
A Comprehensive Survey of Small-Molecule Binding
Pockets in Proteins
Mu Gao, Jeffrey Skolnick*

Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America

Abstract

Many biological activities originate from interactions between small-molecule ligands and their protein targets. A detailed
structural and physico-chemical characterization of these interactions could significantly deepen our understanding of
protein function and facilitate drug design. Here, we present a large-scale study on a non-redundant set of about 20,000
known ligand-binding sites, or pockets, of proteins. We find that the structural space of protein pockets is crowded, likely
complete, and may be represented by about 1,000 pocket shapes. Correspondingly, the growth rate of novel pockets
deposited in the Protein Data Bank has been decreasing steadily over the recent years. Moreover, many protein pockets are
promiscuous and interact with ligands of diverse scaffolds. Conversely, many ligands are promiscuous and interact with
structurally different pockets. Through a physico-chemical and structural analysis, we provide insights into understanding
both pocket promiscuity and ligand promiscuity. Finally, we discuss the implications of our study for the prediction of
protein-ligand interactions based on pocket comparison.
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Introduction

At the molecular level, many functions of proteins in a living cell

can be attributed to or regulated by their interactions with small-

molecule ligands such as metabolites or drugs [1,2]. A high-

resolution structural description of protein-ligand recognition is

very important for understanding protein function and designing

new compounds for therapeutic purposes. As revealed in many of

the crystal structures of proteins in complex with their ligands,

protein-ligand interactions usually take place at preferred sites on

the protein surface known as ‘‘pockets’’ [3,4], in contrast to

relatively flat geometric shape of protein-protein interaction sites

[5]. Traditionally, the study of a protein-ligand complex structures

often focuses on the structural or physico-chemical characteristics

that are thought to be specific to that individual pocket [6].

However, it is becoming more and more clear that proteins are

generally promiscuous in that they interact with multiple distinct

ligands [7,8]. One naturally seeks detailed structural insights into

both the origin and generality of this intriguing observation. In this

regard, a comprehensive, large-scale comparative study on all

protein pockets in all protein structures that are solved to date may

uncover principles that explain the promiscuity of protein-ligand

interactions.

In such a study, the first question is: How many representative

pockets are there in the structural space of all pockets? This echoes

a similar question asked about the fold space of proteins [9,10]. A

very recent study addressed this by comparing the pockets of 5,000

single-domain proteins [11]. It was found that a few hundred

pocket structures are enough to represent all structure shapes in

this set, and similar shaped pockets are also found in artificially

generated proteins, which were built and selected based on

thermodynamic stability but not biochemical function. In this

sense, the structural space of protein pockets is degenerate and

surprisingly small. Since the number of known bioactive ligands

[12,13] is much larger than the available number of pocket shapes,

the implication is that a given pocket shape can accommodate

more than one type of ligand, thus generating the promiscuity

responsible for the evolution of biochemical function [14,15]. The

observation that pocket shapes are degenerate suggests that the

same ligand could bind to pockets of similar shape but located in

different proteins, thus leading to side-effects of drug molecules

through unexpected ‘‘off-target’’ interactions [16,17]. However,

the specific interplay of pocket geometry and chemical environ-

ment with the types of ligands that are bound was not addressed in

that study [11] as it focused on the properties of pockets in proteins

without a companion analysis of the bound ligands. In the current

contribution, we address this issue.

A second question is: To what extent can we infer a similar

protein-ligand interaction by matching protein pockets? The

answer to this question has practical applications for protein

function prediction [18] or small-molecule compound screening

[19]. In order to match pockets, many computational approaches

have been developed to compare pockets based on their structural

and/or physico-chemical features (for a review see [20]). These

methods may be categorized into two classes: The first is based on

the structural alignment of pocket-lining residues or atoms [21–

24], and the second is based on comparison of descriptors

independent of the residue or atom alignment [25–27]. The

former class is generally more accurate, albeit slower than an

alignment-free method, due to the complexity of the alignment

algorithm. In that regard, we recently proposed an efficient, robust

method, APoc, for large-scale pocket comparison [28]. On the
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other hand, since a structural alignment is not required,

alignment-free methods might have an advantage in dealing with

flexible pockets. Their disadvantage is that they often lack a direct

physical interpretation for why two pockets are similar as assessed

by their fingerprints.

Another interesting question is: How different are the ligands

that bind to the same pocket? Obviously, if the ligands are very

similar, they are very likely to have similar interactions with the

pocket, e.g., that might contain a common anchor and variable

region [29]. However, if the ligands possess different scaffolds

and/or chemical properties, it might not be obvious as to what, if

any, interactions are conserved. How does a pocket maintain

favorable interactions with very different ligands? Conversely, a

ligand may be found in pockets of different protein structures.

How different are those pockets that interact with the same ligand?

An early study of pockets from non-homologous proteins that bind

the nine most common ligands suggests that there are shape

variations in these pockets [30]. This further raises the question of

how a ligand manages to interact with different pocket shapes.

To address these questions, we performed a comprehensive

comparative study on a large curated set of over 20,000 ligand-

bound pocket structures from crystallized protein-ligand complex-

es. We first characterize the structural space of these pockets. This

is followed by an analysis of the correlations between pocket

similarity and ligand chemical similarity. Then, we investigate

both pocket promiscuity (one pocket accommodating different ligands

separately) and ligand promiscuity (one ligand recognized by different

proteins), respectively. Finally, the implications of our study are

discussed.

