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Abstract

Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the
compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences.
The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate
readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based
on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby,
our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence
basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability
of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based
protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped
targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of
knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects
or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target
network via comparison of known substrate peptides. The substrate-driven view of protein-protein interfaces is not limited
to the field of proteases but can be applied to any target class where a sufficient amount of known substrate data is
available.
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Introduction

The degradome, the complete set of proteolytic enzymes [1]

(herein excluding their binding partners, although this term has

also been used for proteases and their substrates and inhibitors

together), comprises more than 500 proteases in humans, where

every single one is linked to a particular cleavage pattern [2].

Although they all share the same catalytic principle, which is the

hydrolytic cleavage of a peptide bond [3] substrate spectra range

from the specific degradation of single peptides to promiscuous

non-specific degradation of multiple substrates [4]. Therefore,

proteases can execute a wide range of biological functions, from

specific signaling tasks to unspecific digestion of nutrition proteins

[5]. Proteases initiate, modulate and terminate a wide range of

fundamental cellular functions [6], making them attractive targets

for drug design [7].

Substrate specificity of proteases is determined via molecular

interactions at the protein-protein interface of the substrate with

the proteolytic enzyme. Specificity subpockets necessary for recog-

nition of substrates as well as substrate positions are numbered

according to the convention of Schechter and Berger [8]: Peptide

amino acids P are indexed with position 1 around the scissile bond,

with P19 being oriented towards the C-terminal. Indices are

incrementally increased for subpockets farther away from the bond

about to be cleaved. Protease subpockets binding the substrates are

numbered Sn-Sn9, ensuring consistent indices for substrate and

enzyme pockets interacting directly. The peptide substrate is typi-

cally locked in a canonical beta conformation [9] spanning several

subpockets flanking the catalytic center explaining specificity for

the substrate sequence [10,11].

Known proteases cover several types of catalytic machineries

including aspartic, cysteine, metallo, serine and threonine prote-

ases according to the MEROPS database [12]. Still, some of these

protease groups include non-homologous members allowing

further subdivision into clans and families. Serine proteases may

be subdivided into homologous clans such as the chymotrypsin

fold, the subtilisin fold, or the carboxypeptidase Y fold. This

inherent complexity of proteolytic systems [13,14] is tackled by a

broad range of research activities to profile protease specificity

[15]. Established methods for substrate profiling include chroma-

tography-based methods [16,17,18], phage display [19], usage of

substrate libraries [20,21] and fluorogenic substrates [22] as well as

N-terminal labeling techniques [23,24]. Still, inherent similarities

in protease substrate readout have by now only been examined

qualitatively (e.g. [25]).

Apart from a solid classification of known proteases, MEROPS

contains a collection of known substrates [26] even exceeding

10000 known substrates in case of trypsin 1. This substrate

sequence data is frequently depicted as sequence logos [27] or heat

maps [16] to highlight individual substrate preferences of proteases.
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Recently, substrate information from MEROPS has been success-

fully employed in the prediction of protease cleavage sites using

machine learning techniques [28] or the calculation of cleavage

entropy, a quantitative measure of substrate promiscuity [4].

In our current study, the peptide substrate data set from the

MEROPS database forms the basis of an approach to map the

complex world of proteases into intuitively accessible diagrams by

highlighting similarities in substrate readout between individual

proteases. An extraction of known protease inhibitors from the

ChEMBL database [29] shows how knowledge from peptide

substrates can be directly transferred into predictions on small

molecules. Overlaps in cleaved peptides correlate with binding of

similar small molecules, thus indicating overlaps in the chemical

space covered. This observation renders our approach promising

for the prediction of off-target effects or general chemogenomic

approaches in drug discovery.

Methods

Extraction and Processing of Substrate Data
Data on known substrates were downloaded from the MER-

OPS database [12] (database accession 8.5.2013) containing the

largest collection of substrate sequences when compared to other

online resources as CutDB [30] or Proteolysis MAP [31]. We

retained cleavage information from all experimental sources to

ensure maximum statistics. All proteases with at least 100

annotated substrates were selected for further analysis, forming

an initial set of 65 proteases. Three aminopeptidases were

discarded, as half of their binding site remains unoccupied,

yielding a final set of 62 proteases (see Supporting Table S1 for a

detailed list). Sequence logos depicting respective substrate

preferences were generated with WebLogo [32]. For each

protease, a sequence matrix covering eight positions S4 to S49

based on the frequency of each of the 20 natural amino acids was

generated. This definition restricts the coverage of specificity

directly at the active site, skipping differences in in allosteric sites

and exosite interactions. Residue frequencies at P4 to P49 were

normalized to their natural abundance [33] to ensure a proper

reflection of protease substrate preferences.

