equally affected by the exposure to different environ-

ments (Figure 7A). Interestingly, because of the sequence in which

the wall shapes were changed, the correlation of the 1-1 morphing

changed more thoroughly to higher learning rates due to the fact

that there were more intermediate trials (n = 6) between the

comparisons when compared to the correlation of the 1-2

environments (n = 0), which allowed that, for a specific learning

rate, both comparisons are equivalent.

Subsequent work supports our interpretation: when 1-1

comparisons are made without exposure to intermediate environ-

ments, the PV correlation was higher (0.93 in Figure 5 of [20],

0.96 in Figure S5 of [55]). In the same studies, the PV correlation

was lower [0.90 in 20,0.91 in 55] if there were intermediate

exposures to other environments and was progressively reduced

with the number of such exposures, as would be predicted if these

exposures produced learning and a modification of the stored

attractors. Further evidence of experience-dependent plasticity in

the recurrent collaterals is that hysteresis was observed in CA3, but

not in the DG [19]. In our simulations with learning in the

recurrent collaterals, we observed comparable levels of hysteresis

in the CA3 rate maps (Figure 7B).

Dependence of place cells remapping on grid cell
stability

We next investigated how place cells respond under conditions

in which environmental change does produce grid cell realign-

ment. We investigated how grid cell realignment affects the

population response to morphing in the CA3. Grid cells were

shown to realign when the animal is trained at the same location

but in different boxes or at different locations but with the same

box [40]. Under these conditions, place fields do not remain stable

at the same positions, characterizing global remapping [40,54].

During morphing, grid cells seems to realign at an intermediate

position, causing an abrupt change in the CA3 population

neuronal activity [21,56] (Figure 8, left). To verify whether our

model produces results in accordance to the literature, we

realigned the grid cell population in the middle of morphing (see

Methods) and computed the activity of CA3 cells (Figure 8, right).

We observed that, following the realignment of the grid cells, there

was an intense and abrupt change in the PV correlation. This

effect is further supported by the observation that the change in

the PV correlation during morphing is graded when grid cells are

stable [19]. Our data thus corroborate the view that grid cell

stability is required for rate remapping in the DG and CA3.

Discussion

We have addressed the question of whether the CA3 memory

system can be considered an attractor network in the face of

ostensibly conflicting experimental results. Using a simulation of

the EC/DG/CA3 system, we show that firing patterns recorded in

CA3 during the morphing of an environment are in accord with

what is expected if CA3 is an attractor network. When the

environment is subject to small morphs, DG granule cells, which

do not have recurrent synapses, change their firing patterns

A Signature of Attractor Dynamics in the CA3
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substantially. In contrast, CA3 cells, which do share recurrent

plastic connections, change much less, indicating an attraction to a

stored pattern. Importantly, our simulated observations are in

accord with experimental data [19,57]. Given that DG provides

strong input to CA3 [50], attraction of CA3 cells to a stored

pattern must be due to recurrent activity within CA3 itself. Our

simulations show that the recurrent collaterals of CA3 can produce

these dynamics and do so within a short time interval consistent

with the theta-phase specific firing of CA3 cells [24].

Importantly, our work clarifies the issue of whether sharp

transitions during morphing are a requirement for demonstrating

that a network follows an attractor dynamic. The argument that

CA3 might not be an attractor network [21] was based on the

observation that sharp transitions in PV correlation did not occur

during morphing, thus not displaying a criterion of attractor

networks. This criterion was suggested by work in which attractor

networks were activated by brief external inputs and were then

allowed to evolve to a stored pattern after the external input was

Figure 6. Dynamics of single cells during a small morph in the presence and absence of recurrent excitation. (A) Trace of a single
gamma cycle of a representative cell of the CA3 memory in environments 1 (solid line) and 2 (dotted line). For both wall shapes, an action potential is
released both in the absence of active recurrent collaterals (left plot) and in their presence (right plot). Time is represented by the horizontal axis. Gray
area designates the window between the first spike in the population and the onset of global inhibition. Cell voltage and input currents are shown
on the ordinate. (B) Trace of a representative cell of the activated CA3 memory in environment 1 (solid line) and environment 2 (dotted line). Pattern
completion can be observed in the presence of recurrent collaterals (right plot), but not in their absence (left plot). (C) Trace of a representative cell
not included in the memory (solid line) and with high excitation in the small morph (dotted line). Recurrent collaterals are not effective because the
cell is not part of an active memory. There is no mechanism to avoid any action potential released by cells not included in a pattern.
doi:10.1371/journal.pcbi.1003641.g006
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removed [2,11,12]. The sharp transition occurs because without

external input, attractor networks are all-or-none; with dynamics

unconstrained by external input, the network uses internal

dynamics to converge to the closest of the stored memories. For

this reason, the final state of the network does not show

intermediate states, and sharp transitions are expected. Such a

feature is, however, not applicable to the hippocampus

because external input from the EC and from DG to CA3 is

never absent. Under these conditions, our simulations show

that sharp transitions do not occur (Figure 5C and 6A). Thus,

under the conditions of the morphing experiment, sharp

transitions are not an appropriate criterion for identifying an

attractor network.