Results

How many representative protein pockets involving
ligand-protein recognition are there?

To answer this question, we have collected all crystal structures

of protein-ligand complexes deposited in the PDB till May 2012

and curated a non-redundant set of 20,414 ligand-bound pockets,

which contains 9,485 unique ligands (see Methods). A pocket is

defined by ligand-binding sites, i.e., the amino acids in physical

contact with the ligand. We then performed all-against-all pocket

comparisons using the pocket comparison method APoc [28].

Pocket similarity is evaluated by the pocket similarity score (PS-

score), which measures the geometry of backbone Ca atoms of

aligned pocket-lining residues, as well as their side chain

orientation and chemical properties. Identical pocket structures

have a perfect PS-score of 1. Significant similarity emerges starting

from a PS-score higher than 0.36 (see Table S1). Fig. 1 shows the

APoc alignments of six adenosine diphosphate (ADP) binding

pockets from six different proteins against a common ADP-binding

pocket from protein kinase Chk2 [31]. These examples illustrate

pocket similarity at various significance levels of their PS-scores. In

the first example (Fig. 1A), another protein kinase [32], a homolog

of Chk2, matches Chk2 both the pocket and global fold structures

at a PS-score of 0.81, an associated P-value of 1.0610212, and a

Template Modeling score (TM-score) of 0.77. TM-score is a

measure for protein global structural similarity, and a TM-score

higher than 0.40 is significant [33]. In the other five cases, there is

low or no global structural similarity, reflected by both visual

inspection and low TM-scores of no more than 0.37. However,

APoc detects similarity in their ligand-binding pockets. An inositol

phosphate kinase [34] exhibits a strong resemblance to Chk2 in

their pockets at a PS-score of 0.66, a P-value of 1.261028, and an

RMSD of 1.6 Å in the aligned pocket-lining Ca atoms (Fig. 1B).

Two proteins in ATP-grasp folds, a glutathione synthetase [35]

and a FAICAR synthase [36], display highly significant similarity

at PS-scores of 0.51 and 0.46, together with P-values of 2.061025

and 7.861024, respectively. The last two examples, a pyridoxal

kinase [37] and a signaling protein GlnK [38], show lower pocket

similarity to that of Chk2 at PS-scores of 0.40 and 0.38, and P-

values of 7.261023 and 4.661022, respectively. In these two cases,

there are some adjustments by ligands in their docking poses in

response to the structural variations of their pockets, yielding

relatively low, but still significant PS-scores.

We then seek to find the smallest set of pockets (or templates)

that are sufficient to represent the full set of pockets at a given level

of similarity. In terms of graph theory, pocket similarity

relationships can be viewed as a directed graph G, wherein each

node defines a pocket, and an edge from pocket A to pocket B

indicates that A as a representative pocket has significant similarity

to B above a specified PS-score threshold. Thus, the sought-after

set of representative pockets is the smallest dominating set of the

graph G (see Methods).

Fig. 2A shows the growth of representative protein pockets

versus year. As background, the total number of pockets examined

exhibits an exponential growth, especially from the years 1990 to

2000. After this initial rapid increase, however, the annual growth

rate has been gradually slowed down from 26% in 2001 to 15% in

2011. The trend is similar in N, the number of selected

representative pockets, but the pace of growth is even slower.

For example, at a PS-score threshold of 0.40, the annual growth of

N decreased from 14% in 2001 to 4% in 2011; at the PS-score of

0.50, the rate is 24% in 2001 and 9% in 2011. These results

suggest that many pockets are structurally redundant, e.g., the

highly similar ATP-binding pockets from a large family of protein

kinase catalytic domains that happen to be the binding-sites of

many designed inhibitors as well.

The observation that the number of representative pockets is

approaching a plateau at a significant PS-score of 0.40 supports

the notion that the structural space of ligand-bound pockets is

close to complete, and a set of 1,315 pockets may represent the

current pocket library at this similarity level. Pairwise comparisons

between matched target pockets and these representatives give a

Author Summary

The life of a living cell relies on many distinct proteins to
carry out their functions. Most of these functions are
rooted in interactions between the proteins and metab-
olites, small-molecules essential for life. By targeting
specific proteins relevant to a disease, drug molecules
may provide a cure. A deep understanding of the nature of
interactions between proteins and small-molecules (or
ligands) through analyzing their structures may help
predict protein function or improve drug design. In this
contribution, we present a large-scale analysis of a non-
redundant set of over 20,000 experimental protein-ligand
complex structures available in the current Protein Data
Bank. We seek answers to several fundamental questions:
How many representative pockets are there that serve as
ligand-binding sites in proteins? To what extent can we
infer a similar protein-ligand interaction by matching the
structures of protein pockets? How different are the
ligands found in the same pocket? For a promiscuous
protein pocket, how does a pocket maintain favorable
interactions with very different ligands? Conversely, how
different are those pockets that interact with the same
ligand? We find the structural space of protein pocket is
small and that both protein promiscuity and ligand
promiscuity are very common in Nature.

