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Abstract

Virus populations can display high genetic diversity within individual hosts. The intra-host collection of viral haplotypes,
called viral quasispecies, is an important determinant of virulence, pathogenesis, and treatment outcome. We present
HaploClique, a computational approach to reconstruct the structure of a viral quasispecies from next-generation
sequencing data as obtained from bulk sequencing of mixed virus samples. We develop a statistical model for paired-end
reads accounting for mutations, insertions, and deletions. Using an iterative maximal clique enumeration approach, read
pairs are assembled into haplotypes of increasing length, eventually enabling global haplotype assembly. The performance
of our quasispecies assembly method is assessed on simulated data for varying population characteristics and sequencing
technology parameters. Owing to its paired-end handling, HaploClique compares favorably to state-of-the-art haplotype
inference methods. It can reconstruct error-free full-length haplotypes from low coverage samples and detect large
insertions and deletions at low frequencies. We applied HaploClique to sequencing data derived from a clinical hepatitis C
virus population of an infected patient and discovered a novel deletion of length 3576167 bp that was validated by two
independent long-read sequencing experiments. HaploClique is available at https://github.com/armintoepfer/haploclique.
A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5.
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Introduction

Genetic diversity is an important characteristic of evolving

populations and it affects the chances of survival in changing

environments. Assessing the genetic diversity of a population

experimentally is generally labor-intensive and difficult. Popula-

tions of individual cells or viruses, however, can be analyzed

efficiently using next-generation sequencing (NGS). Although

single-cell approaches are still immature, direct NGS of mixed

samples at deep coverage allows for probing populations in great

detail. The challenges with this bulk sequencing approach are (i) to

separate sequencing errors from genetic variation, (ii) to assemble

the short NGS reads into an unknown number of different,

unknown, longer haplotype sequences, and (iii) to estimate their

frequency distribution.

Viruses such as human immunodeficiency virus (HIV-1) and

hepatitis C virus (HCV) populate their hosts as swarms of related

but genetically different mutant strains, each defined by its

haplotype sequence. The structure of such a mutant cloud, which

is often referred to as a viral quasispecies [1], is of clinical

importance, because it has been shown to affect virulence [2] and

pathogenesis [3]. In addition, low-frequency genetic variants may

harbor resistance mutations that are capable of evolutionary

escape from the selective pressure of host immune responses [4]

and of medical interventions, such as anti-viral drug treatment [5].

NGS is currently introduced into clinical diagnostics, but the de

facto standard procedure for assessing the quasispecies structure is

simply based on single-nucleotide variant (SNV) calling. This

approach allows only for estimating the per-site allele frequency

spectrum of the virus population and it ignores patterns of co-

occurrence among mutations. This limitation is critical, because

epistatic interactions are abundant in RNA viruses [6]. Hence, one

cannot predict viral phenotypes without knowing the underlying

mix of haplotypes. Here, we address this challenge and present a

computational approach for the viral quasispecies assembly

problem.

The viral haplotype reconstruction problem is related to the

human haplotype reconstruction problem, but it differs in several

key aspects and faces different challenges. First, the number of

unique haplotypes in a viral quasispecies is unknown unlike in the

case of human diploid genomes. Second, viral populations

typically exhibit more than two variants at each polymorphic

locus and often all four different nucleotides. Hence, viral
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haplotypes cannot be described by binary sequences. Third, in a

viral quasispecies, low-frequency variants are abundant and of

clinical importance, yet they are difficult to distinguish from

technical sequencing errors. Finally, RNA virus genomes are

orders of magnitude shorter than the human genome, but exhibit

more diversity within one host than the ,0.1% diversity between

the two parental human haplotypes [7].

Several methods for viral haplotype reconstruction have been

developed in recent years, specialized for different NGS technol-

ogies, experimental designs, and quasispecies structures. In

general, reconstruction can be performed either locally, in a

genomic region that can be covered by the average read length, or

globally, over longer regions such that overlapping reads are

necessary for assembly. Local reconstruction means estimating the

number of locally unique haplotype sequences and, at the same

time, correcting sequencing errors. Probabilistic clustering [8–11]

and k-mer statistics [12] have been proposed for this task. Global

reconstruction is more challenging, as it requires computational

solutions for assembling NGS reads, which has proven itself to be

demanding even in settings without poly-ploidy [13].

For quasispecies assembly, approaches from different domains

have been developed: (i) probabilistic mixture models [14], (ii)

hidden Markov models [15], (iii) sampling schemes [16], (iv)

combinatorial approaches based on analyzing the read overlap

graph [8,17–19], (v) coloring of overlap and conflict graphs by

constraint programming [20], and (vi) exploiting the ‘‘identical by

descent’’ information [21] in the HapCompass framework [22],

originally designed for diploid single nucleotide polymorphism

data.

The performance of global haplotype reconstruction depends

on several factors, including the true underlying diversity of the

population, the distribution of amplification and sequencing

errors, the read length, and the distribution of the read coverage

along the genome [23–25]. A major shortcoming of all existing

methods is that they are unable to handle large insertions or

deletions (indels). For example, large deletions can result from

erroneous replication or, as observed recently in HIV-1, they may

occur as alternative splice variants [26]. In the context of analyzing

structural variation in the human genome, such as indels of

varying sizes, the use of paired-end reads has been instrumental.

For viral haplotype reconstruction, however, approaches that

systematically exploit paired-end information are lacking.