Calculation of Protease Substrate Similarities
For each subpocket we extracted a vector of length 20 containing

the respective amino acid frequencies at that position from the

sequence matrix, thereby containing information about over- as

well as underrepresented amino acids as visualized via iceLogo [34].

In order to facilitate a comparison of the whole binding frame or

regions within, respective vectors for subpockets were combined and

normalized to yield a substrate vector v of length one and dimension

160 for the eight binding pockets. Apparently, comparison of

smaller binding site regions results in lower dimensional vector

spaces. Similarities between vectors were calculated as scalar

products (dot products). The scalar projection of one normalized

vector on another yields an overlap of 1 for identical vectors and an

overlap of 0 for orthogonal vectors. Thus, such a metric is perfectly

suitable to quantify similarities s of amino acid distributions encoded

in the vectors v (see Formula 1 and Figure 1 for a summary).

s~v1
!:v2
!~ pS4,AlapS4,Arg � � � pS4,ValpS3,Ala � � � pS40 ,Val

� �
1
:

pS4,AlapS4,Arg � � � pS4,ValpS3,Ala � � � pS40 ,Val

� �
2

Formula 1: Calculation of protease similarities s based on

substrate vectors v1, v2 containing amino acid frequencies p at

each subpocket of the binding site

A complete pairwise comparison of all 62 cleavage site sequence

logos stored as vectors yield a symmetric matrix of dimension 62 with

values of 1 for the comparison of identical substrate vectors in the

main diagonal. A distance matrix was created by subtraction of all

elements of the similarity matrix from 1. Hence, a pairwise distance of

0 represents identical substrate recognition, whereas 1 depicts maxi-

mal distance in protease space. The resulting distance matrix stores

differences in substrate recognition of all 62 proteases in the test set.

Analysis of the Protease Distance Matrix
The distance matrix of 62 protease substrate recognition

patterns was diagonalized using SciPy [35]. Principal components

of the matrix were extracted as eigenvectors in protease space.

Corresponding eigenvalues normalized to the sum of all eigen-

vectors depict the individual contribution of the eigenvector to the

total variance in the data set. Principal components were sorted

according to their contribution and depicted as loadings plots.

Subpocket-wise cleavage entropies and total cleavage entropies

were calculated as described earlier [4].

Construction of Substrate-Driven Protease Specificity Trees
Apart from directly analyzing the protease distance matrix via

principal component analysis, we visualized similarities in protease

substrate recognition as dendrograms. We used fkitsch from the

EMBOSS server [36] employing a Fitch Margoliash method [37]

for tree construction. 100 random starts were performed to ensure

robustness of constructed similarity trees. Interactive Tree of Life

(iTOL) was used to visualize the constructed substrate-driven

protease specificity trees [38]. Although we think that the statistical

term ‘‘selectivity’’ would better fit our presented analysis, we stick

to the long-established phrase ‘‘protease specificity’’.

Mapping of Ligand Data
We used the ChEMBL database version 16 [29] as resource for

small molecule bioactivity data. ChEMBL lists 1.5 million compounds

with more than 11 million associated bioactivities. We extracted all

426 protease targets, associated selectivity groups as well as

annotated ligands. A list of matched MEROPS and ChEMBL

Author Summary

We present a novel approach to intuitively map the
degradome, the set of proteolytic enzymes, based on their
substrates rather than on the protease sequences. Infor-
mation stored in cleavage site sequence logos is extracted
and transferred into a metric for similarity in protease
substrate recognition. By capturing similarity in substrate
readout, we inherently focus on the biomolecular recog-
nition process between protease and substrate. Further-
more, we are able to include proteases of different
evolutionary origin into our analysis, because no assump-
tion on homology has to made. In a second step, we
show how knowledge from peptide substrates can directly
be transferred into small molecule recognition. By mining
protease inhibition data in the ChEMBL database we
show, how our substrate-driven protease specificity trees
group known targets of protease inhibitors. Thus, our
substrate-based maps of the degradome can be utilized
in the prediction of off-target effects or drug repurposing.
As our approach is not limited to the protease universe,
our similarity metric can be expanded to any kind
of protein-protein interface given sufficient substrate
data.

