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Abstract

In every motor task, our brain must handle external forces acting on the body. For example, riding a bike on cobblestones or
skating on irregular surface requires us to appropriately respond to external perturbations. In these situations, motor
predictions cannot help anticipate the motion of the body induced by external factors, and direct use of delayed sensory
feedback will tend to generate instability. Here, we show that to solve this problem the motor system uses a rapid sensory
prediction to correct the estimated state of the limb. We used a postural task with mechanical perturbations to address
whether sensory predictions were engaged in upper-limb corrective movements. Subjects altered their initial motor
response in ,60 ms, depending on the expected perturbation profile, suggesting the use of an internal model, or prior, in
this corrective process. Further, we found trial-to-trial changes in corrective responses indicating a rapid update of these
perturbation priors. We used a computational model based on Kalman filtering to show that the response modulation was
compatible with a rapid correction of the estimated state engaged in the feedback response. Such a process may allow us
to handle external disturbances encountered in virtually every physical activity, which is likely an important feature of skilled
motor behaviour.
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Introduction

Neural transmission delays present a major challenge because

the brain cannot directly use sensory feedback to guide motor

actions. In order to compensate for feedback delays, the brain

must build internal models of the dynamical interaction between

the body and the environment, including sensory and motor

prediction mechanisms. On the one hand, motor predictions use

forward models to convert motor commands into estimates of the

state of the body [1]. On the other hand, sensory prediction uses

current sensory data to anticipate future events in various contexts.

For instance, with enough sensory information, humans can easily

anticipate the re-appearance of a visual target that is briefly

occluded [2,3]. Another example is the anticipatory scaling of

grip-force with expected load constraints estimated from fingertip

sensory encoding prior to the object lift [4].

An important question is whether the motor system uses similar

processes to guide feedback responses to mechanical perturbations.

Indeed, perturbation loads applied on the upper limb evoke very

quick, task-related responses (long-latency, ,50 ms) [5]. Because

delays as short as tens of milliseconds can destabilize motor

corrections, we hypothesize that a rapid sensory prediction is

performed to update the estimated state of the limb. This problem

has received little attention because previous modeling studies

have often assumed that delays are equivalent to instantaneous but

noisier signals [6–10]. This approach is partially justified by the

fact that increasing the feedback delay or the feedback noise

similarly increases the variability of unperturbed behaviour [11],

but it is inadequate when abrupt perturbations induce large

amounts of joint displacement. Also, previous work suggesting the

presence of such a sensory-based prediction did not test directly

whether such a process was engaged on a time scale corresponding

to long-latency delays [12–14]. Thus, it remains unknown how

quickly the internal estimation is corrected and used in the motor

response.

The words ‘sensory prediction’ and ‘motor prediction’ have

been often used in the literature to designate the same process,

which is the prediction of the consequences of motor commands

based on efference copy and internal forward models [15]. In the

present paper, we make a distinction between the prediction based

on forward models, which we referred to as ‘motor prediction’,

and the process under investigation, which converts delayed

sensory data into estimates of the actual state. We refer to this

process as ‘sensory prediction’, in the sense that it does not rely on

efference copy of the motor command.

In theory, sensory prediction is expected if optimal state

estimation is performed while taking feedback delays into account

(Kalman filter). In this framework, the present state of the limb

(Figure 1 A, Dh(t)) is corrected based on the delayed sensory signal

available at time t (Dh(t2dt)) combined with an internal model of
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how the perturbation affects limb motion (Figure 1 A–B). This

model makes two important predictions: (i) perturbations of

varying amplitude should be easily handled as long as their profile

corresponds to the participants’ internal model; (ii) corrective

responses for unexpected time-varying perturbations would be

initially biased towards responses for the expected ones. We tested

these predictions by manipulating the probabilities of different

perturbations applied on the upper limb. The odd perturbations

shared similar initial force profiles but changed rapidly (Figure 1

C), causing unexpected variations in the joint motion that should

impact the motor response.

In agreement with the model, we show that responses to step

perturbations scaled with the step magnitude, regardless of

whether changes in magnitude were expected or not. In contrast,

initial responses to other unexpected perturbation profiles

matched the response for the expected perturbation profile,

suggesting that internal models are engaged in these rapid

corrective responses. These priors started to influence the motor

response within the long-latency time window (,50–100 ms).