In this paper, we present a new quasipecies assembly method for

paired-end reads, called HaploClique, based on enumeration of

maximal cliques (max-cliques) as a general approach to clustering

NGS paired-end reads. Although, in general, the runtime of

enumerating all max-cliques in a graph is exponential, it has

recently been shown that the graphs induced by overlapping NGS

reads can be handled efficiently [27,28]. Here, we exploit this fact

for the quasispecies assembly problem and develop a probabilistic

model of sequence and structural similarity between reads.

Using max-clique enumeration for reference-based read assem-

bly is orthogonal to combinatorial approaches for de novo assembly

that rely on path finding in de Bruijn or similar graphs [29–31].

Instead of computing paths, we iteratively transform max-cliques

into super-reads and then seek max-cliques of super-reads, thereby

obtaining haplotype segments of increasing length. The haplotype

segments can eventually be extended to global haplotypes if the

degree of heterogeneity of the viral quasispecies is high enough.

HaploClique is related to max-cut-driven approaches in human

haplotype reconstruction [32], but the computational complexity

of those approaches is prohibitive for virus populations of high and

unknown ploidy. While HaploCliques enumerates all max-cliques,

a max-cut approach seeks an optimal cut of the overlap graph.

HaploClique explicitly incorporates paired-end information for

assembling viral haplotypes. We define the insert as the

unsequenced fragment between the two ends of a paired-end

read. We use linkage information among variant alleles in the

distant pairs to identify reads that stem from the same haplotypes

and generate error-corrected paired-end super-reads. Paired-end

reads allow to bridge homogeneous, and hence ambiguous,

genomic regions if the insert size is sufficiently large. They also

increase the statistical power to distinguish local haplotypes from

sequencing errors in homogeneous regions if the paired read is

located in a more heterogeneous region. Employing our iterative

clique enumeration procedure, we show that error-free full-length

HIV-1 viral haplotypes can be reconstructed in a heterogeneous

mix of five viral strains in silico from a data set with mean coverage

of 6006. Furthermore, we demonstrate that, unlike existing

methods, HaploClique can detect large indels in mixed virus

populations in silico and in vivo. Finally, we apply HaploClique to a

HCV Illumina paired-end NGS data set and predict a novel

deletion of length 357+167 bp that has been confirmed

independently by two long-read NGS platforms.

Results

We developed and implemented HaploClique, a computational

viral quasispecies assembly method for paired-end NGS data.

HaploClique defines a read alignment graph, in which each node

corresponds to a single-end or paired-end alignment (Figure 1A).

We draw edges between two nodes if the two corresponding

alignments have sufficient overlap and are likely to stem from the

same haplotype (Figure 1B). Each max-clique in this graph consists

of a large number of reads from the presumed same haplotype

segment. Thus, the consensus sequence of all reads in a max-clique

is a prediction of a local haplotype sequence. We refer to such a

consensus sequence as a super-read. This consensus sequence also

serves to correct errors in the reads that participate in the super-

read by replacing the sequence of the original reads with the

consensus. This form of error correction benefits from phasing

sequential variants through super-read construction. Paired-end

reads are particularly helpful, as they allow to also phase distantly

co-occurring variant alleles.

HaploClique proceeds by iterating (i) (super-)read alignment

graph construction, (ii) max-clique enumeration, and (iii) super-

read construction, until convergence. The lengths of the super-

reads increase while iterating and convergence is established when

Author Summary

Humans infected with a virus, such as the human
immunodeficiency virus (HIV-1) or hepatitis C virus (HCV),
host a population of billions of virus particles. Among
these, there is an unknown number of genetically different
strains, some of which can harbor drug resistance and
immune escape mutations. It is of clinical importance to
know the DNA sequences and abundances of these
variants, as they can affect treatment outcome. Here, we
present HaploClique, a computational approach to recon-
struct these sequences and to predict large insertions and
deletions from paired-end next-generation sequencing
data. Using simulations, we demonstrate that HaploClique
can reconstruct full-length HIV-1 variants from low-
coverage samples. Using real-world clinical data, we
predict a novel deletion of 3576167 bp in a HCV patient
sample that has been validated by two independent long-
read sequencing experiments.
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super-reads have reached their maximum length. If the mixed

sample is sufficiently heterogeneous, super-reads will eventually

represent haplotypes of full length. Because we process paired-end

reads and incorporate insert-size compatibility into our edge

definition, we can also identify max-cliques that indicate larger

insertions and deletions. These structural variations are recognized

by too small or too large insert sizes among the alignments of the

reads that participate in a max-clique. We analyzed HaploClique’s

performance on simulated data and demonstrate its use on in vivo

HCV quasispecies sequencing data.

Simulation studies
HaploClique integrates paired-end and base quality information

for improved sequencing error correction and haplotype frequency

estimation, which we assess first. Second, we evaluate HaploCli-

que’s behaviour when confronted with low heterogeneity among

the different haplotype strains. Third, we demonstrate HaploCli-

que’s ability to detect large insertions and deletions in the

quasispecies by making use of paired-end information. Fourth,

we evaluate the quality of the local and global haplotypes that

HaploClique predicts. Lastly, we compare HaploClique to state-

of-the-art tools ShoRAH [33], PredictHaplo [14], and QuRe [16]

in quasispecies reconstruction of a simulated five virus mix of well-

known HIV-1 lab-strains.

In all of the following experiments, we simulated Illumina

26250 bp paired-end reads using SimSeq [34] with fragment size

600 bp. To make the simulated data as realistic as possible, we

estimated the required error profiles from an in-house MiSeq data

set of a mixture of known HIV-1 strains. The average error-rate

was 0.33% per base.

Error correction and frequency estimation. We assessed

HaploClique’s performance in error correction and frequency

estimation, and their dependency on coverage and relative

haplotype abundance. We generated ten HIV-1 strains by

substituting ten percent of the nucleotides of strain HIVHXB2.