Small-Molecule Binding Pockets in Proteins
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Figure 1. Examples of pocket alignments according to APoc. (A–F) Six ADP-binding pockets taken from six different protein structures
(green) are aligned to a common ADP-binding pocket from the checkpoint protein kinase Chk2 (purple). In each snapshot, the two protein structures
are shown in cartoon representations, and the corresponding bound-ligands are shown in cyan and red licorice representations, respectively. For
clarity, non-pocket regions are shown in transparent purple in Chk2, and in transparent grey in the other proteins, whereas pocket regions are shown
in solid purple in Chk2 and solid green in the other cases. Aligned pocket Ca atoms are shown as spheres. An enlarged view of the pocket alignment
is displayed on the right. The top label denotes the name of the protein and its PDB accession code in parentheses; and the bottom label denotes the
corresponding PS-score, P-value, RMSD of aligned atoms, and the TM-score. Molecular images were created with VMD [56]. They were taken in the
same view at Chk2.
doi:10.1371/journal.pcbi.1003302.g001

Small-Molecule Binding Pockets in Proteins
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mean alignment RMSD of 1.74 Å, a mean alignment coverage of

84%; half of these comparisons have a highly significant

P,161024 (Fig. S1). Note that this number of representative

pockets is higher than that reported in a previous study [11], which

found 339 representatives in 5,000 proteins of less than 250

residues. If we use the same protein length criterion, the total

number of pockets is reduced 65%, and a total of 332

representative pockets were obtained at a PS-score of 0.40. These

numbers are therefore consistent. At a high PS-score of 0.50, a set

of 3,158 representative pockets are selected, and about 96% of

matching pocket comparisons have a RMSD of 2.5 Å or less, 90%

have an alignment coverage better than 70%, and 94% with a

P,161024.

From a network prospective, the structural space of pockets is

highly connected, meaning that virtually all pocket nodes can

reach other pocket nodes through a path of significantly related

pockets; that is, the Largest Strongly Connected Component

(LSCC) dominates G. About 97% of all pockets belong to the

LSCC at a PS-score of 0.40, and the percentage is 75% at 0.45

(Fig. 2B). Notably, a phase transition occurs at a PS-score

threshold of 0.50, when the space becomes disconnected with

1,834 strongly connected components (or clusters), and the

corresponding LSCC consists of only 7.7% of all pockets. At this

level, the pocket space becomes discrete and members in the same

cluster could be evolutionarily related. For instance, the LSCC at

PS-score of 0.50 is composed of 1,571 ATP- and ADP-binding

pockets, about 90% of them are from protein kinases, and the

remaining from likely related proteins whose function is also

dependent on ATP, such as glutathione synthases, SAICAR

synthases, and some other types of kinases. Some examples are

shown in Fig. 1.

Can one infer ligand-binding based on pocket similarity?
A common assumption for inferring protein-ligand interaction is

that similar pockets bind similar ligands. The relationship between

ligand similarity and pocket similarity, however, needs a thorough

examination. Here, we use a 1024-bit fingerprint to compare the

chemical similarity of ligands in terms of their pairwise Tanimoto

coefficient (Tc, see Methods). As shown in Fig. 3, the distribution

of all-against-all (excluding self comparison) Tc values of 9,485

ligands in our data gives a mean Tc value of 0.162 and a standard

deviation of 0.088. The distribution has a long tail, suggesting that

there exist many similar ligands in our set. A Tc score higher than

0.4 appears in less than 2% of all cases. In our analysis below, Tc

scores above 0.4 are deemed significant. Five ligands whose

structures are related to ADP are demonstrated as examples in

Fig. 3. These ligands have Tc values ranging from 0.4 to above 0.9.

Fig. 4A shows the distribution of ligands at different pocket

similarity levels, defined by the P-values of their PS-scores. For a

0.01#P-value,0.05, about 13% of ligand pairs share significant

chemical similarity at a Tanimoto coefficient (Tc).0.4. This

percentage increases to 31% and 37% as one increases the pocket

similarity level to a P-value of 161023 and 161025, respectively.

The percentage drops to 18% at pocket P,161025. This

unexpected observation is due to many pockets are promiscuous

and interact with chemically different ligands. The PDB is biased

towards these types of pockets, because they are often from

putative drug targets, e.g., protein kinases, proteases, etc.

In some cases, it is possible to identify local pocket similarity

when overall global structural similarity is likely absent. Fig. 4B

displays only those cases where pockets are from proteins with

different global structures at a TM-score ,0.4 [33]. About 24%

and 52% of pockets recognize similar ligands at a Tc.0.4, at a

corresponding P-values of 161023 and 161025, respectively. The

percentage increases to 84% for highly similar pockets at

P,161025. However, we note that the number of cases

considered here is much smaller than Fig. 2A and might therefore

underestimate pocket promiscuity. The regime where P,161025

comprises of only 0.7% of pockets. The subset is dominated by

GDP-binding pockets that appear in multi-domain proteins with

low global similarity but high pocket similarity. Nevertheless, the

analysis shows that it is possible to detect pockets that share both

similar ligands and pockets, even though they may be from two

proteins with very different global structures.