Substrate-Driven Mapping of the Degradome
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identifiers is provided in Supporting Table S1. We discarded

covalent inhibitors from our analysis and mapped the remaining

bioactivities to our protease specificity trees. We did not employ a

stringent activity cutoff but rather preserved all annotated target

affinities as positives to provide a comprehensive picture of protease-

ligand recognition. Only empty fields or zero percent inhibition

annotations were discarded.

Results

Quantification of Similarity in Protease Substrate Readout
Data mining in the MEROPS database showed the increasing

importance and promise of knowledge-based approaches in recent

years, as for example described by Ekins et al [39]. Within 18

months, the set of proteases with more than 100 cleavage sites

annotated in MEROPS increased from 47 [4] to currently 65.

After discarding three aminopeptidases, the set of 62 proteases

spans the four major catalytic types of proteases: serine, metallo,

cysteine, and aspartic proteases (see Supporting Table S1 for

details). No member of glutamic and threonine proteases qualified

for inclusion into our study due to insufficient substrate data for all

their members.

Our presented approach yields quantitative distance values

between known protease substrate preferences. A value of 0

represents identical substrate readout, whereas 1 shows an orth-

ogonal cleavage pattern in all subpockets investigated. Calculated

Figure 1. Workflow followed in degradome mapping: Sequence logos of protease cleavage sites are extracted and combined to a vector
containing probabilities of amino acids and each subpocket position (1a). Thereby, quantitative distances between protease substrate readout can be
calculated by scalar projection of one protease vector on the other. To illustrate the behavior of our metric, figure 1b shows distances for an
exemplary set of protease and their respective sequence logos.
doi:10.1371/journal.pcbi.1003353.g001

Substrate-Driven Mapping of the Degradome
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distance values within the set of proteases span a wide range.

Distances in substrate readout range from 0.003 to 0.79 when

calculated over the whole range of eight subpockets flanking the

cleavage site (S4-S49). This finding highlights the diversity of

substrate recognition among known proteases.

A group with nearly identical substrate recognition are the

proprotein convertases of MEROPS subfamily S8B, which

uniformly cleave after two basic residues [40], reflected in a

distance lower than 0.1 between all members except kexin. In

contrast to all other members, kexin does not recognize arginine

residues in the S4 pocket, hence leading to higher distance values

up to 0.29. A further group with highly similar substrate

recognition are the apoptotic signalling caspases 3 and 7 [41]

with a distance lower than 0.05. Although both share DEVD as

ideal substrate in the non-prime region [42], they were found to

have functionally different effects [43]. Further groups that

recognize highly similar substrates comprise thrombin and plasmin

cleaving after basic residues [22,44], as well as unspecific matrix

metallo proteases showing a high degree of overlap between

substrates [45,46]. Except cathepsins K, L, B, S, H and V, these

groups of similar substrate recognition coincide with annotated

protease selectivity groups within ChEMBL.

The cell signaling peptidases neurolysin and thimet oligopepti-

dase were found to form a group with similar substrate readout

(distance = 0.033) which is very distinct to all other proteases within

the set (all distances .0.45). Both peptidases hydrolyze a narrow

spectrum of intracellular oligopeptides [47,48] whilst sequence

readout is spanning over the whole binding site region from S4 to

S49 [4]. We expect parts of this similarity to stem from the origin of

MEROPS substrates: A large part of annotated substrates for both

proteases is derived from a comparison of these two proteases using

fluorogenic substrates derived from neurotensin [49].

The largest distance within the protease set is found between

KPC2type peptidase of Caenorhabditis elegans, a subtilisin-like

proprotein convertase, that specifically cleaves a group of

neuropeptides [50], and the unspecific matrix metallo protease

13 [51]. Intuitively, distances between unspecific proteases are

smaller, e.g., the distance between substrate recognition of both

highly promiscuous thermolysin and chymotrypsin is found to be

lower than 0.22 and hence highly similar to the distance of trypsin

and chymotrypsin (distance = 0.21). See Figure 1b for an example

set of proteases and their respective distances calculated from

MEROPS substrates.