Positions to be substituted were sampled uniformly, separately for

each of the ten strains. We sampled reads from these ten strains at

coverage rates that resulted in abundance levels of 0:6%, 1:2%,

2:4%, 3:6%, 4:8%, 6:0%, 9%, 12:1%, 24:1%, and 36:2%.

We measured the accuracy of estimating relative haplotype

frequencies for different true abundances and coverages

(Figure 2A). For each coverage, we repeated the simulation ten

times and depict the mean deviances. For example, a mean

deviance of +1% for a strain of frequency 4.8% translates to an

estimate of 5.8%. The estimated frequencies approach the true

ones for increasing coverage, as indicated by approaching the

dashed line of 0% deviance. HaploClique tended to underesti-

mate frequencies above and slightly overestimated frequencies

below a true frequency of ten percent. For 16006 coverage, the

absolute deviation was always below one percent. We additionally

measures the frequency estimation robustness by computing the

standard deviation for each true frequency and coverage (Figure

Figure 1. Max-clique enumeration and edge definitions. (A) Example of a read alignment graph based on the insert size criterion. Alignments
of read pairs are shown in gray and the corresponding nodes in the graph representation are depicted in blue. The four bottom-most alignment pairs
stem from a haplotype harboring a deletion (shown in orange in the reference genome) and therefore display a larger insert size than the remaining
alignment pairs. Note that the four deletion-indicating alignment pairs form a max-clique (circled in orange). (B) Illustration of the compatible gaps
condition of the sequence similarity criterion. Two reads RA and RB are aligned against the reference (left). This induces a direct read-to-read
alignment of RA and RB (right). Case (1): No gaps in the reference alignments lead to a gapless read-to-read alignment, which renders the pair of
reads an edge candidate. Case (2): Gaps in the reference alignment lead to gaps in the read-to-read alignment, excluding the possibility of an edge.
See also Figure S6 in the appendix for more complicated cases involving gaps.
doi:10.1371/journal.pcbi.1003515.g001
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S1). We observed increased robustness with increasing coverage,

except for the cases where the super-reads do not fully cover the

genome.

We assessed HaploClique’s paired-end error correction capa-

bilities using the same simulated data set. All super-reads,

regardless of frequency, perfectly agreed with the respective true

haplotype sequences. For frequency-coverage combinations of

(3.6%, 4006), (2.4%, 8006), (1.2%, 16006) and higher, the

genomes were fully covered by super-reads (Figure 2A). For lower

frequencies, reconstructed local haplotypes do not fully cover the

genome in all ten data sets.

Minimal variant heterogeneity. To investigate the minimal

heterogeneity necessary to distinguish between different haplo-

types, we simulated datasets of two different haplotypes, varying

coverage rates between 25 and 8006 and pairwise distance from

0.05% to 10%.

We measured the false positive rates, percentages of recon-

structed haplotypes with at least one false nucleotide, and

percentages of perfectly reconstructed haplotypes that map

uniquely to exactly one true variant (Figure 2B). For distances of

1% and above, reconstruction was perfect at all coverage rates.

For distances of 0.75% and below, the vast majority of the

reconstructed haplotypes still perfectly match a true haplotype. In

general, the false positive rate decreases with higher coverage.

However, with decreased distance between true haplotypes, many

regions are conserved and cannot be assigned uniquely to a single

true haplotype.

Large deletion prediction. The edge definition of Haplo-

Clique’s read alignment graph allows for identifying large indels in

the haplotypes (Methods). Thanks to the insert size criterion, one

can predict indels from paired-end read information despite the

lack of alignments of read ends that directly cover the deletion

breakpoint. Such alignments may be lacking in practice, because

even the most advanced read mappers have difficulties aligning

reads across long indels.

In this simulation, we benchmarked the false negative rate of the

predicted deletions and the deviations of the estimated to the true

deletion lengths (Figure 3). Aiming at a simple, yet instructive

benchmark data set, we created a new haplotype by randomly

placing three deletions of sizes 100, 500, and 1000 bp into the

HIVHXB2 genome. We simulated reads from the reference

haplotype with a mean coverage of 1006 and from the deletion-

harboring haplotype with coverages of 5, 12, 24, 48, 96, and

1446. We sampled 100 data sets for each coverage to account for

variability in the sampling process. Comparing coverages of 5 and

1446, we observed a more reliable size estimate with increasing

coverage, as the standard deviation decreased by a factor of up to

two. Independent of the true deletion size, the estimated median

size approached the true size up to 6 bp. For the true deletion sizes

of 100, 500, and 1000 bp the number of false negatives decreased

to zero for a coverage of 24, 12, and 126, respectively. The

median size deviation to the true deletion size was always below

the standard deviation of the insert fragment size if there was

sufficient coverage, i.e., no false negatives.

Global haplotype assembly. We benchmarked HaploCli-

que’s performance in terms of genome coverage, as well as

numbers and lengths of constructed super-reads. We simulated a

heterogeneous population, henceforth referred to as lab-mix, of five

lab strains, namely HIVHXB2, HIVNL4{3, HIVYU2, HIV89:6, and

HIVJR{CSF. Among these strains, pairwise distances vary per

gene and along the entire genome between 1 and 16% and

between 2 and 6%, respectively. We sampled reads uniformly with

a mean coverage of 6006, i.e., 1206per strain. This low coverage

corresponds to very low-frequency variants in datasets of higher

coverage (commonly 10,000 to 100,0006), which are of interest in

diagnostic applications.