Figure 2. Representative protein pockets for ligand-binding in the PDB. (A) Number of representative pockets versus year. ‘‘All Pks’’ denotes
all 20,414 non-redundant pockets collected from the PDB up to May, 2012. The number of representative pockets was obtained by finding the
smallest dominating set of all pockets at a specified PS-score (PSS) and a significant P,0.01. The number of pockets is shown on a logarithmic scale.
(B) Size of the largest cluster of pockets at different PS-scores. Each PS-score threshold defines a graph representing the structural relationships of
pockets. In each graph, the largest cluster forming the LSCC is then identified, and the size of the LSCC is plotted against the PS-score threshold.
doi:10.1371/journal.pcbi.1003302.g002
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Next, we ask the question of how many protein-ligand

interactions observed in the PDB can be matched to a template

that has both a similar pocket and a similar ligand? To answer this

question, for each target pocket, we search for the best structural

hit that satisfies two conditions: (i) global sequence identity ,30%;

and (ii) chemical similarity Tc of ligands larger than a specified

value. The result is shown in Fig. 5. At a significant Tc.0.4, about

86% of pockets can find a template hit with significant pocket

similarity at the PS-score P,0.05 that binds similar ligands. The

numbers are 72%, 60%, and 54% at P,0.01, 0.001, and 0.0001,

respectively. At a highly significant Tc.0.7, most (60% and 50%

of) pockets hit a template at P,0.05 and ,0.01, respectively. The

result shows that structural comparison of pockets could be useful

for inferring ligand-binding. In particular, many of these top

structural hits come from proteins with low global structural

similarity or even different structural folds. At a Tc.0.4 and

P,0.05, about 35% of the top template hits are from proteins with

global TM-score ,0.4. The percentage is 19% at a Tc.0.7.

These are challenging cases for sequence-based methods, but

could in principle be dealt with by adopting a structure-based

approach. However, we also note that for all Tc values, there

remain a significant fraction of pockets that are structurally

unrelated and yet they bind similar ligands.

Many protein pockets are promiscuous
The above results indicate that pockets of similar shapes can

attract a diverse set of ligands with different chemical properties.

One obvious explanation that accounts for this observed chemical

diversity is that a similarly shaped pocket may have a different

amino acid composition, thus generating different physico-

chemical environments favored by chemically different ligands,

e.g., homologs with modified substrate specificities. A second

reason is that, for large pockets, some small-molecule ligands may

be bound to at least partially different regions of the pockets, and

these ligands may not necessarily have similar chemical properties.

Of special interest are promiscuous pockets, i.e., the same

pockets recognized by ligands with different chemical structures.

To examine pocket promiscuity, we selected a set of 59,157 pairs

of pockets of comparable size, each pair having a highly significant

PS-score .0.6, sequence identity = 100%, and bound ligands at

low Tc,0.3. These pockets are essentially from the same proteins

crystallized with different ligands. The set is composed of 6,913

unique pockets, or 34% of all pockets in our set, and they are from

421 different clusters determined at a PS-score of 0.50. At this

level, about 25%, 31%, and 36% of all pocket clusters with more

than 2, 10, and 20 members contain at least one promiscuous

pocket, respectively. Thus, it is clear that promiscuous pockets are

not rare at all. Fig. 6 shows four examples. In each case, the same

pocket is shown to interact with two ligands of different structures.

Perhaps, the most well-known examples are ATP-binding pockets

of protein kinases, for which many novel inhibitors have been

designed. Two such examples are shown in Fig. 6A, where a

protein kinase p38a accommodates two drugs, Imatinib [39] and

Sorafenib [40], thereby inhibiting ATP from binding at the same

pocket. Although these two inhibitors were originally designed to

target different protein kinases and cancer types, they have been

shown to interact with other protein kinases such as MAP kinase

p38a. In the second example (Fig. 6B), two anti-inflammatory

drugs, Indomethacin [41] and Celecoxib [42], are demonstrated

to interact with a common protein target, cyclooxygenase-2

(COX-2). Both drug molecules bind to the active site of the

enzyme. The third example involves MurD ligase, which catalyzes

the formation of peptidoglycan ubiquitously in bacteria but is

absent in human; thus, it is an attractive target for the design of

novel anti-bacterials. Fig. 6C depicts two experimental compounds

intended for this target. They are both N-substituted derivatives of

D-Glutamic acids, and are recognized by the same set of active site

residues of the enzyme [43,44]. Last, we present a well-known

promiscuous protein, pregnane X captor (PXR), which is a

nuclear receptor protein responding to a variety of endogenous

and exogenous chemicals. Fig. 6D displays the interaction of PXR

with two compounds [45,46], which have a very different chemical

structure at a very low Tc of 0.065, yet they are found in the same,

largely hydrophobic pocket.