Principal Component Analysis of the Protease Similarity
Matrix

Compiling all pairwise protease substrate similarities yields a

symmetric matrix representing distances in substrate readout of

the 62 investigated proteases. Principal component analysis of this

matrix reveals that the first principal component, depicting a

linear combination of protease substrate recognition patterns, is

sufficient to cover 50 percent of variance within the data set.

Second and third axis contribute 8.9 and 5.9 percent respectively,

while the seventh principal component shows the last contribution

exceeding 2 percent. These first seven principal components cover

more than 77 percent of total variance in the data set and thus

represent the main features in protease substrate recognition.

Both first and second principal component (PC1, PC2) strongly

correlate with substrate promiscuity measured as total cleavage

entropy [4]. Pearson’s linear correlation coefficient r for these two

axes is 0.87 and 0.79 respectively, indicating a pronounced

positive linear correlation. While PC1 shows a strong correlation

over the whole binding site region S4-S49, PC2 mainly contains

information on substrate specificity in the S4-S1 region. PC2

outnumbers PC1 especially in terms of S1 readout (r = 0.72 for

PC2 versus r = 0.42 for PC1, see Supporting Figure S1 for more

details). Hence, the scatter plot of PC1 versus PC2 shows a

separation of specific and unspecific proteases as well as via PC2 a

separation of serine proteases specifically recognizing positively

charged amino acids in the P1 position (see Figure 2a, 2b).

The third principal component (PC3) does not correlate with

overall substrate promiscuity but rather with a single substrate

position P39 (correlation to subpocket-wise cleavage entropy for

P39: r = 0.73). Several matrix metallo proteases are known to show

amino acid preferences at this position besides the S19 pocket,

being the main carrier of substrate specificity in matrix metallo

proteases [52]. For example matrix metallo protease 13 is known

to preferably cleave peptides having a small residue as glycine or

alanine at position P39 [53]. As a consequence, PC3 separates

metallo proteases. Still, completely unspecific matrix metallo

proteases, as for example thermolysin, are not separated from

other proteases via PC3 (see Figure 2c, 2d and Supporting Figure

S1 for more details).

Further principal components rather represent single amino acid

preferences at specific positions than general substrate promiscuity.

The sixth principal component (PC6) separates aspartic proteases

from other catalytic types, as several of them show a preference for

apolar residues in P1 position. Therefore, a scatter plot of PC3

versus PC6 nicely clusters the different catalytic types present in the

test set of 62 proteases. Necepsin 1 of Caenorhabditis elegans is the only

aspartic protease not well separated from other catalytic types. For

this particular protease involved in neurodegeneration [54] no

stringent substrate criteria are known [55].

Regrafting the Protease Similarity Tree
The distance matrix of proteases investigated via principal

component analysis was also employed to construct a similarity

tree based on protease substrate recognition over the whole

binding site S4-S49. Tree construction was found to yield a

consistent result at a minimum of 100 random starts with a

standard error of seventeen percent on distance reproduction for

the tree over the whole binding site.

In contrast to evolutionary trees based on protein sequences or

domains (e.g. [56,57,58,4]), similarity trees based on substrate

readout allow to compare enzymes of different evolutionary origin

because no assumption on homology has to be made. Hence,

individual evolutionary trees of proteases are merged to yield a

complete picture of diversity in substrate readout of proteases (see

Figure 3). Even though no protease sequence information was used

in tree construction, information on evolutionary subgroups of

proteases is recovered from substrate-driven protease specificity

trees. Homologues thimet oligopeptidase and neurolysin are

grouped in a separate branch distinct in degradome space from

all other members, as both of them cleave oligopeptides with

substrate readout over the whole binding site region [48,4]. A

second branch is formed by the subfamily S8B around the

subtilases kexin and furin. Non-homologous kallikrein-related

peptidase 4 is added to the branch, though being overall more

unspecific. Still, it shares the main features of substrate readout:

peptides containing positively charged residues at P1 [59] as well

as arginine-containing substrates at P4 are preferred (see also

Supporting Table S1).

Chymotrypsin-like serine protease (MEROPS family S1) are

scattered over a wide range in our similarity tree. This reflects the

broadness of specificities and substrate promiscuities within this

family containing digestive enzymes as well as signaling proteases.