HaploClique was able to reconstruct haplotype HIVHXB2 at its

full length, without a single error (Table 1). The haplotypes of the

other four variants grew up to a maximal size of 5-6 kb for the

longest super-reads, where full length of the five true strains varied

between 9 and 10 kb. For all strains, the reconstructed haplotypes

covered the genome at its full length. The false positive rate (the

rate of not perfectly matching super-reads) was 0.3%. The

maximal read length increased monotonically for each iteration

from 250 bp up to full-length of ,10 kb (Figure 4). During the

first two iterations, the number of super-reads increased, but from

the third iteration decreased, converging to a number of 56 super-

reads (Figure 4).

Comparisons. We performed haplotype reconstruction for

the lab-mix using the tools ShoRAH [33], PredictHaplo [14], and

Figure 2. Performance in (A) frequency estimation and (B) distinguishing reconstructed local haplotypes. (A) Ten haplotypes were
sampled with different frequencies (x-axis, logarithmic scale), and the mean deviations of the estimated to the true frequencies are reported for ten
repetitions of the simulation (y-axis). The different symbols represent data sets with coverages 4006, 8006, and 16006. Color indicates whether the
genome was fully covered by predicted haplotypes (blue) or not (orange). (B) Performance in distinguishing reconstructed local haplotypes,
depending on pairwise distance and coverage. The displayed percentages are the fractions of super-reads that do not match any true haplotype
without error. Color-coded is the fraction of super-reads that match exactly one true haplotype (100%, orange; §70%, blue; v70%, violet).
doi:10.1371/journal.pcbi.1003515.g002
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QuRe [16], and compared the results to those of HaploClique

(Table 1). Hapler v1.60 [19] did not accept NGS alignments with

insertions, and hence was not applicable to this heterogeneous

virus populations. PredictHaplo v0.4 with paired-end option

reconstructed local or global haplotypes with an average error-

rate of 1.65%. ShoRAH does not take paired-end information into

account and reconstructed 196 full-length genomes, 16 over 1%

estimated frequency, with an average error rate of 1.99%. QuRe

v0.99971 performed its own single-end alignment and recon-

structed global haplotypes with an average error rate of 2.95%, the

highest among all methods. The wall-clock time and maximal

memory consumption, respectively, was 10 min and 12 mb for

PredictHaplo, 30 min and 150 mb for HaploClique, 1.5 hr and

680 mb for ShoRAH, and 2 hr and 33 gb for QuRe on a 80-core

server with 1 tb memory. PredictHaplo and HaploClique used a

single thread, QuRe and ShoRAH are partially multithreaded.

The results of QuRe were not reproducible, because new instances

of QuRe on the same data set did not finish within one day.

HaploClique performed best in maximal reconstructed haplotype

length that was error-free, and it had the closest estimated

haplotype distribution and overall the highest precision.

Patient sample
For the application of HaploClique to a clinical sample, HCV

RNA was extracted from the plasma collected from a subject

isolated 135 days post infection and the NS5 region RT-PCR

amplified as previously described [35]. In this subject there was

experimental evidence of antigen-specific CD8+ T cell responses

targeting two epitopes in the NS5 region (K2629SKRTPMGF

and W2820LGNIIMFA). The NS5B region encodes for the RNA-

dependent RNA polymerase and is essential for the replication of

the virus.

This amplicon was sequenced to a coverage of 80,0006 on a

MiSeq instrument using a 26250 bp read kit. The resulting reads

were aligned using BWA-MEM [36]. We found the insert size

distribution to have a mean of 155 bp and a standard deviation of

167 as estimated by HaploClique. Despite this large standard

deviation, HaploClique was able to discover a 357+167 bp

deletion. No other indels were reported by HaploClique.

In two independent sequencing runs of the same amplicon, once

on a 454/Roche GS FLX+ system and once on a PacBio

instrument, the presence of the deletion was confirmed. Both

technologies yield longer reads than MiSeq that could successfully

be aligned across the deletion breakpoint, allowing to determine

breakpoint coordinates at base-pair resolution.

For the alignment of the longer reads, extreme affine gap costs

have been used to find the deletion. In general, this leads to

alignment artifacts in other regions, causing false positive

haplotype calls. With a read length of 250 bp, we did not succeed

to align reads across the large deletion.

Comparing coordinates, we found that the start positions

predicted by HaploClique was 15 bp off the true position and the

true length amounted to 444 bp. That is, the length difference

between true and predicted deletion amounted to 87 bp, or 0.52

standard deviations.

Discussion

We have presented HaploClique, a method for local haplotype

reconstruction, structural variant detection of large insertions and

deletions, and global haplotype assembly, which represents a

principled approach to viral quasispecies assembly from NGS

paired-end reads. HaploClique builds on a read alignment graph

as underlying combinatorial model, where nodes correspond to

single-end or paired-end alignments of reads. Edges are modeled

in a probabilistic fashion.

They are based on sequence similarity of the read overlap by

incorporating phred-style quality scores in combination with a

position-wise prior for the non-overlapping parts of the reads,

and on a criterion that measures insert size compatibility of the

two alignments. While the sequence similarity criterion

accounts for correct assembly of reads, the insert size criterion

allows for detecting insertions and deletions in viral haplotypes

that cannot be detected from single-end read alignments alone.

We suggest a model that unifies sequencing error correction,

clustering reads into haplotype groups, as well as assembling

reads into longer fragments, all of which naturally emerge from

the model.