How does a promiscuous pocket carry on interactions with

different ligands? We decomposed atomic contacts at the protein-

ligand interfaces of the above 59,157 complex structures. On

average, 28%, 22%, and 4% of interactions are hydrophilic,

hydrophobic, or aromatic, respectively; the remaining are either

neutral (or slightly favorable interactions, 35%) or energetic

unfavorable (11%) interactions. As shown in Fig. 7, a comparative

analysis revealed that most (58%) physical interactions of similar

type are conserved between pairs of complexes. Individually, 64%

of hydrophilic or hydrogen-bond interactions, 53% of aromatic

interactions, and 66% of hydrophobic interactions are conserved

Figure 3. Distribution of Tanimoto coefficient scores of small-
molecule compounds found in the PDB. Tc scores from all-against-
all comparison of 9,485 ligands were employed to create the histogram.
Insert table shows the fraction of Tc scores higher than threshold
scores. Insert diagrams display chemical structures of ADP and five
structurally related ligands: adenosine triphosphate (ATP), adenosine
(ADN), NADPH dihydro-nicotinamide-adenine-dinucleotide phosphate
(NDP), S-adenosyl-L-homocysteine (SAH), and a-phosphoribosylpyro-
phosphoric acid (PRP). Their Tc scores in comparison to ADP are
provided under their name labels.
doi:10.1371/journal.pcbi.1003302.g003

Small-Molecule Binding Pockets in Proteins
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on average. Since aromatic contacts are rare in some structures,

they are not required to be conserved to maintain stable protein-

ligand interactions, yielding the peak at zero conserved interac-

tions observed in Fig. 4B. Overall, even though ligands may have a

very different scaffold, they may achieve the same physical

interactions with the same pocket residues. Second, specific

contacts (i.e., hydrophilic or hydrogen-bonding interactions)

contribute only 28% of all contacts on average. As a result,

favorable interactions are more flexible than might be expected on

average. Finally, the plasticity of protein pockets may allow

different types of interactions [11]. The mean PS-score of these

pockets is 0.86, and most cases have a P-value,1610212. These

are highly similar but clearly not identical pockets. The flexibility

of side chains permits different types of contacts with different

ligands to form.

The same ligand is often recognized by different pockets
Finally, we perform an analysis on pockets that accommodate

chemically similar or identical ligands. Fig. 8A shows the structural

similarity of pockets that recognize similar ligands at various but

significant Tc values .0.4. For Tc#0.8, it is clear that most pocket

pairs are structurally dissimilar, with only about 5–6% of pocket

pairs having a significant PS-score, even though they recognize

similar (but not identical) ligands. The fraction of similar pockets

pairs at P,0.05 increases to 14% for 0.8,Tc#0.99. Thus, even

here, on average very similar ligands interact with structurally

distinct pockets. Furthermore, 66% of pockets in our set interact

with virtually the same ligand (Tc.0.99) that binds to at least one

other pocket. This set includes 1,475 unique ligands, and about

25% and 13% of pocket pairs binding the same ligand share a

similarity at P,0.05 and 0.0001, respectively. Thus, many ligands

are promiscuous and interact with structurally different pockets.

We further focus on a set of 5,991 pockets bound to 51 of the

most frequently observed ligands (see Table S2), each with more

than 30 distinct pockets. For each ligand, we gathered all its

pockets, which forms pocket subspaces of ligands, converted

pocket similarity relationship into graphs, and subsequently

performed graph analyses. As shown in Fig. 8B, for 78% of these

ligands, more than half of their pockets are clustered together to

form the LSCC at a P-value,0.05 in their respective subspaces.

The percentage is 51% at a P-value,0.01. This result implies that

at least a fraction of structural features are conserved between

Figure 4. Violin plot of chemical similarity of ligands found in structurally similar pockets. (A) All 7 million pairs of pockets at PS-score P-
values,0.05 are considered. The x-axis labels mark similarity regimes for pocket pairs considered. (B) The subset of pocket pairs from proteins with
low pairwise global structural similarity at the TM-score ,0.4. A Violin plot is derived from a boxplot by scaling the width of the box such that the
area is proportional to the number of pairs of ligands observed. The white bars range from 25th to 75th percentile, and the whiskers extend to a
distance of up to 1.5 times the interquartile range. The red spheres represent the medians.
doi:10.1371/journal.pcbi.1003302.g004

Figure 5. Cumulative fraction of 20,414 pockets matched by
templates at a similarity level better than the given PS-score P-
value. Curves are generated separately at different levels of ligand
similarity as measured by Tc. The vertical dotted line is located at a P-
value = 0.05 for the PS-score.
doi:10.1371/journal.pcbi.1003302.g005

Small-Molecule Binding Pockets in Proteins
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some of these pockets within the LSCC cluster, though the

substructure conservation is not necessarily always transitive.

Thus, most pockets are structurally related, albeit some at low level

of similarity. Nevertheless, for each type of ligand, one may

represent the entire relevant pocket space using a few represen-

tative pockets, dependent on desired level of similarity, as shown in

Table S2. For example, one needs 31, 19, 23, and 15 pockets to

cover 456, 431, 371, and 329 observed pockets at P,0.05 for

ADP, HEM, NAD, FAD, the top four mostly common ligands in

the set, respectively.

The result that the same ligand may interact with different

pockets suggests that there exists multiple interaction poses

between the ligand and its pockets. One major contributing factor

to the multiple interacting poses is the conformational change of

the ligands. Fig. 8C shows the cumulative distribution of the

atomic RMSD for the same ligands observed in the similar pockets

(P,0.05) versus the dissimilar pockets (P$0.05). In about 70% and

82% of similar pockets, the corresponding ligand RMSD is less

than 1.5 and 2.0 Å, respectively, versus 42% and 63% of the

dissimilar pockets. In addition, the same conformer of a ligand

may interact with different pockets in different poses [28]. They

are the most challenging cases for a structure-based prediction on

ligand-protein interactions.