A similar result was recently obtained by a structure-based analysis

of protease binding sites [60]. A cavity-based clustering scattered

Substrate-Driven Mapping of the Degradome
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all members present in our set into separate clusters. In analogy to

our study, Glinca and Klebe found pure protein sequence data to

be less informative for an analysis of substrate recognition.

In general, proteases are grouped with respect to substrate

promiscuity as measured by total cleavage entropy [4]. The main

branch of the protease specificity tree first splits off caspases and

Figure 2. Principal component analysis of the protease similarity matrix: Eigenvectors of the protease similarity matrix are used to map the
degradome in lower dimensionality. Plotting principal component 1 (PC1) versus principal component two (PC2) and coloring according to cleavage
entropy in a spectrum from red (specific) via yellow to green (unspecific) (2a) shows that both primary principal components mainly contain
information on protease specificity. Coloring according to catalytic types (2b, serine protease: cyan, metallo protease: pink, cysteine protease: dark
grey, aspartic protease: blue, protease complex: white) shows that PC2 separates serine proteases from other degradome members. PC3 does not
correlate to substrate promiscuity (2c), but rather splits up metallo proteases (2d). Similarly, PC6 does not correlate to overall substrate readout (2e),
but groups catalytic types of proteases only via their substrate preferences in combination with PC3 (2f): Metallo proteases are grouped to the left,
cysteine proteases on top, aspartic proteases on the bottom, serine proteases in the center.
doi:10.1371/journal.pcbi.1003353.g002

Substrate-Driven Mapping of the Degradome
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granzyme B sharing a preference for aspartate residues at P1, although

evolutionary not related and not even sharing the catalytic type.

Caspases form a separate fold of cysteine proteases C14 [61], whereas

granzymes are members of the chymotrypsin fold of serine proteases

S1 [62]. After splitting off several singletons with unique substrate

readout, residual proteases form a branch of unspecific matrix metallo

proteases M10 as well as the digestive enzymes within the pepsin

family A1. Overall, the large branch comprising most proteases spans

from individual specific proteases to completely unspecific enzymes.

Apart from a comparison over the whole binding site region,

similar analyses were performed for regions of interest within. An

analog protease specificity tree was constructed only based on

substrate data of the non-prime region S4-S1 (see Figure 4).

Similar grouping of proteases was obtained as compared to the

protease specificity tree over the whole binding site region. This

highlights the importance of interactions within the non-prime

region for specific protease substrate recognition. By narrowing

the region of interest, catalytic types of proteases as well as

evolutionary families are clustering more and more, still preserving

the overall trend to group specific as well as unspecific proteases.

When narrowing down the substrate positions analysed to

amino acids at P1, the readout at this particular subpocket can be

Figure 3. Protease specificity tree over the whole binding site region: The degradome is mapped to a protease specificity tree based on
substrate similarity over S4-S49. Proteases are colored according to their catalytic type: serine proteases (cyan), metallo proteases (pink), cysteine
proteases (dark grey), aspartic proteases (blue). The outer ring shows total cleavage entropies in a color spectrum from red (specific) over yellow to
green (unspecific). The protease specificity tree shows striking similarities in substrate readout of proteases based on different catalytic mechanism.
doi:10.1371/journal.pcbi.1003353.g003

Substrate-Driven Mapping of the Degradome
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investigated in detail (see Figure 5). The degradome again splits

into three main branches in the protease specificity tree. First,

proteases recognizing aspartate residues at P1 such as caspases and

granzyme B are split off. Second, proteases cleaving after positively

charged residues, as for example trypsin [22], are separated. This

branch shows an internal branching pattern according to the

preference of arginine over lysine or vice versa. The third branch

splits off several proteases showing unique substrate preferences:

elastase preferring hydrophobic residues [63], glutamyl peptidase I

specifically cleaving after glutamate residues [64] as well as

neurolysin and thimet oligopeptidase mainly cleaving after proline

residues (see also Supporting Table S1). The branch containing

the latter two proteases is not as clearly separated from other

proteases when compared to the protease specificity tree based on

the substrate recognition over the whole binding site. The residual

tree contains unspecific proteases of all catalytic types sorted by

increasing subpocket-wise cleavage entropy within P1 and hence

unspecific substrate cleavage.