In the read alignment graph, max-cliques represent maximal

read sets that overlap and represent (locally) identical haplotype

sequence. The advantage of the max-clique computation is

Figure 3. Large deletion estimates. Estimated deletion size deviation and false negative rate for different true deletion sizes of (A) 100, (B) 500,
and (C) 1000 bp. For each deletion length and each coverage of 5, 12, 24, 48, 96, and 1446, a boxplot summarizes the deviations of the estimated to
the true deletion size in 100 simulated samples. The blue line represents the number of false negative predicted deletions in each of the 100 samples.
doi:10.1371/journal.pcbi.1003515.g003
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twofold. First, it clusters reads, thereby separating reads stemming

from different haplotypes.

Second, it enables sequencing error correction in a way that can

make full use of co-occurrence, that is, statistical correlation of

variant alleles within reach of the reads participating in a max-

clique. In particular, the error correction exploits paired-end

information if provided. The improved error correction is

important, as it gives rise to improved frequency estimates and

allows for distinguishing between haplotypes whose pairwise

distance is below 1%.

HaploClique allows for reconstructing full-length global haplo-

types using a read assembly procedure that is orthogonal to all

existing assembly methods. In our iterative approach, we alternate

between transforming max-cliques into super-reads, which form

the nodes of a new alignment graph, and finding max-cliques in

the new graph. We repeat this process until convergence, which is

established when super-reads do not grow any longer.

HaploClique depends on three parameters to be adjusted

manually: minimal read overlap, D, a threshold for the

probability that two overlapping reads stem from locally identical

haplotypes, d, and the minimal coverage to call the super-read

sequence k. In general, if one of the parameters is decreased, the

number and size of cliques will increase. If D and d are too small,

the purity of cliques will decrease, meaning reads from different

but very similar haplotypes cluster. If D is too large, cliques will

grow slower and less frequent haplotypes may be missed. If d is

too large, reads are more likely to cluster not only if they stem

from the same haplotype but also if they have technical errors in

common; this leads to lower error correction efficiency. If k is too

small, there might not be enough statistical power to correct for

sequencing errors. If k is too large, the false negative rate will rise,

as low-frequency haplotypes do not provide enough reads to form

cliques. We used two different parameter sets for HaploClique. In

the first iteration, local haplotype reconstruction with error

correction is performed and we chose D~0:8, d~0:95, and

k~5. In practice, the results are insensitive to the parameter

choice (Figure S2). For the following iterations, the quasispecies

assembly, we assume that haplotypes are error-corrected and

must match perfectly. We set d~0:99 to account only for the

stochasticity of the Phred scores.

We evaluated HaploClique by extensive simulation studies. The

simulated haplotypes were well-known and much analyzed HIV-1

virus strains. We kept coverage in the simulation study rather low,

so as to evaluate our tool in the presence of only weak signals. We

did this also in comparison with extant state-of-the-art tools. We

demonstrated that our approach has superior error correction

capabilities. This, in turn, yields accurate haplotype frequency

estimates, even at the rather low coverage of 1206per haplotype.

The tools we compared to were not able to provide similarly

accurate frequency estimates. HaploClique proved to be insensi-

tive to a coverage reduction of one order of magnitude with

respect to prevalent sequencing experiments, which commonly

operate at 50006 or higher.

Beyond improved frequency estimates, we also improve

haplotype sequence reconstruction. In all experiments, more than

99% of the haplotype segments we predict perfectly matched true

haplotype sequences. None of the other tools generated even only

one such perfectly matching segment, possibly because they

require much higher coverage. This improvement in terms of

accuracy may be due to the probabilistic model that treats error

Table 1. Global haplotype assembly comparison.

Estimated HIV-1 strain frequency (max. rel. haplotype length)

Method HXB2 NL4-3 YU2 89.6 JR-CSF Error rate # haplotypes Precision

HaploClique 22% (100%) 21% (61%) 19% (59%) 18% (61%) 20% (57%) 0.012% 56 99.7%

ShoRAH 29% (97%) 20% (97%) 20% (97%) 9% (97%) 20% (99%) 1.99% 196 0%

PredictHaplo 91% (99%) 0% (0%) 1% (3%) 6% (12%) 2% (18%) 1.65% 95 0%

QuRe 46% (91%) 7% (91%) 0% (0%) 27% (91%) 20% (93%) 2.95% 15 0%

Global haplotype assembly comparison of HaploClique with the software packages ShoRAH [33], PredictHaplo [14], and QuRe [16]. We report the estimated variant
frequencies and, in parenthesis, the maximal length of the reconstructed haplotypes relative to the genome length, for each of the five variants. In the remaining
columns, the average error rate (computed as the number of mistaken nucleotides, divided by the length of the haplotype computed), the total number of
reconstructed haplotypes, and the precision (percentage of perfectly reconstructed haplotypes weighted by the respective estimated frequency) are reported. See
Methods for more details on frequency estimation.
doi:10.1371/journal.pcbi.1003515.t001

Figure 4. Global haplotype assembly results. Minimum, maximum, and mean read lengths (A) and the total number of reads (B) for the global
haplotype assembly of the lab-mix, for the first 13 and the last iteration (30).
doi:10.1371/journal.pcbi.1003515.g004
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correction and assembly within one unifying framework. Our

simulations also indicated that the degree of heterogeneity

required in order to reconstruct large enough haplotype segments

can be lower than 1%.

We also ran HaploClique on a real, Illumina MiSeq dataset of

coverage 80,0006, which was found to consist of two HCV strains

one of which had a frequency of only approximately 3% and

contained a deletion of size 444 bp, as conformed by independent

454/Roche and PacBio sequencing experiments. In the MiSeq

dataset, the deletion in question could not be detected by state-of-

the-art read alignment tools. HaploClique successfully predicts this

deletion, despite the large standard deviation of the fragment size

distribution (& 167 bp). These experiments document that our

method can detect large deletions also in Illumina paired-end

datasets that otherwise would be difficult to identify.

