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Abstract

Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action
and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio
multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive
evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can
be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-
trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in
native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find
that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the
cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in
soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein
stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish
the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of
chaperones that catalyze protein folding significantly slows down the adaptation dynamics.
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Introduction

Evolutionary selection of protein sequences is a complex task

whereby several traits such as translation efficiency, structural

integrity (i.e. folding stability and kinetics), molecular function, as

well as interactions with other proteins in the cellular milieu should

be simultaneously optimized. Imposing simultaneous and often

contradictive (pleiotropic) constraints on protein sequence evolu-

tion severely limits the repertoire of possible solutions in sequence

space and thus slows down the evolutionary dynamics. It is widely

accepted that strong selective pressure against protein misfolding

plays a key role in determining the rate of protein evolution and

sustainable mutational loads [1–5]. However, other constraints

such as the need to avoid protein sequestration to non-functional

protein-protein interactions (NF-PPIs) in the cytoplasm are also

emerging as important determinants of the rates and outcomes of

evolutionary dynamics of proteins [6–10].

From de novo folding of nascent polypeptides to refolding of

mature misfolded proteins, chaperones or heat-shock proteins

assist in maintaining the necessary abundance of folded proteins,

compensating for the selective costs of erroneous protein synthesis,

misfolding, and sequestration of proteins in NF-PPIs. In three

domains of life, chaperones are essential components of protein

homeostatic machinery. Chaperonins, like GroEL, effectively

catalyze the folding process by increasing the rate at which

misfolded proteins are converted into their folded conformations

[11–13]; this process can lead to diminished aggregation and NF-

PPIs due to the limited presence of aggregation-prone misfolded

species in the cytoplasm. Lindquist and others posited that

chaperones may act as phenotypic capacitors by buffering the

fitness effects of deleterious mutations [14], leading to a greater

genetic diversity and speeding up adaptive evolution [15,16]. A

recent in vivo study from our lab [12] also showed that the

chaperone action in dynamic cellular milieu can be pleiotropic, i.e.

it extends beyond the immediate effect of protein folding by

reducing the participation of destabilized proteins in NF-PPIs and

affecting their accessibility to ATP-dependent proteases .

Apparently, chaperones play a key role in sculpting the fitness

landscape of organisms. However, understanding the evolutionary

implications of this fact requires a multi-scale modeling that

realistically represents the mechanism of chaperone action and

reaches across the necessary length and time scales. Recently, we

developed a multi-scale evolutionary model for population

dynamics simulations [7], where the fitness (rate of division) of

each cell is derived explicitly from its genomic sequence by using

the physical principles of protein folding and interactions. The

model provided insights into the co-evolution of molecular

properties of proteins, their abundances in the cytoplasm, and

their functional and NF-PPIs. Here we significantly extend this ab

inito model to explicitly account for chaperone activity in the

cytoplasm of model cells. The model elucidates not only the

immediate pleiotropic effect of chaperone action on cellular fitness

but also its long-term evolutionary consequences. We find that the

chaperone activity provides a significant acceleration of adaptive

evolution by minimizing the detrimental effect of protein

misfolding and therefore opens new paths in sequence space for
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efficient and simultaneous optimization of multiple molecular

traits, determining the fitness of model cells.

Results

Our ab initio 6-loci model cells contain explicit genomes that

encode six essential, birth rate controlling, proteins that are

modeled as 27-mer lattice proteins as introduced in [7]. The

advantage of this coarse-grained protein model is that a crucial

conformational subset, consisting of all maximally compact

conformations, can be enumerated [17], making the calculations

of binding and folding stabilities exact within a selected

representative conformational ensemble. At the initial stage of

the simulations, each protein in the model is assigned a

conformation, which is deemed folded and thus functional, and

each protein complex in the functional PPI network is assumed to

be functional only in one specific docking mode out of 144 possible

ones [7]. The model of Ref. [7] considered NF-PPIs only between

folded proteins. Here we also take into account the misfolded

compact Molten Globule (MG) states of proteins [18] by modeling

the ensemble of unfolded states as maximally compact yet non-

native conformations (see Methods). As shown in Fig. 1A, we allow

all proteins in their folded and MG states to interact with each

other in the cytoplasm of model cells to form functional and non-

functional protein complexes. Experimental studies show that

GroEL and several other chaperones do not interact strongly with

proteins in their native state, see e.g. [19–22]. Therefore, here we

only consider interactions between the model chaperone and

proteins in their MG state. As shown in Fig. 1B, the interaction

surface of the chaperone is modeled as a 2D (363) lattice

fragment, consisting of nine amino acid residues that are found in

the apical domain of the chaperonin GroEL and that have been

shown to be essential for substrate binding [23].

We assume that functional protein complexes constitute the

same prototypical PPI network as in [7]: the first protein is active

in monomeric form, the second and third proteins are functional

as a heterodimer, and finally, the fourth, fifth and sixth proteins

form a ‘‘date triangle’’ where they function in various combina-

tions of pairwise complexes between them (Fig. 1A). We then

postulate, as in [7], that the division rate of an individual cell is a

product of the functional concentrations of proteins for the

postulated prototypical PPI network:

b~b0
G1G23(G45G46G56)1=3

1za
P6

i~1 Ci{CT

� �2
: ð1Þ

Here b0 is a parameter used to scale the rate and thus the time, CT

is the postulated ‘‘optimal’’ total concentration of proteins, which

reflects the assumption that protein synthesis comes at a cost, Ci

are the total concentrations of individual proteins, and a is a

control parameter that defines a fitness penalty for deviation from

the optimal total concentration of all proteins. Overall, the role of

the denominator in Eq. [1] is to penalize the deviations from the

optimal protein levels and to avoid a fitness gain by a mere

overexpression of proteins. Hence, the cell division rate in our

model is determined by a fitness function, which stems from an

intuitive physical-biological assumption that a subset of gene

products acts in concert to promote healthy cell divisions.