Changes in long-latency responses correlated with the expected

relationship between the initial joint displacement and the true

state of the limb at the onset of the motor response as predicted by

simulations using optimal state estimation. Altogether, our results

suggest that state estimation guides long-latency motor responses

to mechanical perturbations.

Results

State Estimation Stabilizes Feedback Responses
The effect of feedback delays on motor performances have been

studied in the context of voluntary movement control, with

feedback delays typically greater than those characterizing rapid

motor responses to perturbations (for instance, visuomotor delays

are .100 ms) [14,16,17]. Although responses to mechanical

perturbations can be quicker, delays of the order of tens of

milliseconds can also destabilize feedback responses. The effect of

feedback delays is illustrated in Figure 2 with simulations from a

feedback controller that must keep a joint at a prescribed angle

with two distinct state estimators (see Methods). In the first case

(Figure 2 A), the state estimator directly weighted the current

feedback signal with the internal prior, taking only the variances of

each signal into account and ignoring the feedback delay

(dt = 60 ms, see Methods). This control mechanism could generate

stable reaching movements of varying amplitude, but it was prone

to instability in the presence of external perturbations (Figure 2 B).

We observed numerically that decreasing the weight of the

feedback signal by increasing sensory noise could stabilize the

process because the controller relies less heavily on sensory

feedback. However, we could reject this possibility because the

resulting feedback corrections were too slow and incompatible

with human motor behaviour. Note that the simulations presented

in Figure 2 B were obtained after decreasing the weight of sensory

feedback by a factor of 20 relative to the parameters used

otherwise. Stability issues can also be encountered with control

processes based a Smith predictor [16], because these controllers

are extremely sensitive to mismatch between the internal model

Figure 1. Correction of state estimation following a perturbation. A: Overhead sketch of a perturbation evoked displacement relative to the
prescribed joint location (h0). The initial change in joint angle following a perturbation is sensed after some delay (thin trace, Dh(t2dt)). A correction
of the actual change in joint angle (thick trace, Dh(t)) involves a prediction based on the available sensory data combined with an internal model of
the perturbation (red arrow). B: Schematic representation of the sensory prediction on the joint displacement plotted as a function of time (numbers
are for illustration). The sensory prediction (red arrow) estimates the present state of the limb (thick trace) based on delayed sensory feedback (thin
trace) and internal assumptions about the perturbation profile. C: Illustration of overestimation resulting from updating the current state estimate
based on an expected movement profile (dashed trace) that follows the same initial displacement as the actual one but diverges during the time
interval corresponding to the feedback delay (solid trace).
doi:10.1371/journal.pcbi.1003177.g001

Author Summary

It is commonly assumed that the brain uses internal
estimates of the state of the body to adjust motor
commands and perform successful movements. A problem
arises when external disturbances deviate the limb from
the ongoing task. In such cases, the estimated state of the
body must be corrected based on sensory feedback.
Because neural transmission delays can destabilize feed-
back control, an important challenge for motor systems is
to correct the estimated state as quickly as possible. In this
paper, we tested whether such a rapid correction is
performed following mechanical loads applied to the
upper limb. Our results indicate that long latency
responses (,50–100 ms) exhibit knowledge of the rela-
tionship between the delayed sensed joint displacement
and the current state of the limb at the onset of the motor
response. Importantly, this knowledge can be adjusted
from one perturbation response to the next, should a
distinct perturbation profile be experienced. These results
suggest that a correction of state estimation is performed
within the limb rapid-feedback pathways, allowing fast
and stable feedback control.

Rapid Update in State Estimation
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and the actual plant [18]. However, prediction errors are

ubiquitous in biological motor control because of the multiple

sources of neural noise [19], and the presence of external

disturbances.

In order to produce stable and accurate feedback responses, we

suggest that motor systems rely on optimal state estimation while

taking feedback delays into account (Figure 2 C, Methods). The

resulting controller generated stable reaching movements as well

as feedback responses to the same perturbation loads (Figure 2 D).

Such a rapid correction involves a prediction based on the actual

sensory data combined with an internal model (or prior) about the

effect of the perturbation on the limb (Figure 2 C and D). Observe

that this mechanism is distinct from the usual motor prediction

because there is no causal relationship between the motor

command and the motion of the body. If participants rely on a

similar mechanism, the theory predicts that internal models of the

perturbation profiles must be engaged at the onset of the motor

response. This prediction was confirmed by the experiments

presented below. We first emphasize that internal priors modulate

long-latency responses to perturbations (Experiment 1). The

second experiment shows a trial-by-trial adaptation of these priors

to changes in perturbation profiles. Finally, we present two control

experiments confirming that these priors do not depend on the

muscle pre-activation (Experiment 3), and are specific to the

shape, and not the amplitude, of the perturbation loads

(Experiment 4).