Despite these improvements over previous methods, there are

limitations of this approach. For example, the runtime of

HaploClique is exponential in the read coverage. This feature is

critical in the first two iterations of the procedure, before the

number of reads is decreased. We observed that, approximately,

the runtime doubles for each additional 250 reads of coverage.

The baseline runtime was ,4 minutes for a data set with coverage

10006, on a single 3 GHz core. To overcome this computational

bottleneck, one may perform the first iterations of haplotype

reconstruction on subsets of the data and then assemble the

merged results. Another extension that may decrease the runtime

is to employ improved clustering techniques [37].

In the future, we also plan to explore on human whole-genome

data, including polyploid cancer genomes, to perform error

correction of the paired-end reads by local haplotype reconstruc-

tion and to assemble diploid haplotypes. This problem is more

challenging due to the larger genome size and smaller levels of

diversity, but several ideas presented here and implemented in

HaploClique may prove useful for this task.

Methods

HaploClique performs paired-end error correction, local and

global haplotype reconstruction, and structural variant calling

based on enumerating cliques in the read alignment graph. We

first explain the graph construction and then how super-reads are

built, how global haplotypes are iteratively constructed, and how

haplotype abundancies are estimated.

Read alignment graph
LetR be the set of all reads from a viral quasispecies sequencing

experiment and A : ~A(R) the set of their alignments to a

reference genome as computed by a read aligner. In this paper, we

assume that each read can be uniquely mapped, which is a

reasonable assumption for short, non-repetitive viral genomes. In

our experiments, we use the Illumina MiSeq technology for

sequencing and BWA-MEM [36] as a read aligner. However,

HaploClique depends on the sequencing technology and read

mapper only insofar that it expects reads to be equipped with

quality scores and that the reads can be properly aligned.

We construct a graph G~(A,E) where the read alignments A
are the vertices. An edge (A,B)[E indicates that the two

alignments A and B overlap sufficiently and that the correspond-

ing reads are likely to originate from (locally) identical haplotypes.

More precisely, we draw an edge between A and B if they satisfy

two criteria based on sequence similarity and insert sizes,

respectively. While the sequence-based criterion ensures that the

reads RA and RB do not exhibit mutually contradictory sequences,

the insert size-based criterion guarantees that A and B do not

contradict each other in terms of their fragment sizes. We allow

alignments A and B to be any combination of single- and

paired-end reads, but the size-based criterion applies only if both

alignment are based on paired-end reads.

Sequence similarity criterion. We define pairwise se-

quence distance as Hamming distance. We assume if reads stem

from the same haplotype, their sequences are identical up to

sequencing errors in the intervals of overlapping alignments.

The reference alignments A and B induce a direct read-to-read

alignment of RA and RB. Let s[f1,:::,mg index the positions of the

resulting read-to-read alignment (Figure 1). We consider the subset

of positions UA\B5f1,:::,mg that are covered by both reads RA

and RB. For s[UA\B, let RA½s� and RB½s� be the corresponding

nucleotides or gap symbols (‘‘{’’). We construct the induced read-

to-read alignment, so that no column contains gap symbols in both

rows. If there is a gap RA½s�~{ or RB½s�~{ for some s[UA\B,

then we consider A and B incompatible and do not connect them by

an edge.

In the following, we assume a gapless read-to-read alignment,

RA½s�={ and RB½s�={ for all s[UA\B. Each nucleotide in each

read comes with a base calling quality score (phred score)

determined by the sequencer. Let qA½s� and qB½s� be the

corresponding probabilities that RA½s� and RB½s�, respectively,

was sequenced erroneously. For X[fA,C,G,Tg, we define

QA½s�½X � : ~
1{qA½s� ifX~RA½s�
qA½s�=3 otherwise

�
ð1Þ

and compute

PM (A,B) : ~ P
s[UA\B

X
X[fA,C,G,Tg

QA½s�½X �:QB½s�½X �: ð2Þ

PM (A,B) is the probability that the underlying DNA sequences

of RA and RB are identical on the overlap UA\B. The actual reads

RA and RB might differ on UA\B due to sequencing errors.

Let TA\B denote all reference positions covered by A but not by

B. Let q0½t� be the probability that the nucleotides of two randomly

drawn reads coincide when being aligned with reference position t.

This quantity can be estimated based on the empirical allele

frequency distribution at position t, denoted r½t�. If r½t�½X � denotes

the probability of observing nucleotide X at position t, then

q0½t�~
P

X[fA,C,G,Tg r½t�½X �2. The probability that two randomly

drawn alignments that, in contrast to A and B, both cover TA\B

and TB\A, exhibit identical nucleotides at all these positions is

P0(A,B) : ~ P
t[TA\B|TB\A

q0½t�: ð3Þ

To finally decide whether two reads RA and RB are likely to

originate from (locally) identical haplotypes, we consider

P(A,B) : ~PM (A,B):P0(A,B), ð4Þ

and say that two alignments A and B satisfy the sequence similarity

criterion if

1. they do not contain incompatible gaps: RA½s�={ and

RB½s�={ for all s[UA\B,

2. there is sufficient overlap: jUA\BjwD:minfjRAj,jRBjg, and

Viral Quasispecies Assembly
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3. the probability that the two reads were sampled from the same

haplotype is sufficiently large: P(A,B)
1

jTA\B jzjUA\B jzjTB\A jwd,

where the exponent ensures proper length normalization.

Insert size criterion. If a deletion or insertion is present, the

distance between the reference alignments of the two ends

increases (for deletions) or decreases (for insertions) compared to

the situation without indels. Such insert size discrepancies can thus

indicate the presence of indels as well as the (in)compatibility of

two read pairs. Following [27], we define an insert size criterion

based on this observation. This criterion only applies to aligments

A and B of two paired-end reads RA and RB.