There is a specific case in which sharp transition can be

observed in the CA3 [21,56]: if the animal is familiarized with the

two extreme shapes with altered distal cues, a different spatial

coordinate system is assigned for each memory. As the EC globally

remaps with different distal cues, a sharp transition in the CA3 will

occur but will be caused by changes in cortical activity and cannot

be attributed to attractor dynamics in CA3 [40]. In the

experiments that we have analyzed here, distal cues were kept

unaltered, and this prevents global remapping in MEC.

For CA3 to function as an associative memory, the recurrent

synapses must be able to undergo activity-dependent changes in

their synaptic strength. Indeed, work in the slice preparation has

clearly shown that these synapses can undergo long-term

potentiation (LTP) [9,10], but there has been no previous in vivo

demonstration that these synapses can change in response to

environmental stimuli. We argue that aspects of the data reported

by Leutgeb et al. [19] strongly argue that the attractors formed in

CA3 are continuously subject to learning. Indeed, this is

demonstrated by the fact that exposing rats to intermediate

environments is sufficient to produce a modest change in CA3 PV

correlation and thus its synapses (Figure 7) [20,55]. The key

observation is hysteresis of the PV; if an altered environment is

interposed between two test sessions in the same environment, the

PV in the two identical environments will be slightly altered.

Importantly, this hysteresis is not observed in DG [19], strongly

suggesting that it occurs because of the plasticity within the

recurrent connections of CA3. Indeed, we are able to reproduce

these hysteresis effects in our model that simulates the effects of

experience-dependent Hebbian plasticity in the CA3 excitatory

recurrent connections.

This analysis of morphing suggests future experiments investi-

gating the role of attractors and their modification by learning.

Given that attractor dynamics can now be more precisely

identified, it would be of interest to test directly whether NMDAR

action during learning of the square/round environments is

necessary for attractor formation, as would be predicted based on

in vitro studies analyzing pattern completion [58]. Indeed, following

this prediction, NMDAR seems to be required during memory

formation, as shown by the fact that pattern completion during

subsequent recall is prevented [59]. NMDARs are not required

during memory recall [60]. This is consistent with the observation

that the latter effect depends on the fast dynamics of our model.

Additionally, a second type of analysis could investigate discretiza-

tion during learning [61]; it has previously not been possible to

experimentally address the question of how finely the world is

divided, but it is now approachable through the study of CA3

attractors in particular, by addressing both the temporal and the

spatial ranges of this memory segmentation. In addition, we can

speculate that GABA-dependent dendritic shunting of spike-time-

dependent learning can assure that also the learning dynamics is

restricted to single gamma cycles [62]. From the model presented

here, we will be able to estimate the average size of the population

of CA3 neurons that define a distinct memory, their interrelation,

and the drift that they might be subject to. In addition, their

embedding in a theta-gamma code raises the question of whether

single memory segments defined in a single gamma cycle are, in

turn, integrated in hierarchical structures following the theta

rhythm. Further, the drift of CA3 memory that we have identified

would suggest that, for a more permanent storage of memory

segments, other structures will have to be engaged to solve the so-

called plasticity-stability dilemma [63]. Finally, the ability of rather

short exposures to altered environments to change the attractor

properties of CA3 facilitates the study of learning in a defined

network. This may allow the analysis of the spike patterns that

lead to learning, the role of neuromodulators, and the role

of repetition/replay in producing long-lasting synaptic modifica-

tion.

The demonstration that CA3 cells display the properties

expected of an attractor network carries special significance

because it provides the key remaining evidence, i.e., analysis of in

vivo data, that is necessary to establish the associative memory

function of CA3. As discussed, the existence of modifiable

recurrent connections in CA3 suggested that CA3 is an attractor

network. Consistent with this hypothesis, a mutation that disables

synaptic plasticity in CA3 prevents behavior that is dependent on

pattern completion [59,64]. Additionally, signatures of experi-

ence-dependent plasticity and pattern completion have been

Figure 7. The number of intermediate sessions affects the
quality of pattern reconstruction. (A) PV correlation between
smallest morph (1-2) and two successive recordings of the first
environment (1-19) as a function of the learning rate. For 1-2, there is
no intermediate session, whereas for the 1-19, there are five
intermediate sessions (2–5). With a learning rate of about .03, the
measured PV correlation is the same for 1-19 and 1-2 within one full
session. (B) Rate maps of the simulated activity of a sample CA3 cell
during regular and inverse morphing showing hysteresis.
doi:10.1371/journal.pcbi.1003641.g007
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obtained in vitro with CA3 slices [58]. Thus, taken together, the

anatomy, the behavioral experiments, in vitro electrophysiology,

and our analysis of in vivo recordings make a strong case

that CA3 is, in fact, an associative memory structure that

follows attractor dynamics. The CA3 network analyzed here

is thus among the very few cases in which the evidence

regarding network, cellular, and anatomical properties has

converged to explain an important aspect of memory and

behavior.
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