In what follows, we define the functional concentrations of

monomer and dimers in Eq. [1] as

G1~½F1� and Gij~½Fi
:Fj �|P

ij
int, ð2Þ

where P
ij
int is the Boltzmann probability that proteins i and j

interact with each other in a specific docking conformation (see

Methods), ½F1� is the concentration of the monomeric protein

product of gene 1 in its native folded form, ½Fi
:Fj � is the

concentration of the binary complex formed by the folded states of

proteins i and j.

Figure 1. Pictorial depictions of molecular interactions, chap-
erone interaction surface, and free energy-reaction coordi-
nates diagram. (A) A schematic representation of molecular
interactions in the model cell. The folded (red cubes) and MG state
(blue cubes) proteins in the cytosol of model cell are allowed to interact
with each other to form functional (red solid lines) and non-functional
(black dashed lines) interactions, which include homodimeric self-
interactions (black dashed loops). Black solid lines represent the PPI
network of chaperone (green square). (B) Chaperone interaction
surface. A single face of cube, consisting of nine amino acid residues
is used to model the interaction between chaperone and unfolded
proteins. (C) Reaction (rxn) coordinate vs. free energy diagram for
protein folding with and without chaperones, highlighting the catalytic
activity of chaperones.
doi:10.1371/journal.pcbi.1003269.g001

Author Summary

Molecular chaperones or heat-shock proteins are essential
components of protein homeostatic machinery in all three
domains of life, whose role is not only to prevent protein
aggregation but also catalyze the protein folding process
by decreasing the energetic barrier for folding. Important-
ly, chaperones have often been implicated as phenotypic
capacitors since they buffer the deleterious effects of
mutations, promote genetic diversity, and thus speed up
adaptive evolution. Here we explore computationally the
consequences of chaperone activity in cytoplasm via long-
time evolutionary dynamics simulations. We use a 6-loci
multi scale model of cell populations, where the fitness of
each cell is determined from its genome, based on
statistical mechanical principles of protein folding and
protein-protein interactions. We find that by catalyzing
protein folding chaperones buffer the deleterious effect of
mutations on folding stability and thus open up a
sequence space for efficient and simultaneous optimiza-
tion of multiple molecular traits determining the cellular
fitness. As a result, chaperones dramatically accelerate
adaptation dynamics.

Chaperones Accelerate Evolutionary Dynamics

PLOS Computational Biology | www.ploscompbiol.org 2 November 2013 | Volume 9 | Issue 11 | e1003269



We employ a simplified two-step kinetic model to describe the

catalytic activity of active chaperones, as illustrated in Fig. 1C (see

Methods for the technical aspects of the formulation). In this active

model, the chaperone acts as a catalyst to accelerate the rate of

protein folding. As a control, we also consider a passive model of

chaperone action, whereby the role of chaperone is simply to bind

and release proteins in their MG states. It is noteworthy that, in

contrast to a conventional catalyst, which decreases the activation

barrier for both forward and backward reactions, an active

chaperone increases the rate of conversion of misfolded proteins

into their folded form without increasing the rate of reverse

reaction of unfolding. Such ‘‘one-way’’ catalysis, which requires

consumption of ATP, increases the concentration of folded

species, which is equivalent, under steady state conditions, to an

effective increase of thermodynamic stability of a protein as

outlined in [12]. We model binding of MG proteins to the

chaperone with a pre-equilibrium assumption since the associa-

tion/dissociation of chaperone with an MG protein is a fast

process as compared to subsequent kinetic steps in which the

actual protein folding occurs. It has been shown that these later

kinetic steps, which lead to folding, are rate limiting as they almost

always require ATP hydrolysis [24].

Examples of active chaperones with catalytic folding activity

include the chaperonins, GroEL in prokaryotes [24] and TRiC in

eukaryotes [25]. While the applicability of our model is not limited

to the GroEL-like chaperonins, the catalytic activity of this class of

chaperones has been well established, see e.g. [13,24]. Therefore,

our model directly applies to this class of chaperones, which forms

a good experimental system to test our predictions. Henceforth,

unless otherwise indicated, we refer to the chaperones with

catalytic activity simply as chaperones.

Chaperones dramatically speed up evolutionary
dynamics

We explored the effect of chaperones on evolutionary dynamics

by running long time evolutionary simulations (200,000 genera-

tions) of model cell populations. Our simulations start from

monoclonal populations of model cells, whose sequences have

been designed by using the method reported in [26] to provide

high stabilities Pnatw0:8 for all 6 proteins in their folded states

without regard for their functional and NF-PPIs (see details in

Methods). In our model, the acceleration of protein folding rate due

to chaperone action is determined by the parameter x, which is the

ratio of the rate at which a folded protein is released by the

chaperone to the rate at which spontaneous protein folding occurs

(defined in Methods).

To determine the effects of chaperone buffering on adaptive

evolution, we tested two models – an active and a passive model.

In the active model, the chaperone acts as a catalyst and

accelerates protein folding. However, in the passive model, the

chaperone assumes a simple role by merely binding and releasing

proteins in their MG states. While for the passive model we set

x~0, for the active model we assume a modest x~0:1 throughout

this work, consistent with the estimates of the dynamic model

given in [12]. In both cases we keep the chaperone concentration

fixed at ½Ch�~0:1. To highlight the role of chaperones we always,

in parallel, run control simulations for cells without chaperones,

i.e. setting ½Ch�~0.