Let xA and yA be the rightmost position of the left end and the

leftmost position of the right end, respectively, of alignment A. Let

I(A) : ~yA{xA{1 be the alignment interval length. For two

overlapping alignments A and B, let O(A,B) : ~

min (yA,yB){ max (xA,xB){1 be the length of the overlap of

the alignment intervals and �II(A,B) : ~(I(A)zI(B))=2 the mean

interval length (Figure S3). Let Z be Norm(0,1)-distributed and m
and s be mean and variance, respectively, of the empirical insert

size distribution. The insert criterion is satisfied if

P jZj§ 1ffiffiffi
2
p jI(A){I(B)j

s

� �
ƒ0:05 and

P Z§

ffiffiffi
2
p �II(A,B){O(A,B){m)

s

� �
ƒ0:05,

that is, if the alignments have similar interval lengths and sufficient

overlap [27] (Figure S4).

Edge definition. HaploClique has two modes. When the

input consists solely of paired-end reads with a known insert size

distribution, then both the sequence similarity criterion and the

insert size criterion can be used, and an edge is drawn if both

criteria are satisfied. If this is not the case, only the sequence

similarity criterion applies. In the former mode, the statistical

power to distingiush different haplotypes is larger due to

employing two independent criteria. This mode also allows for

calling indels based on the average insert size of alignments in a

clique. Applying only the sequence similarity criterion, on the

other hand, comes with the flexibility of mixing paired-end reads,

single-end reads, and super-reads.

Max-clique enumeration
Cliques C5A are fully connected subgraphs of the read

alignment graph G~(A,E). They indicate groups of reads that

are all likely to stem from locally identical haplotypes. Hence max-

cliques form maximal groups of reads that originate from locally

identical haplotypes.

The algorithm proceeds by first sorting all nodes

A~fA1,:::,Amg from left to right, in ascending order of the

alignment coordinates such that At starts left of Atz1. The

algorithm then computes maximal cliques by processing all nodes

A~fA1,:::,Amg in this order. Let Gt be the induced subgraph of

G with vertices At~fA1,:::,Atg and let Ct be all max-cliques in

Gt. For a node A, let N(A) be all nodes that are connected to A by

an edge e[E. If the rightmost coordinates of all alignments in a

clique C[Ct are smaller than the leftmost coordinate of Atz1, this

clique cannot be further affected by any node A[fAtz1,:::,Amg—

such cliques are maximal in G and can be output if only nodes

A[fAtz1,:::,Amg are left to be considered. After having processed

all nodes fA1,:::,Atg, we declare all cliques C[Ct that can still be

affected by nodes A[fAtz1,:::,Amg to be active.

When processing node Atz1, we compute its neighborhood

N(Atz1) and add a new clique C : ~fAtz1g if intersecting

N(Atz1) with each active clique yields the empty set. Otherwise,

for each active clique C, we set C : ~C|fAtz1g if C~
C\N(Atz1), and we add a new clique C\N(Atz1)|fAtz1g
if =C\N(Atz1)=N(Atz1). Among all new cliques to be

added, we eliminate duplicates.

Max-clique enumeration is related to the problem of finding a

minimum clique cover [38], where a minimal set of non-

overlapping max-cliques is sought, whose vertices cover the graph.

Runtime analysis. Let c be an upper bound on the number

of active cliques and a be an upper bound on the number of active

nodes, where we call a node active if it is part of at least one active

clique. Since no two distinct active cliques can be extended to the

same max-clique, we have cƒs, where s is the number of max-

cliques in G. Let m be the number of alignments A. First, sorting

all nodes requires O(m log m) time. Processing each node requires

O(ca) time (when doing the duplicate removal by radix sorting bit

vectors representing the new cliques). Therefore, the total runtime

is O(m( log mzca)zs). Since aƒm and cƒs, the algorithm has

output polynomial runtime, that is, it is polynomial in the size of the

input plus the size of the output.

In general graphs and in the worst case, the number of max-

cliques is exponential in the number of nodes [39]. Thus, our

algorithm is not necessarily polynomial in the input alone. In

interval graphs, however, the number of cliques grows at most

linearly and simple sweep algorithms can enumerate all max-

cliques in linear time. In these graphs, each vertex is an interval on

the real line and an edge is drawn between two vertices whenever

the corresponding intervals overlap. The read alignment graph as

defined above can be regarded as an interval graph with removed

edges. Indeed, that two alignments overlap is necessary but not

sufficient for drawing an edge. Although, formally, any graph can

be constructed by removing edges from an interval graph, being

close to an interval graph with bounded coverage is a property that

one can exploit. Due to the ‘‘banded’’ shape of the graph

(Figure 1), the number of maximal cliques grows linearly in the

genome length (and thus in the number of nodes) in practice

(Figure S5B). Under this assumption, the runtime of the clique

finder we use [27] is also linear in the number of nodes once they

have been sorted. This linear behavior was indeed observed in

computational experiments using viral genome lengths differing by

several orders of magnitude (Figure S5). We optimized the

implementation of the algorithm by exploiting bit-parallelism

whenever possible. Being linear in the genome length, in practice,

is crucial for analyzing the haplotype structure of longer viral or

bacterial, or eventually also cancer genomes. It is for this reason,

that we have selected this algorithm and prefer it over fast general

purpose algorithms for max-clique enumeration in sparse graphs

[40,41], which generally scale quadratically with genome length.