Figure 4. Protease specificity tree over the non-prime binding site region S4-S1: The degradome is mapped to a protease specificity tree
based on local substrate similarity over S4-S1 pockets. Proteases are colored according to their catalytic type: serine proteases (cyan), metallo
proteases (pink), cysteine proteases (dark grey), aspartic proteases (blue). The outer ring shows cleavage entropies for the range S4-S1 in a color
spectrum from red (specific) over yellow to green (unspecific). The reduced scattering of catalytic types when compared to the protease specificity
tree for the whole binding site indicates a grouping of evolutionary close members.
doi:10.1371/journal.pcbi.1003353.g004

Substrate-Driven Mapping of the Degradome
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Mapping of Ligand Data
Finally, we mapped targets of known protease inhibitors from

the ChEMBL database to the protease specificity trees. We chose

benzamidine (ChEMBL20936) as a well-studied protease inhibitor

that occupies only a single protease subpocket S1 in bound state

(e.g. [65]). We mapped known targets to the protease specificity

tree based on S4-S1 amino acid frequencies (see Figure 6). Despite

the wide usage of benzamidine as protease inhibitor in biochem-

istry (e.g. [66]), ChEMBL only lists bioactivity data for three

protease targets in our test set. All three proteases plasmin, trypsin

1, and thrombin are serine proteases of the chymotrypsin fold

known to prefer positively charged amino acids at P1 position and

hence nicely group in one branch of the protease specificity tree.

Several ligands in ChEMBL are annotated to bind to even more

than three different proteases. We chose BI 201335 (ChEMBL1241348)

as example for a promiscuous non-covalent protease ligand inhi-

biting a wide range of proteases even distributed over different

catalytic types (see Figure 7). BI 201335 is a known inhibitor of the

Figure 5. Protease specificity tree based on S1 amino acids: The degradome is mapped to a protease specificity tree based on S1 amino acid
frequencies in substrates. Proteases are colored according to their catalytic type: serine proteases (cyan), metallo proteases (pink), cysteine proteases
(dark grey), aspartic proteases (blue). The outer ring shows subpocket cleavage entropies for the S1 pocket in a color spectrum from red (specific)
over yellow to green (unspecific). A grouping of proteases recognizing aspartic acid, basic amino acids as well as hydrophobic or unspecific proteases
is observed.
doi:10.1371/journal.pcbi.1003353.g005

Substrate-Driven Mapping of the Degradome
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Hepatitis C Virus NS3-NS4A protease [67]. Mapping all 21

annotated targets in our protease set to the protease specificity tree

over the whole binding site region, we observe a clustering of all

known protease targets in particular branches of the degradome.

Similarity between these targets is not observed on sequence or

structure basis, as targets span all four major catalytic types of

proteases.

Similar to BI 201335, the linear depsipeptide grassystatin A

(ChEMBL567893) binds several targets annotated in ChEMBL.

Kwan et al performed a screening campaign against 59 proteases

in an effort to rationalize selectivity of grassystatins A-C [68], thus

providing broad bioactivity data for these three compounds.

Known targets tend to cluster to groups within our protease

specificity tree (see Figure 8). Grassystatin A binds to several

matrix metallo proteases forming one branch, similarly several

caspases as well as cathepsins D and E forming two groups in the

tree are known targets. As for BI 201335 known targets of

promiscuous grassystatin A span all catalytic types of proteases.

Figure 6. Mapping of known targets of benzamidine to the substrate-driven protease specificity tree: Known targets from the ChEMBL
database (outer ring blue) cluster on top of the protease specificity tree based on S4-S1 substrate readout compared to unknown targets (outer ring
light grey) and targets without ChEMBL identifier (outer ring white). Proteases are colored according to their catalytic type: serine proteases (cyan),
metallo proteases (pink), cysteine proteases (dark grey) and aspartic proteases (blue). Targets of benzamidine are members of the chymotrypsin fold
preferring positively charged amino acids at P1. Off-target binding of benzamidine to proteases positioned in vicinity of the already known targets
(e.g. granzyme A) is proposed.
doi:10.1371/journal.pcbi.1003353.g006

Substrate-Driven Mapping of the Degradome
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A mapping of known targets of 2-[(4-methoxybenzyl)sulfanyl]-6-

methylpyrimidin-4-ol (ChEMBL500351) reveals promiscuous binding

to several metallo proteases (see Figure 9). The main data source for this

compound is a screening study by Nakai et al aiming at characteri-

zation of the selectivity of small molecule MMP13 inhibitors [69].