To determine broadly the effect of chaperones on adaptation

dynamics we ran evolutionary simulations at three different

temperatures, i.e. T = 0.85 (low), T = 1.05 (medium), and T = 1.25

(high). Throughout this work, all temperatures are in units

calibrated to Miyazawa-Jernigan (MJ) potentials [27].

The effect of chaperones on the evolution of fitness is presented

in Fig. 2 as fitness ratio, i.e. the ratio of birth rate in the model with

chaperone to that without chaperone. Fig. 2A shows the time

evolution of b½Ch�~0:1=b½Ch�~0 for the active model x~0:1. The

chaperones provide dramatic fitness benefit during the adaptive

evolution, especially at early stages. The effect of chaperones is

more pronounced at higher temperatures, where proteins in the

MG state are more prevalent. While the fitness ratio reaches its

peak of 100 at intermediate adaptation times for T = 0.85, it peaks

at 250 for T = 1.05 and dramatically over 1000 for T = 1.25. After

the initial fast adaptation period, the relative fitness effect of

chaperones abates. Up to this point, however, the cells already

have gained a considerable fitness advantage, and in the long time

limit, we see gradually declining fitness ratios as the organisms

become more and more fit. Nevertheless, the evolutionary

dynamics with chaperones always leads to a higher long-time

fitness than the evolutionary dynamics without chaperones,

although the final fitness ratio is not as dramatic as those observed

at intermediate evolutionary times.

Fig. 2B shows the time evolution of b½Ch�~0:1=b½Ch�~0 for the

passive chaperone model x~0. It is clear that the chaperones in

the passive model do not provide a noticeable fitness gain but

rather a small fitness loss (due to the sequestration of proteins by

chaperones) at the initial stage of adaptation for all three

temperatures. In light of these results, we conclude that the active

folding of proteins by chaperones is necessary to provide a fitness

benefit to cells in the evolutionary dynamics. In the following,

unless otherwise indicated, we present the data only for the active

model at the low temperature T = 0.85 as representative of our

general results.

Figure 2. The time evolution of the fitness ratios b½Ch�~0:1=b½Ch�~0

(i.e. the ratio of birth rates with chaperones and without
chaperones) are presented for the active x~0:1 in (A) and
passive x~0 model in (B) for three different temperatures. The
fitness ratios and evolutionary time are in log scale to convey the events
clearly across all time scales. All data here and in the subsequent figures
are ensemble averages over 100 independent stochastic trajectories.
doi:10.1371/journal.pcbi.1003269.g002

Chaperones Accelerate Evolutionary Dynamics
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Chaperones promote epistasis in the evolution of
molecular properties of proteins

Now, we turn to a detailed account of the evolutionary

dynamics of the physicochemical properties of proteins, i.e. their

stabilities Pnat and functional interaction probabilities Pint for the

functional heterodimers and date triangles (see Methods for the

definitions of these quantities). We present the time evolution of

Pnat for the monomer in Fig. 3A, for the heterodimer proteins in

Fig. 3B, and for the date triangle proteins in Fig. 3C. The

chaperones provide a noticeable increase in stability for the

monomeric proteins, as seen in Fig. 3A. Interestingly, at the initial

stage of adaptation within 500 generations, the monomer loses its

stability considerably by accumulating destabilizing mutations in

the presence of chaperones. However, subsequent mutations bring

about a rapid turnaround, resulting in a very stable monomer,

which persists throughout the rest of the evolutionary dynamics.

The non-monotonic dependence of stability of the monomeric

protein on evolutionary time is an indication of a chaperone-

enhanced epistatic behavior. The chaperone buffering relaxes

significantly the stability constraint and allows the accumulation of

more mutations in the locus encoding natively monomeric protein.

This effect is mainly responsible for the initial sharp drop in the

stability of the monomer. The resulting enhanced genetic diversity

provides a path to a faster optimization of collective properties of

all proteins in the cytoplasm such as NF-PPIs, as we show below.

The evolutionary dynamics of stability for the heterodimer and

date triangle proteins show quite a different trend, as seen in

Figs 3B and 3C. Initially, both the heterodimer and date triangle

proteins lose their stability, but later on, the stability of date

triangle proteins is slowly restored. However, in striking contrast to

the monomer, the stability of heterodimer and date triangle

proteins in the presence of chaperones shows a downward trend

with evolutionary time, as compared to that of the chaperone-free

cytoplasm of model cells.

The evolution of strengths of functional interactions, reflected in

the parameter Pint for the heterodimer and date triangle proteins,

is given in Fig. 3D and 3E, respectively. The chaperones

significantly increase Pint for both the heterodimer and date

triangle complexes. Pint for the heterodimer increases rapidly

within first 1000 generations, in the presence of chaperones. The

rate of increase of Pint for the date triangle is slower than that for

the heterodimer; nevertheless, the chaperones provide a significant

increase in Pint for the date triangle complexes as well. Hence, our

results show that the chaperones shift the balance between the

strengths of functional interaction and stability of proteins in favor

of the former at the expense of the latter. Indeed, it is more

advantageous for faster adaptation that the heterodimer and date

triangle proteins primarily develop strong interaction surfaces to

contribute to the fitness. High stability of proteins establishes later

on once the strong functional interaction between them is ensured.