Discussion

Our study demonstrates a complicated picture of protein-ligand

interactions. First, from mainly a structural prospective, the space

of the protein pockets is degenerate. The growth rate of novel

pockets deposited in the PDB has been steadily decreasing over the

past decade, approaching a plateau. At a PS-score of 0.40

(P,0.01), one can find a structural match for all known pockets by

using about 1,300 representative pockets. The number is higher

than that reported in an earlier study [11], which was limited to

proteins with less than 250 residues and employed a less stringent

pocket similarity criterion. Perhaps, this result is not that surprising

given that the structural space of protein folds themselves is also

finite [9,10]. Like protein fold space, the structural space of protein

Figure 6. Four examples of promiscuous pockets recognized by ligands of different chemical structures. (A–D) Each panel is composed
of three snapshots. On the left is the APoc superimposition of the same protein pockets separately in complex with two ligands. The representation is
the same as in Fig. 1. Labels of ligands and PDB codes (in parentheses) are in the same color scheme as their 3D images. On the middle and right are
the schematic 2D views of the two ligands and their respective interacting pocket residues. Ligands are shown in a stick and ball representation.
Protein residues that form hydrogen bonds are also shown in a stick and ball representation, and other contacting residues are shown in a green
eyelash representation. In the stick and ball representation, carbon, oxygen, nitrogen, phosphorus, sulfur, chlorine, fluorine atoms are shown as cyan,
red, blue, brown, yellow, green, purple balls, and covalent bonds in the ligand and protein are shown in cyan and orange sticks. Hydrogen bonds are
indicated by green dashed lines, with their lengths (all less than 3.35 Å) not drawn to scale. Amino acids are labeled by their one-letter code followed
by their residue index in the original PDB records, except for 4cox in (B), whose residue indexes are renamed to be consistent to 3ln1 for clarity.
Diagrams of ligand-protein interactions were created with the program LigPlot+ [57].
doi:10.1371/journal.pcbi.1003302.g006

Figure 7. Distribution of conserved contacts between dissimilar ligands (Tc,0.3) bound to the same pockets. (A) Overall distribution
of all conserved contacts that are not unfavorable. The inserted pie chart shows ligand-protein interactions by type according their contributions to
the overall contact surface area. (B) Distributions of individual types of ligand-protein interactions that are conserved between two pairs of ligand/
pocket interactions.
doi:10.1371/journal.pcbi.1003302.g007
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pockets is continuous in the sense that a significant set of structural

features in one pocket can be found in another pocket, which may

not share any evolutionary relationship. Interestingly, at a high

structural similarity level (PS-score 0.50), a phase transition occurs

in pocket space (Fig. 2B), yielding mostly isolated clusters of

pockets that could share an evolutionary relationship. However,

this is not to say pockets at a lower similarity level do not share an

evolutionary origin or that those at a higher similarity level have a

common ancestor. Instead, it means that it is difficult to establish

their evolutionary relationship using structural information alone.

This observation is analogous to a ‘‘continuous-to-discrete’’ view

of protein fold space [47].

Like the classification of protein folds, classification of protein

pockets is dependent on the similarity criteria employed. We note

that there is no perfect metric or criteria that gives a universally

agreed upon classification. In our study, pocket similarity

comparison focused on the position of Ca and Cb atoms of the

pocket-lining residues, as well as their chemical similarity. The

similarity criteria we selected are based on estimation of the

statistical significance, ranging from P,0.05 to highly significant

P,161026 according to APoc [28].

One major purpose of pocket comparison is to develop a

structure-based method for predicting protein-ligand interactions.

The rationale behind is that similar pockets attract similar ligands.

This is certainly true to some extent; as shown in Fig. 5, for 72%

and 50% of ligand-bound pockets one can find another similarly

shaped pocket (at P,0.01) that interacts with a similar ligand at a

Tc.0.4 and 0.7, respectively. One advantage based on structural

comparison of pockets is that one may uncover ligand-protein

interactions that are undetectable from sequence or global

structural comparison. However, there is one limitation to this

approach. As we shown here, one type of pocket shape can

accommodate multiple types of ligands, which could introduce false

positives. To address this issue, it is necessary to increase the level

of pocket similarity to reduce false positives, at the cost of sensitivity.

This explains why current methods have relatively low coverage in

benchmark tests [23,28]. How to improve sensitivity and maintain

a low false positive rate remains a challenge for predicting protein-

ligand interactions on the basis of pocket similarity.

Many protein pockets are promiscuous. More than 1/3 of

pockets in our data set belong to those promiscuous pockets that

interact with multiple, chemically different ligands. Considering

that only a tiny fraction of protein-ligand interactions are captured

in the PDB, the results shown here likely represent a lower bound,

and it is very likely that promiscuous protein pockets are more

common. From an analysis of protein-ligand interactions observed

in promiscuous protein pockets, we showed that a large fraction

(,60% on average) of these interactions share similar types of

interactions, e.g., hydrogen bonding, hydrophobic, or aromatic.