The screening set included various members of the matrix metallo

proteases as well as neprilysin. All these targets cluster in one region

of our substrate-based degradome map, whereas the metallo protease

thermolysin, which is an unknown target for this compound, is omitted.

Discussion

We present a novel approach to intuitively map the degradome

based on substrate readout rather than protease sequence. The

underlying methodology to construct a similarity matrix is solely

based on subpocket amino acid frequencies, the same information

visualized in common sequence logos of protease substrates.

Therefore, the presented method is suitable for comparison of any

kind of position-specific scoring matrix, e.g., a multiple sequence

Figure 7. Mapping of known targets of BI 201335 to the protease specificity tree: Known targets in ChEMBL (outer ring blue) cluster on the
right side of the protease specificity tree, calculated over the whole S4-S49 region, compared to unknown targets (outer ring light grey). Proteases
without a ChEMBL identifier are colored white in the outer ring. Known targets include all catalytic mechanisms of proteases: serine proteases (cyan),
metallo proteases (pink), cysteine proteases (dark grey) and aspartic proteases (blue). This highlights the promiscuous binding of a single ligand to
several proteases.
doi:10.1371/journal.pcbi.1003353.g007
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alignment or sequence motif. We encourage the community to use

our method for comparison of sequence logos also in research

apart from the protease universe.

Navigating the protease space using the approach described

here has three major advantages over a protein sequence-driven

view: First, protease similarity is inherently captured in the

interaction with a substrate. Accordingly, binding site similarities

are directly probed by using substrate data. Natural amino acids

contain a variety of chemical features and provide multiple anchor

points for interactions. By mapping known targets of small

molecules to our protease specificity trees, we can directly translate

knowledge from peptide and protein substrates to drug design of

small molecules. Secondly, our approach is not limited to the

analysis of similarities and differences between homologous

proteases as sequence-based analyses. Taking the common feature,

the cleaved substrates as basis, we are able to compare proteases of

different evolutionary origin. Therefore, we can engraft individual

evolutionary trees of proteases to a complete map of the

Figure 8. Mapping of known targets of grassystatin A to the protease specificity tree: Known targets in ChEMBL (outer ring blue) cluster in
particular regions of the degradome map caculated over the whole S4-S49 region, compared to unknown targets (outer ring light grey). For proteases
without ChEMBL target identifier the outer ring remains white. Known targets of grassystatin A span all catalytic mechanisms of proteases: serine
proteases (cyan), metallo proteases (pink), cysteine proteases (dark grey) and aspartic proteases (blue) proving promiscuous binding.
doi:10.1371/journal.pcbi.1003353.g008
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degradome. Finally, with increasing knowledge and availability of

large scale data in protease databases, our data-driven mapping of

the degradome can be more and more refined to result in a highly

detailed view of protease substrate recognition. An annotation of

true negatives, whether in the field of small molecule binding data

or protease substrate data, would be especially helpful to refine

current models. Likewise, quantitative data of binding affinity and

kinetics could provide new insights into protease substrate

recognition.

The presented principal component analysis on the similarity

matrix of 62 proteases highlights the most important features of

protease substrate recognition. The main variance in the data set

results from substrate promiscuity quantified as total cleavage

entropy and covered in PC1 and PC2. PC2 especially correlates

with specificity of S1-P1 interactions, the major specific interaction

point for most proteases, directly adjacent to the scissile bond.

Further principal components read special subpocket interactions

and hence group proteases by catalytic types, rendering a complex

Figure 9. Mapping of known targets of 2-[(4-methoxybenzyl)sulfanyl]-6-methylpyrimidin-4-ol to the protease specificity tree:
Known targets (outer ring blue) cluster in the right part of the tree calculated over the whole S4-S49 binding site region covering several metallo
proteases. Unknown targets (outer ring white) and proteases without ChEMBL identifier (outer ring light grey) are found on the left side of the
protease tree. This ligand is only known to bind to metallo proteases (pink), whilst serine proteases (cyan), cysteine proteases (dark grey) and aspartic
proteases (blue) are not inhibited.
doi:10.1371/journal.pcbi.1003353.g009
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picture of protease-substrate recognition characteristics. This close

interplay of protease catalytic types, evolutionary relations and

diversification of specificity and function has been discussed over

years (e.g. [70]), and are recovered by the statistical analysis

presented in this study.