Super-read assembly
Each max-clique is a set of reads with mutually compatible

alignments. Therefore, we can construct consensus sequences for

max-cliques, which we refer to as super-reads. The purpose of

super-read construction is two-fold. First, super-reads represent

haplotype segments. Second, super-reads can be used as input to

further iterations of max-clique enumeration, with the goal of

global haplotype reconstruction, which is discussed in the next

section.

To construct super-reads, let A1,:::,Ak be the k alignments

participating in a max-clique and let Uk
A1,...,Ak

be the set of

positions where at least k of these alignments contain non-gap

characters. We recall that QA½s�½X � denotes the probability that
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nucleotide X gave rise to position s in read RA, although RA½s�
might differ from X due to sequencing errors.

We determine the nucleotide sequence of the super-read �RR(RA1
,

:::,RAk
) by means of a weighted position-wise majority vote. We

set �RR(RA1
,:::,RAk

)½s�~argmaxX[fA,C,G,Tg
Pk

i~1 QAi
½s�½X �, for

each position s[Uk
A1,...,Ak

, where QAi
½s�½X � is defined to be zero

when Ai does not cover position s. The parameter k ensures that

the super-reads have sufficient coverage of high quality. For later

frequency estimation, we keep track of which original reads gave

rise to which super-read.

Global assembly strategy
For global haplotype reconstruction, or quasispecies assembly,

we iterate the clique enumeration procedure. We align reads

against the reference sequence, construct the read alignment

graph, find max-cliques, and merge them into larger super-reads

with updated phred scores that reflect corrected error profiles. In

the next iteration, we use these super-reads as reads and restart the

procedure until number and length of super-reads have converged.

For the assembly step, we assume that reads have already been

error-corrected in the first iteration and set d~0:99. Reads have to

match perfectly and d only allows for stochasticity of the Phred

scores. We start the iterations with a relative overlap of D~0:8.

Once the length and number of super-reads converged, we

decrease D by 0:1 down to a minimum of D~0:5.

Haplotype abundance estimation
We estimate haplotype abundance by counting the number of

(original) reads that participate in the super-reads giving rise to the

haplotypes. Original reads may participate in several super-reads

and thereby contribute to abundance counts for several haplo-

types. We resolve this issue by keeping track of the original read in

each iteration, such that each read can be assigned to the final

haplotypes after convergence. Reads contributing to several

haplotypes abundances are then taken into account by weighting

them accordingly.

Data
The MiSeq raw read data set is available through the Sequence

Read Archive under the BioProject accession number

SRP034655. The MiSeq 26250 bp error profiles for SimSeq

[34] used in the simulations are available at https://github.com/

armintoepfer/haploclique under data.

A summary of this paper appears in the proceedings of the
RECOMB 2014 conference, April 2-5 [42].

Supporting Information

Figure S1 Standard deviation of ten haplotype frequen-
cy estimates for different coverages. Ten haplotypes were

sampled with different frequencies (x-axis, logarithmic scale), and

the standard deviations of the frequency estimates are reported for

ten repetitions of the simulation (y-axis, logarithmic scale). The

different symbols represent data sets with coverages of 4006,

8006, and 16006. Color indicates whether the genome was fully

covered by predicted haplotypes (blue) or not (orange).

(PDF)

Figure S2 Empirical studies for parameters k and d.
Using the lab-mix, as described in the Results section, we

benchmarked the reconstruction performance, with respect to

error rate (left) and mean read length (right), for varying levels of k,

the number of reads required for initial super-read construction.

Only sequence fragments that are supported by at least k original

reads within one max-clique are turned into super-reads of the first

generation (iteration). Performance depends on the parameters d,

the threshold for the probability that both reads stem from the

same haplotype and the minimal coverage k to create a consensus

sequence of the super-read. We varied d between 0.91 and 0.99,

and k between 1 and 9.

(PDF)

Figure S3 Overlapping inserts. Two alignment pairs A and

B along with their insert sizes I(A) and I(B) and their overlap

O(A,B) are shown.

(PDF)

Figure S4 Insert edge definitions. The different scenarios

(A)–(D) of the insert size criterion are shown.

(PDF)

Figure S5 Runtime analysis. (A) Run time and (B) number of

max-cliques for varying genome lengths between 10 kb and 1 Mb

and for coverages of 2506 and 5006. Dots represent observed

runtime in seconds (A) and number of max-cliques in the

corresponding alignment graph (B). Lines represent linear

regressions after log-log transformation. The slopes of approxi-

mately one indicate linear relationships. R2 is the fraction of

variance explained by the log-log linear model. For each of the five

viruses HIV-1, PhiCh1, enterobacteria phage P1, Bacillus phage

G, and Acanthamoeba polyphage moumouvirus, we simulated

three haplotypes with a distance of five percent to the reference

genome. For each virus, we generated data sets with mean

coverage 2506 and 5006.

(PDF)

Figure S6 Edge definitions. Illustration of the compatible

gaps condition of the sequence similarity criterion. Two reads RA

and RB are aligned against the reference (left). This induces a

direct read-to-read alignment of RA and RB (right). Case (1): No

gaps in the reference alignments lead to a gapless read-to-read

alignment, which renders the pair of reads an edge candidate.

Case (2): Gaps in the reference alignment become eliminated in

the direct read-to-read alignment implying an edge candidate.

Case (3): The reference alignment leads to aligning –‘C’ against

‘C-’, which we interpret as aligning C against C, that is, virtually

case (2) is in effect. Case (4): Gaps in the reference alignment that

lead to gaps in the read-to-read alignment exclude the possibility

of edges. Case (5): Similar to (3), but we interpret ‘-A’ against ‘C-’

as gap implying that no edge is possible.

(PDF)
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