Moreover, the plasticity of protein pockets may also provide

alternative, viable interaction modes [11]. Therefore, these

promiscuous interactions may be understood from a physical

chemical point of view. In principle, if one could design a scheme

that matches similar ligands based on their physico-chemical

properties regardless of their chemical scaffolds, then it could

provide a means of predicting novel protein-ligand interactions. In

practice, however, this is a highly challenging problem because

many physical interactions such as hydrophobic interactions are

not very specific, thus allowing many possible solutions that

increase the chance of hitting a false positive.

The complexity of protein-ligand interactions is also reflected in

ligand promiscuity. That is, a ligand with different poses may

interact with differently shaped pockets. One main reason is that

ligands with multiple rotatable bonds are flexible, thus yielding

different conformations selected by different pockets. In some

cases, different poses fit different physico-chemical environments

[48]. These observations further help explain polypharmacology

or the unexpected ‘‘off-target’’ interactions found in many drug

molecules [17]. From a prediction point of view, for a compound

of interest, it is unlikely to predict all its protein partners based on

only one template because of ligand structural diversity. In this

regard, a catalog of structures of many-faceted protein-ligand

interactions could significantly improve the prediction of side-

effects or repurposing of drugs.

In summary, we find that both protein pocket promiscuity and

ligand promiscuity are common. The relationship of protein

pockets and ligands is often not one to one but many to many. A

given ligand may interact with a number of proteins whose

Figure 8. Statistics of protein pockets recognizing similar or identical ligands. (A) Cumulative fraction of pocket pairs at a pocket similarity
better than then given PS-score P-value. Each pair of pockets bind to similar or identical ligands in various Tc regimes. The dotted line is located at
P = 0.05. (B) Cumulative fraction of ligands versus the coverage of their largest pocket cluster defined by the LSCC. The coverage is the size of the
LSCC divided by the number of all pockets within each ligand’s pocket space. (C) Cumulative faction of identical ligand pairs with an atomic RMSD
less than a given value. Ligand pairs are categorized into two groups according to the similarity of their corresponding pockets. A PS-score P of 0.05
was employed as the threshold for the categorization.
doi:10.1371/journal.pcbi.1003302.g008
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structures are globally unrelated but contain similar pockets. Or it

might interact with proteins having different pockets. Conversely,

a given pocket can have similar physico-chemical interactions with

ligands that may or may not have similar linear structures. For the

case of dissimilar ligand pairs, they can adopt conformations that

have similar interaction surfaces. Based on this and prior work [7],

we conclude that promiscuous ligand interactions of differing

specificity are inherent to proteins and living cells. This has a

number of implications: It provides a mechanism for a living cell to

select for useful biochemical functions as such low level function is

likely inherent to a soup of quasi stable protein structures which

can then be optimized [14,15]. It also provides biological

robustness [49]. On the other hand, it could cause difficulty in

the control of biological processes and in assessing the accuracy of

predicted protein-ligand interactions, since we are far from

knowing all protein-ligand interactions. This work clearly argues

that the notion of one ligand-one protein target that implicitly

underlies many drug discovery efforts is fundamentally incorrect.

Methods

Data set
We collected a set of 20,414 ligand-bound pockets from holo-

protein structures in the PDB [6]. The data set is curated from all

81,756 entries in a May 2012 PDB release. The program LPC

[50] was applied to analyze protein-ligand complex structures. For

each protein-ligand complex, the program returns a table of

protein residues contacting with the ligand. A protein-ligand

contact is defined based on the distance between heavy atoms

from the protein and from the ligand, respectively. If the distance

of a pair of atoms is less than the sum of the Van der Waals radii of

the two atoms plus 2.8 Å, which is the diameter of a probing

solvent molecule, then the residue that the protein atom belongs to

is considered a pocket residue. All such residues collectively

compose a protein pocket. In this study, we consider small

molecule ligands that have at least ten and fewer than 200 heavy

atoms, but do not consider polypeptides, DNA, or RNA

molecules. In the PDB, each type of ligand is represented by a

unique three-letter name known as the HET code. If one PDB

entry contains multiple ligands with an identical HET code, we

arbitrarily select the ligand making the most contacts with the

protein. The primary protein chain that a ligand associates with is

clustered at 90% sequence identity. In each cluster, we

subsequently select a representative for each type of ligand, using

X-ray structure resolution and number of contacts as the selection

criteria. Finally, we discarded pockets with l0 or fewer residues.

This yields 20,414 ligand-bound pockets, which are bound to

9,485 unique ligands.

The chemical similarity of ligands is measured by their pairwise

Tanimoto coefficient (Tc), calculated using the 1,024-bit version of

Daylight like 2D-fingerprints with the Open Babel package [51].

For two ligands A and B with fingerprints fA and fB, Tc = fA>fB/

fA<fB, where symbols > and < represent intersection and union of

non-zero bits, respectively.