Analysis of protease-ligand annotations within ChEMBL shows

a striking promiscuity of small molecules within the degradome.

Broad binding profiles even overlap between catalytic types of

proteases, adding an additional layer of complexity to the

understanding or protease specificity. Current protease assay

panels are usually limited to proteases with the same catalytic

mechanism (e.g. [71]). Therefore, promiscuous binding to

proteases of other catalytic type but similar substrate preferences

would not be detected within these assays. We strongly encourage

to setup broader protease assay panels to further trace ligand

promiscuity within the protease field. Availability of suitable data

sets would be of high interest for academic research.

We observe different exchange probabilities for chemically

closely related residues within the protease set covered in our

study. Cleavage profiles show large overlaps in substrate recogni-

tion between proteases preferring positively charged residues,

arginine or lysine, such as several members of the chymotrypsin

fold. Still, we do not observe similar overlaps amongst substrate

spectra of proteases recognizing negatively charged residues.

Caspases and granzyme B are highly specific for aspartate residues,

whereas glutamyl peptidase I predominantly binds glutamate

residues at the S1 pocket. No overlaps between aspartate and

glutamate preferring binding pockets are present in our set.

As our analysis of protease similarities based on cleaved sub-

strates directly uncovers similarities in substrate recognition, we

propose to apply our methodology for the prediction of off-target

effects and understanding of polypharmacology within the protease

field. We expect similarities in sequence specificity and thus sub-

strate recognition to correlate with ligand recognition. Hence,

proximity of proteases in specificity trees and principal component

analyses should indicate possible off-target effects. Figure 6 shows

how benzamidine binds to a branch of the protease specificity tree,

whilst other members are omitted. We assume that benzamidine

would also bind to the other proteases recognizing highly similar

peptide substrates, e.g., granzyme A. This similarity in peptide

binding is captured in our substrate-driven trees but not directly

visible from sequence or structure due to different evolutionary

origins. Still, more and more ligands binding to multiple similar but

non-homologous binding sites are described in the literature [72].

Intuitively, drug repurposing efforts within the field of proteases can

directly be based on our study via capturing substrate similarity.

Current strategies to predict or probe off-target effects include

analysis of similarities in ligand structure, target structure as well as

combinations thereof [73,74,75]. Especially, three-dimensional

information has been described to be crucial in this field [76].

Computational techniques applied to capture target structure

similarity include molecular docking [77] as well as pharmaco-

phore-based approaches [78]. Similar binding sites are expected to

result in polypharmacology as a consequence of binding of similar

ligands [79,80]. Apart from prediction of polypharmacology,

ligand-based network analyses have recently been found useful in

the identification of unknown mechanisms of action of known

drugs [81]. Our presented study introduces a novel ligand-based

methodology to the field, the comparison of enzymes based on

their peptide substrates.

Keeping in mind that substrate promiscuity is a general

prerequisite for drug design [82], analyses of substrate promiscuity

and specificity are of high importance for the protease field. Larger

analyses of binding site similarities of protease mainly cover

structure-based comparisons [52,60,83], but neglect existing

information on substrates. Following the general trend towards

drug polypharmacology [84,85] and the high potential of multi

target drugs [86], we think that our study is an important step to

fill that particular gap. By mapping the degradome from the

perspective of substrates, similarities of protein binding sites can be

captured directly. We have shown the straightforward applicability

of information from peptide substrates in the chemical space of

drug molecules and expect that similar studies are feasible for all

kinds of protein-protein interfaces where sufficient substrate data is

available.

Supporting Information

Figure S1 Principal component analysis of the protease distance

matrix: Proteases mapped to the lower-dimensional degradome

map from principal component analysis are colored according to

their subpocket-wise cleavage entropies in a color range from red

(specific) to green (unspecific). Proteases are colored by subpocket-

wise cleavage entropy over pockets in the non-prime region (S4 to

S1) in figure S1a against principal components 1 and 2. Figures

S1b and S1c show a coloring according to subpocket-wise cleavage

entropy of pockets S1 and S39 respectively in a scatter plot of

principal components 1, 2 and 3.
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Table S1 List of 62 investigated proteases annotated with

MEROPS and ChEMBL identifiers as well as catalytic types,

number of substrates and sequence logo. Proteases are sorted

according to MEROPS identifier to assure grouping of evolution-

ary branches.
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