Figure 3. The time evolution of mean protein stabilities and mean interaction probabilities of functional dimers in the absence and
presence of chaperones, i.e. for ½Ch�~0 (blue lines) and ½Ch�~0:1 (red lines), respectively, at temperature T = 0.85. (A) The time
evolution of stability Pm

nat~P1
nat for monomeric proteins. (B) The time evolution of mean stability, Ph

nat~(P2
natzP3

nat)=2 for heterodimer proteins. (C)

The time evolution of mean stability, Pd
nat~(P4

natzP5
natzP6

nat)=3 for date triangle proteins. (D) The time evolution of interaction probability,

Ph
int~P23

int for the heterodimer complexes. (E) The time evolution of mean interaction probability, Pd
int~(P45

intzP46
intzP56

int)=3 for the date triangle
complexes.
doi:10.1371/journal.pcbi.1003269.g003

Chaperones Accelerate Evolutionary Dynamics
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Chaperones dramatically diminish the loss of proteins to
NF-PPIs

While the effect of chaperones on protein stabilities and

interactions is significant, it cannot fully account for the huge

overall fitness increase, which transiently reaches up to a factor of

100 at the low temperature T = 0.85 (see Fig. 2A). Therefore, there

must be another factor affecting fitness, where the effect of

chaperones appears even more pronounced. To that end, we turn

to the analysis of NF-PPIs, which affect fitness through modulation

of concentrations of proteins in their functional form. We find that

at the early stages of adaptation the chaperones dramatically

decrease the concentrations of protein complexes engaged in NF-

PPIs, releasing more proteins to become functional. This can be

seen in Fig. 4, where we plot the time evolution of the fraction of

protein material wasted in NF-PPIs in the absence and presence of

chaperones. Specifically, we present the time evolution of

Cm~W1=C1 for the monomeric protein and Ch~ W2zW3ð Þ=
C2zC3ð Þ for the heterodimers and Cd~ W4zW5zW6ð Þ=
C4zC5zC6ð Þ for the date triangles, where Ci is the total

concentration protein i and Wi is the total concentration of protein

i involved in NF-PPIs. Fig. 4 shows that the vast majority of

proteins are lost to NF-PPIs at the beginning of evolutionary runs,

where the sequences are optimized for stability only without

regard for functional PPIs. Apparently, at the very early stage of

adaptation, cell resources are mostly wasted unproductively to NF-

PPIs. Both Fig. 4A and 4B show that the chaperones give rise to a

rapid increase in the functional concentrations of monomeric and

heterodimer proteins within the first 5,000 generations. As shown

in Fig. 4C, the rate of decrease of NF-PPIs for the date triangle

proteins is slower than that observed for the monomer and

heterodimer proteins; nevertheless, with chaperones, it still occurs

at the early stage of adaptation within 10,000 generations.

We find therefore that, while the chaperones interact directly

with proteins to affect its molecular properties, their greatest

impact on cellular fitness occurs indirectly through the optimiza-

tion of a collective property of all proteins in the cytoplasm of

model cells, namely, their NF-PPIs.

Chaperones speed up evolution by promoting neutrality
and polymorphism

Our results indicate that the chaperones significantly accelerate

the rate of adaptive evolution. Customarily, a well-known

parameter v~dN=dS, where dN and dS are the non-synony-

mous and synonymous substitution rates, respectively, represents a

quantitative measure of evolutionary rate. A straightforward

approach to calculate dN and dS at any time step in simulation

is to compare the genome of the dominant clone in the population

to the initial starting genome. However, we find that this approach

is problematic for our model in the long time limit when multiple

substitutions at a single site become frequent. Here, we employ a

slightly different approach. Following Wilke [28], we define the

evolutionary rate as v~(cMa= �NNa)=(cMs= �NNs) where cMa and

cMs are the cumulative non-synonymous and synonymous

substitution counts summed over short time intervals of 100

generations, and �NNa and �NNs are arithmetic means of weights for

non-synonymous and synonymous sites, which account for

different degeneracies of codons in the genetic code, calculated

over time frames of 100 generations, see Methods for details.

We summarize our results, averaged over multiple evolutionary

runs, in Fig. 5A to 5C for v to highlight the type and magnitude of

selection acting on different proteins at different stages of adaptation.

In Figs., from 5D to 5F, we present the cumulative weighted non-

synonymous substitutions c �MMa~cMa= �NNa for different types of

proteins in our system. Further, in Fig. S1, we provide the

synonymous substitution rates c �MMs~cMs= �NNs. The evolutionary

dynamics of v, c �MMa and c �MMs for individual trajectories are also

given in Fig. S2.

We found that at the very early stage of adaptation, after 500

generation, the chaperones induce a strong positive selection

pressure on the monomer, which lasts, in average for about 10000

generations, after which the monomer falls under purifying

selection. However, without the chaperones, the monomer evolves

under positive selection only for a short time between 1500 to

6000 generations. On the other hand, without the chaperones, the

net selection on both the heterodimer and date triangle genes is

negative, apparently due to the dominance of the stability

constraint. In the presence of chaperone buffering, however, these

loci evolve under positive selection for about 8000 to 10000

generations before they revert back to purifying selection. An

important generic effect apparent in the time evolution of v is that

the chaperone buffering relaxes the negative selection pressure on

all proteins and promotes the fixation of a greater number of

beneficial mutations. Therefore, after the initial stage of fast

adaptation, when all genes evolve under positive selection, we

Figure 4. The time evolution of the mean value of the fractions
of proteins involved in NFP-PPIs to their total concentrations
for ½Ch�~0 (blue lines) and ½Ch�~0:1 (red lines), at temperature
T = 0.85. (A) NF-PPI for functional monomer Cm~W1=C1 (B) average
NF-PPI for heterodimers Ch~ W2zW3ð Þ= C2zC3ð Þ and (C) NF-PPI for
date triangles Cd~ W4zW5zW6ð Þ= C4zC5zC6ð Þ where W1~C1{
F1½ �{ U1½ �{ U1

:Ch½ �, W2~C2{G23{ F2½ �{ U2½ �{ U2
:Ch½ �, W3~C3{

G23{ F3½ �{ U3½ �{ U3
:Ch½ �, W4~C4{G45{G46{ F4½ �{ U4½ �{ U4

:Ch½ �,
W5~C5{G45{G56{ F5½ �{ U5½ �{ U5

:Ch½ �, W6~C6{G46{G56{ F6½ �{
U6½ �{ U6

:Ch½ �:
doi:10.1371/journal.pcbi.1003269.g004

Chaperones Accelerate Evolutionary Dynamics
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observe that the chaperones bring all genes closer to neutral

regime in the adapted populations.