Pocket comparison
Structural comparison of pockets was conducted using the

program APoc described previously [28]. Here, we give a brief

description of the main ideas. Given two input pockets, a template

and a target, APoc evaluates their Pocket Similarity score (PS-

score), which measures the similarity in their backbone geometries,

side-chain orientations, and the chemical similarities between the

aligned pocket-lining residues. The length of a pocket is the

number of Ca atoms of the pocket residues. Suppose an alignment

is obtained between a query (target) of length LQ and a template of

length LT. The PS-score of the alignment defined as

PS-score~(Szs0)=(1zs0) ð1Þ

S~
1

LQ

max
sup

XNa

i~1

piri=(1zd2
i =d2

0 )

" #
ð2Þ

pi~
1 if hiƒp=3

max(0:1,0:5zcos hi) if hiwp=3

�
ð3Þ

ri~max(0:8,d(a
Q
i ,aT

i )) ð4Þ

where Na is the number of aligned residue pairs, di is the distance

in Å between the Ca atoms of the ith aligned residue pair, and the

empirical scaling factor d0:0:70(LQ{5)1=4{0:2. The constants

in d0 were obtained by fitting the distribution of Ca distances in

random alignments of pockets. pi measures the directional

similarity between two Ca to Cb vectors in the two pockets,

which span an angle hi at the ith alignment position of two non-

Glycine residues. For Glycine, the value of pi is assigned 1 if both

amino acids are Glycine and 0.77 if only one residue is Glycine.

The latter is the mean pi derived from random alignments. ri
measures the chemical similarity of the two aligned amino acids.

d a
Q
i ,aT

i

� �
has a value of 1 if the two amino acids a

Q
i ,aT

i belong to

the same group (I–VIII) defined as: I (LVIMC), II (AG), III (ST),

IV (P), V (FYW), VI (EDNQ), VII (KR), VIII (H) [52], and 0

otherwise. The scaling factor s0~0:23{12
.

L1:88
Q ensures that the

mean score of two aligned random pockets is independent of their

length. To calculate the distances used in di and pi, aligned residues

are superimposed using the Kabsch algorithm [53] to minimize

the RMSD of the full or subset of aligned residues. In principle,

the number of all possible superpositions exponentially increases as

the alignment length grows. The notation ‘‘max’’ in Eq. 2

indicates that the PS-score corresponds to the superposition that

gives the maximum of all scores. In practice, a heuristic iterative

extension algorithm is employed to calculate the PS-score, similar

to that used for calculating the TM-score [33]. Note that identical

pocket structures have a PS-score of 1.0, which is the upper bound

of the PS-score.

APoc optimizes the pocket structural alignment through three

phases: In the first phase, several guessed solutions are generated

from gapless alignments, secondary structure comparisons, frag-

ment alignments, and local contact pattern alignments. Starting

from these guessed ‘‘seed’’ alignments, dynamic programming is

iteratively applied in the second phase. This yields an ‘‘optimal’’

sequential (viz. protein sequence order dependent) alignments

between two pocket structures. In the third phase, an iterative

procedure searches for the best non-sequential alignment between

two pockets, which is then selected if this alignment has a better

PS-score than the ‘‘optimal’’ sequential alignment. The problem of

finding an optimal non-sequential alignment (or match) is

converted to the Linear Sum Assignment Problem (LSAP), which

is a special case of integer programming and is also equivalent to

the problem of finding a maximum weight matching in a weighted

bipartite graph. To efficiently solve LSAP, we implemented the

shortest augmenting path algorithm [54], which has a polynomial

time complexity of O(N3), where N~max LT , LQ

� �
.
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Since the PS-score is an optimal score from many alignment

trials, its distribution can be modeled by the type I extreme value

distribution (Gumbel distribution). Using this statistical model, the

statistical significance, i.e. P-values, of the PS-score is estimated.

Parameters of the statistical models were obtained through

comparing millions of randomly selected pocket pairs [28].

Graph analysis
Given a graph G, the domination number N is defined as the

cardinality of the smallest dominating set of the graph. Since the

calculation of N is a NP hard problem, we implemented a greedy

algorithm to estimate this value as follows [55]: For a given set of

nodes, the node with the largest number of matched nodes is

selected first (two nodes are considered matched if they are

connected in both directions in a directed graph). Then, after

removing the selected node, the node in the remaining set with the

highest number of matched nodes among unmatched nodes is

selected. The process is iterated until all nodes that can be

matched to the selected set of nodes are identified. The resulting

number of this selected set is N.

A strongly connected graph is a subgraph where all nodes are

bidirectionally connected. The size of the LSCC was calculated

using the igraph package for the statistical platform R. The

fraction of matching pockets is the ratio of the number of pockets

assigned to the dominating set divided by the total number of

pockets.

Protein-ligand interactions
The classification of atomic ligand-protein interactions is

obtained from the LPC [50]. For each atomic contact, the

associated contact surface area is used to calculate the fraction of

conserved contacts. The overall contribution of each type of

interaction is calculated as the total contact surface area of each

type divided by the total contact surface area for all pockets. When

comparing two pairs of protein-ligand interactions, the fraction of

conserved interactions for interaction type i is defined as

f i:Si
con

.
min(Si

p1,Si
p2), where Si

p1 and Si
p2 are the total contact

surface areas for pocket p1 and p2, respectively, and Si
con is the

contact surface area of conserved contacts.

Availability
The data set is available at http://cssb.biology.gatech.edu/

pocketlib.
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