Next, we evaluated the effect of chaperones on the polymor-

phism in evolving populations of model cells. To that end we

determined the average sequence entropy for each protein locus in

our model. This quantity is determined from the alignment of gene

sequences between all model organisms within the population (see

Methods). These results are presented in Fig. 6.

Overall, we find that chaperones greatly enhance polymorphism

in evolving populations. For all protein types, the sequence

entropy rapidly increases within a few hundred generations with

chaperone. For the monomer and date triangle proteins, the

entropy stays approximately at the same level for the duration of

an evolutionary run after the initial fast increase. For the

heterodimer proteins, however, the entropy gradually increases

reaching a level, which is almost two times higher than that for the

monomer and date triangle proteins. A greater degree of

polymorphism observed for the heterodimer proteins helps these

proteins evolve faster than other loci in the model, as we note

below.

The enhanced neutrality due to chaperone buffering also

increases the rate of protein evolution considerably. Indeed, as

seen in Figs., from 5D to 5F, the chaperones increase the net

number of non-synonymous mutations for all loci. Initially, the

monomer still evolves with the chaperones faster than the

heterodimer and date triangle genes. However, the rate of

evolution of heterodimer is the fastest as a result of more

phenotypic diversity of this gene in population as indicated by the

entropy plot (see Fig. 6B). Apparently, the evolutionary rates of the

heterodimer and date triangle loci are slower that that of the

monomer throughout the evolutionary dynamics with or without

chaperones. Finally, Fig S1 shows that the rate of synonymous

substitutions is approximately the same for all protein types, as

could be expected. However, we also see that the rate of

synonymous substitutions is slightly faster with chaperones as

compared to that of chaperone-free evolution. Such slightly faster

evolution of synonymous substitutions might be due to hitchhiking

of neutral mutations with beneficial ones that should more

pronounced with chaperone evolution.

Discussion

Our ab intio cell model, while much simpler than real biological

systems, captures the essence of biological complexity that stems

from the fact that the main effects, epistatic effects, and pleiotropic

effects on different parameters often act in antagonistic directions.

The pleiotropic concept of optimization of antagonistic traits in

evolutionary biology, which gives rise to a complex fitness

landscape, has its analog in the concept of frustration in physics,

where competing interactions lead to a complex energy landscape

with many suboptimal minima equal to or close to global

minimum [29,30]. In our model, the molecular traits, whose

Figure 5. The time evolution of mean v~(c �MMa= �NNa)=(c �MMs= �NNs) and c �MMa in the absence and presence of chaperones, i.e. for ½Ch�~0
(blue lines) and ½Ch�~0:1 (red lines), respectively. The dashed line at v~1 represents the neutral evolution. The time evolution of v is plotted
in (A) for the monomer vm~v1 , in (B) for the heterodimer vh~(v2zv3)=2, and in (C), for the date triangle vd~(v4zv5zv6)=3. The time
evolution of c �MMa is plotted in (D) for the monomer c �MMm

a ~c �MM1
a , in (E) for the heterodimer c �MMh

a ~(c �MM2
a zc �MM3

a )=2, and in (F) for the date triangle

c �MMd
a ~(c �MM4

a zc �MM5
a zc �MM6

a )=3.
doi:10.1371/journal.pcbi.1003269.g005
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optimization might be antagonistic, include protein stability,

abundances, functional, and NF-PPIs. An earlier study showed

how antagonistic constraints result in a peculiar co-evolution of

protein abundances and functional PPIs [7]. Here we introduced a

new essential component of the cellular milieu – the chaperone

activity, which enhances the conversion of proteins from the MG

state to their native conformation. The chaperone action in our

model partially relaxes an essential constraint on protein sequences

to maintain high stability of proteins. The resulting chaperone

buffering dramatically affects evolutionary dynamics by opening

up sequence space, to provide a dramatic acceleration of the

adaption process. We find that only the active chaperone model

has a strong effect on evolutionary dynamics, while the passive

chaperone model, where an MG protein is bound to the

chaperone to prevent its sequestration to NF-PPIs has no effect

on fitness (Fig. 2B). However, an important caveat here is that our

model does not consider an irreversible aggregation and other

elements of protein quality control such as proteolytic activity.

Hence, the passive model might also be efficient when all the

kinetic aspects of protein quality control are taken into account.

Mechanistically, our main finding is that the chaperones act

pleiotropically to affect fitness in a number of ways. Firstly, the

relaxation of the stability constraint allows achieving stronger

functional PPIs at the expense of lower thermodynamic stability

for the proteins participating in the functional PPIs (Fig. 3).

Secondly, a more dramatic effect of the chaperone on cellular

fitness stems from faster and greater decrease of the NF-PPIs in the

course of the evolutionary dynamics (Fig. 4). The NF-PPIs are a

collective property of all proteins in the cellular milieu. There is

evidence that proteins in their MG state are largely responsible for

NF-PPIs [31]. The active chaperone in our model converts the

proteins in their MG states into their folded conformations,

leading to a drop in NF-PPIs with an ensuing increase in fitness

due to a diminished sequestration of functional proteins.

Recent experimental and theoretical studies with the chaper-

onin GroEL corroborate some of our findings. Tokuriki and

Tawfik performed a series of random mutagenesis experiments on

a number of non-endogenous enzymes expressed in E. Coli to

investigate the impact of overexpression of GroEL on enzyme

evolution [16]. They found that GroEL indeed helps folding of

destabilized proteins and potentially facilitates the evolution of

enzymes to gain new functions. The acceleration of adaptive

evolution by GroEL is also found in a recent study [15] in which

the evolutionary rates of GroEL clients and non-clients [32] were

compared. It was found that the GroEL obligatory proteins evolve

35% faster than the proteins that fold spontaneously without the

GroEL assistance [15]. The importance of GroEL for adaptive

evolution is highlighted by the case of the endosymbiotic

bacterium Buchnera, which often undergoes population bottlenecks

through maternal transmission and thus quickly accumulates

random mutations that destabilize proteins [33]. Remarkably, the

expression level of GroEL in Buchnera is almost 8 times greater than

that of E. coli under the normal conditions.

Quayle and Bullock define evolvability as the number of

generations that it takes for a population to reach its phenotypic

target that maximizes fitness [34]. Our study highlights the dual

role of chaperones not only as a catalyst of protein folding but also

as a catalyst on the fitness landscape, which lowers the genetic

‘‘barriers’’ between phenotypes and thus promotes evolvability. A

key prediction emerging from our analysis is that the catalytic

activity of chaperone gives rise to a dramatic acceleration of

adaptive evolution. Hence, we predict that the depletion of active

chaperones through down-regulation of their expression should

directly affect the rate at which organisms adapt to new

environments, which can be directly experimentally testable. This

work is currently in progress in our lab.

Methods

Protein stability and interactions
Our proteins consist of 27 amino acid residues that fold into

36363 cubic lattice conformations [17]. We use the MJ potentials

to model intra- and inter-molecular interactions [27]. While the

27-mer lattice model has 103,346 maximally compact conforma-

tions [17], we employ a uniform subset of randomly selected

10,000 conformations as our conformational ensemble to speed up

calculations [7]. We calculate the Boltzmann probability of folding

to a native state, i.e. Pi
nat for each protein i~1,::,6 as follows

Pi
nat~

exp½{Ei
1=T �P10000

k~1 exp½{Ei
k=T �

, ð3Þ

where Ei
1 is the energy of the native conformation and T is the

temperature in units corresponding to the calibration with MJ

potentials.

Figure 6. The time evolution of mean sequence entropy is
plotted in the absence and presence of chaperones, i.e. for
½Ch�~0 (blue lines) and ½Ch�~0:1 (red lines), respectively, at
temperature T = 0.85. The time evolution of mean sequence entropy
is given in (A) for the monomer Sm~S1 , in (B) for the heterodimer
Sh~(S2zS3)=2, and in (C) for date triangle proteins Sd~(S4z
S5zS6)=3.
doi:10.1371/journal.pcbi.1003269.g006
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We model the functional protein-protein and protein-chaperone

interactions using a rigid docking scheme. The six faces of a cubic

lattice provide six possible interaction surfaces and there are four

rotational degrees of freedom to dock two interaction surfaces of

two lattice proteins. Hence, in total, there exist 66664 = 144

docking modes for a binary protein complex. The Boltzmann

probability of interaction P
ij
int between the dimer proteins i and j

are calculated as

P
ij
int~

exp½{E
ij
f =T �

P144
k~1 exp½{E

ij
k=T �

, ð4Þ

where E
ij
f is the interaction energy of the functional binding mode,

E
ij
k are the interaction energies for 144 docking modes and T is the

temperature. Because 27-mers are quite small (as compared to real

protein sizes), in order to represent both interior and interaction

surface of proteins, we employed two different lattice conforma-

tions to model our proteins: one for interior part that determines

stability and one for interaction surface that determines PPI, as has

been done in previous studies, see e.g. Ref. [7]. Hence, the lattice

conformations that we used to represent protein surfaces in order

to calculate P
ij
int are randomly chosen conformations but they are

not the same lattice conformation that we used to represent the

stability energetics of native folds. This approach provides a less

tight coupling between interior and exterior of proteins that would

be the case for small 27-mers representing therefore a more

realistic description of protein geometry and energetics.

The model of active chaperone action
In the absence of chaperones, the folded state and the unfolded

ensemble of states (which also includes compact MG states) for any

protein ‘‘i’’ are at equilibrium, satisfying detailed balance with the

corresponding folding ki
f and unfolding rates ki

u:

Ui

ki
f

ki
u

Fi: ð5Þ

The active chaperone changes this picture dramatically. In

general, the operation of chaperones requires input energy by

ATP hydrolysis. The energy flux due to the ATP hydrolysis by

chaperone causes the violation of detailed balance between the

folded and unfolded forms of a protein. Therefore, following the

findings in [19–22], we assume that the chaperon Ch interacts

with a protein in its misfolded MG conformation Ui to form a pre-

equilibrium dimer complex ½Ui
:Ch�, from which the protein is

released in its folded form Fi,

UizCh �?
Ki

Ch ½Ui
:Ch� �?

ki
Ch

FizCh ð6Þ

where Ki
Ch are the pre-equilibrium constants for the chaperone-

unfolded protein complex, and ki
Ch are the rate constants for the

chaperone assisted folding. While the native state is uniquely

defined by a single conformation in our model, the unfolded states

constitute an ensemble of conformations, which we take into

account as a representative ensemble via a mean field approxi-

mation (see below).

The steady state solution of Eqs. 5 and 6 leads to the following,

½Fi�~
ki

f

ki
u

½Ui�z
ki

Ch

ki
u

½Ui
:Ch�: ð7Þ

By introducing the ratio of the rate constant for chaperone assisted

folding to the rate constant for unassisted folding, i.e. ki
Ch~xki

f

and also by making use of the following two equilibrium relations,

½Ui
:Ch�~Ki

Ch½Ui�½Ch� and
ki

f

ki
u

~
Pi

nat

1{Pi
nat

, ð8Þ

we arrive at the equation,

½Fi�~
Pi

nat

1{Pi
nat

½Ui�zx
Pi

nat

1{Pi
nat

½Ui
:Ch�, ð9Þ

where x~
ki

Ch

ki
f

is the ratio of the rate of release of native proteins

from the chaperone complex to the rate of spontaneous folding.

Stochastic simulation algorithm
Our simulations start from initial sequences designed to be

stable in their respective native conformations Pi
natw0:8; the PPIs

of initial sequences were not optimized. We randomly assigned the

functional docking modes for the heterodimers and date triangles.

In order to keep protein folds fixed throughout the simulations, we

discarded the cells encoding proteins whose assigned native folds

were no longer the lowest energy configurations. A constant

population size of M = 1000 is maintained throughout the

simulations.

We use a variant of the Gillespie algorithm to generate

stochastic evolutionary trajectories in our simulations. Using two

uniformly distributed random numbers, r1,r2[(0,1), the algorithm

decides when and which cell undergoes a cell division. Given the

normalized birth rates as ~bbi~bi=bM where bM~
PM

i~1 bi for

each cell i in a population of size M, we define the cumulative

probabilities as bi~bi{1z
~bbi. Note that b1~

~bb1 and

bM~
PM

i~1
~bbi. The waiting time dt for the next cell division to

occur at time t+dt is determined by dt~(1=bM ) ln r1. The cell ‘‘i’’

divides when the second random number falls in the interval

bi{1ƒr2vbi.

Upon cell division, a mother cell gives birth to a daughter cell. A

newborn cell replaces a randomly chosen cell in the population in

order to maintain constant population size. Also, whenever a

mutation changes the lowest energy protein fold or hits a stop

codon, such cells are discarded from the population. Upon semi-

conservative replication, both the mother and daughter cells are

subject to either a mutational event with constant probability

m = 0.001 per gene per replication (whereby a nucleotide is

randomly changed) or the expression level of one randomly chosen

protein in a cell can change with a constant rate er = 0.01 per cell

division such that the concentration of a protein i in a daughter

cell is derived from that of a mother cell as follows

½Cnew
i �~½Cold

i �(1ze) where e is a Gaussian random number with

zero mean and variance 0.1. At the beginning of our simulations,

we set the concentrations of each protein and chaperone equally at

Ci~0:1.
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A mean field approximation for equilibrium constants
Six proteins encoded in our cell model make four functional

interactions in total. In addition, we allow all possible non-functional

interactions between all proteins in their folded as well as MG

conformations (see Fig. 1A). More specifically, we consider the

equilibrium reactions, forming homo- as well as heterodimers

between the folded proteins,

FizFj

KFiFj

½Fi
:Fj � where KFiFj

~
½Fi
:Fj �

½Fi�½Fj �
, ð10Þ

between the folded and unfolded proteins,

FizUj

KFiUj

½Fi
:Uj � where KFiUj

~
½Fi
:Uj �

½Fi�½Uj �
, ð11Þ

and between the unfolded proteins,

UizUj

KUiUj

½Ui
:Uj � where KUiUj

~
½Ui

:Uj �
½Ui�½Uj �

: ð12Þ

Next, we discuss how we calculate the equilibrium constants for

protein-protein and protein-chaperone interactions. We use the

index set X:fU ,F ,Chg for different molecular species, the

subscripts i and j for different proteins, and the superscripts n and

m for different protein conformations. Given the two conforma-

tions n and m of lattice proteins i and j, the binding constant can be

written as

QXn
i

Xm
j

~
X144

k~1
exp½{Ek

Xn
i

Xm
j
=T � ð13Þ

where Ek
Xn

i
Xm

j
are the interactions energies and T is the

temperature.

In order to reduce computational cost in calculating the binding

equilibrium constants, we make use of a mean field approximation

in which we choose Nu~10 representative MG conformations

randomly out of 10,000 conformations and assume that each of

these conformations is equally likely to occur in the MG ensemble.

In what follows, we calculate the binding equilibrium constants for

the dimers formed by the folded proteins exactly as

KFiFj
~QFiFj

, ð14Þ

and the dimers formed by the folded and unfolded proteins as

KFiUj
~(1=Nu)

XNu

m~1
QFiU

m
j
: ð15Þ

The binding equilibrium constants for the heterodimers, i.e. i=j,

formed by the unfolded proteins are calculated by

KUiUj
~(1=N2

u )
XNu

n~1

XNu

m~1
QUn

i
Um

j
, ð16Þ

and the homodimers formed by the unfolded proteins are given by

KUiUi
~

2

Nu(Nuz1)

XNu

n~1

XNu

m~n
QUn

i
Um

i
: ð17Þ

To model the protein-chaperone interactions, we use a 363

square lattice face to mimic an interaction surface for the

chaperone (See Fig. 1B). For the protein-chaperone interactions,

there are 16664 = 24 docking modes. Hence, the binding

constant for an unfolded protein Ui with conformations n and

the chaperone Ch is of the form,

QUn
i

Ch~
X24

k~1
exp½{Ek

Un
i

Ch=T �: ð18Þ

By using our mean field approximation, the pre-equilibrium

constant for the association of chaperone with an unfolded protein

is given by

KUiCh~(1=Nu)
XNu

n~1
QUn

i
Ch: ð19Þ

The conservation of mass for each protein Ci and chaperone CCh

in our system can be written as

½Ci�~½Fi�z½Ui�{½Fi
:Ui�z½Ui

:Ch�

z
X6

j~1
½Fi
:Fj �z½Fi

:Uj �z½Ui
:Fj �z½Ui

:Uj �
� �

½CCh�~½Ch�z
X6

j~1
½Ui

:Ch�:

ð20Þ

An iterative method to solve the LMA equations
Due to the non-linear nature of the law of mass action (LMA)

equations, a direct integration of these coupled equations may only

be possible for small systems. However, by using iterative

algorithms, the LMA equations can easily be solved even for

large systems. Previous iterative algorithms were developed to

solve the LMA equations involving only equilibrium reactions

between different molecular species. The LMA equations in our

system involve not only different molecular species but also

equilibrium reactions between conformational isomers of the same

molecular species and therefore may not be solved by the existing

algorithms, see e.g. [35]. Here, we present a straightforward

generalization of the existing iterative algorithms.

We start our iterative algorithm by initializing the concentra-

tions of monomeric unfolded proteins and chaperone, i.e.

½Ui�~½Ci�(1{Pi
nat) and ½Ch�~½CCh�. Our algorithm consists of

iterations of three sets of equations to find equilibrium concen-

trations of all chemical species in our system. First, by substituting

½Ui� and ½CCh� into the right hand side of Eq. [9] we determine

½Fi�. Second, by using the new value of ½Fi� along with ½Ui� and

½CCh� we calculate the two quantities:

Si~½Fi�z½Ui �{KFi Ui
½Fi�½Ui�zKUiCh½Ui�½Ch�

z
X6

j~1
KFiFj

½Fi�½Fj �zKFiUj
½Fi �½Uj �zKUiFj

½Ui�½Fj �zKUiUj
½Ui�½Uj �

� �

SCh~½Ch�z
X6

j~1
KUj Ch½Uj �½Ch�

ð21Þ

Third, we find the new values of ½Ui� and ½CCh� by using,

½Ui�new~ ½Ci�|½Ui�ð Þ=Si and ½Ch�new~ ½CCh�|½Ch�ð Þ=SCh: ð22Þ

By updating the old values of ½Ui� and ½CCh� with the new values,

i.e. ½Ui�~½Ui�new and ½CCh�~½CCh�new, and substituting them back

into Eq. [9], we continue our iterations until the error threshold

(21)
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fv10{6 is achieved where f is defined by

f~
X6

i~1
Ci½ �{ Si½ �ð Þ2z CCh½ �{ SCh½ �ð Þ2: ð23Þ

Calculations of sequence entropy
In order to determine the degree of polymorphism in a

population, we calculated the sequence entropy for each protein

k~1, . . . ,6 by using the formula

Sk~{
1

27

X20

i~1

X27

j~1

pk
ij log pk

ij , ð24Þ

where pk
ij is the frequency of amino acid type ‘‘i’’ in the jth position

in the multiple alignment (among all cells in the population) of

sequences of a protein ‘‘k’’.

Calculations of v, synonymous and non-synonymous
substitution rates

In calculation of v, we used the following formula

v~c �MMa=c �MMs, where c �MMa~cMa= �NNa and c �MMs~cMs= �NNs are

the normalized cumulative non-synonymous and synonymous

substitutions rates, and �NNa and �NNs are the arithmetic mean of non-

synonymous and synonymous substitutions reflecting the instant

composition and degeneracies in the genetic code [28]. In order to

calculate the quantities cMa, cMs, �NNa and �NNs we partitioned the

overall simulation time into the time intervals of length 100

generations. Given the two DNA sequences, say, DNA-1 and

DNA-2 that are 100 generations apart, we first count the number

of synonymous Ms and non-synonymous Ma substitutions

between them, and second determine the number of synonymous

Ns~d4z(1=3)d2 and non-synonymous Na~d0z(2=3)d2 sites at

the frames in this time interval, where d0 is non-degenerate, d2 is

2-fold and d4 4-fold degenerate sites, respectively [36]. By using

the above quantities, we next calculate the cumulative sums cMs

and cMa, over all time intervals and the arithmetic averages �NNs

and �NNa, and finally determine v:

Supporting Information

Figure S1 The time evolution of c �MMs is given in the absence and

presence of chaperones, i.e. for ½Ch�~0 (blue lines) and ½Ch�~0:1

(red lines), respectively. The time evolution of c �MMs is plotted in (A)

for the monomer c �MMm
s ~c �MM1

s , in (B) for the heterodimer

c �MMh
s ~(c �MM2

s zc �MM3
s )=2, and in (C) for the date triangle

c �MMd
s ~(c �MM4

s zc �MM5
s zc �MM6

s )=3. All results are ensemble averages

over 100 independent stochastic trajectories.

(TIFF)

Figure S2 The time evolution of v, c �MMa and c �MMs for the locus

encoding functional monomeric protein (#1) is plotted for 5

different individual stochastic trajectories. Each color marks an

individual trajectory. The time evolution of v, c �MMa and c �MMs is

plotted in subfigures (A), (B), and (C), respectively, for chaperone-

free evolution. The time evolution of v, c �MMa and c �MMs is plotted in

subfigures (D), (E), and (F), respectively, for evolution with

chaperones.

(TIFF)
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