Experiment 1
We tested the hypothesis that the brain uses sensory prediction

to drive the motor response by exposing participants to a large

number of step torque perturbations (1 Nm, 2 Nm and 3 Nm, see

Methods), of which typical evoked motion is depicted in Figure 3

A. Different directions and magnitudes were used to ensure that

participants were expecting a step profile, regardless of the step

amplitude. The effect of unexpected amplitude changes is

thoroughly addressed below (see Experiment 4). We used ramp-

up and ramp-down perturbations as catch trials in order to induce

unexpected variations in the joint displacement (Figure 3 B). We

reasoned that if the perturbation has a ramp-down or ramp-up

profile while a step torque is expected, the prediction based on

Figure 2. Computational models and simulations. A: Computational model based on a state estimator that ignores feedback delays and
directly integrates sensory feedback with prior beliefs about the body state. The controller outputs a motor command (ut) specified by the behavioral
goal and motor costs. The forward dynamic model (Motor Prediction) predicts the consequence of the descending motor command (Predicted
Consequences, x̂xtz1Dt). The feedback signal (yt+1) is a function of the delayed state vector expressed in f(xt2h+1), where h represents the feedback delay
in number of sample times (see Methods). B: Simulation of the model corresponding to panel A on the control of a single joint actuator during
unperturbed reaching movements of varying amplitudes (left) and following perturbation loads of three selected magnitudes (right). Displays are the
joint angle (top) and angular velocity (bottom). Time 0 corresponds to the onset of the reaching movement, or the perturbation onset (solid line). C:
Full model with the sensory predictor highlighted in red. Following a perturbation, the output of the motor prediction still indicates that the joint
displacement is zero, but the sensory prediction corrects the estimate of the joint state based on maximum-likelihood principle. This is illustrated by
the conditional expectation about the present state, given delayed sensory information (Predicted Current State, x̂xtz1Dt{hz1) D: Same as B with the
control and state estimation corresponding to panel C.
doi:10.1371/journal.pcbi.1003177.g002
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sensory feedback would lead to over- or under-estimation

respectively, which should be expressed in the motor response

(as illustrated in Figure 3 C for ramp-down profiles). Elbow

displacements are illustrated in Figure 4 A: notable is the variation

in the time of the peak elbow displacement (dashed vertical lines)

following ramp profiles (ramp-up, red; ramp-down, blue) relative

to those of step torque perturbations (black traces). The inset in

Figure 4 A shows for all subjects that the initial joint displacement

for the first ,10 ms following ramp-down or ramp-up profiles

corresponds to the 3 Nm and 1 Nm step perturbations, respec-

tively (gray rectangle, inset). Therefore, readouts of the initial limb

motion do not permit to determine whether the underlying torque

is a ramp-up (ramp-down) or a step perturbation (3 Nm or 1 Nm),

inducing errors in state estimation at the onset of the motor

response.

We found that the reversal time was a sensitive parameter that

captured the effect of the profile on the kinematics of the corrective

movements as well as the modulation of the feedback responses

across contexts (catch or blocked, see Methods). We measured this

parameter in joint coordinates as the time of maximum elbow

displacement, or in Cartesian coordinates as the time of the first

hand-speed minimum. Overall, we found that there was no main

effect of the step magnitude on the reversal times and hand speed

minimum (one-way ANOVA across step magnitudes, F,0.65,

P.0.1). A closer look revealed a significant difference between

reversal times following 1 Nm and 3 Nm perturbations (paired t-

test, t(12) = 3.6, P,0.01). This trend was not observed for the

timing of hand speed minimum. The effect of the profile on the

reversal time was robust and independent of the coordinate

system: both elbow reversal time and hand speed minimum

following ramp-down occurred significantly earlier than those of

step torque responses regardless of the amplitude of the step

(Figure 4 C, t(11).6.5, P,0.001). The opposite effect was observed

following ramp-up profiles, with a significant increase for the time

of hand-speed minimum relative to those of step-torque responses

(t(11).2.1, P,0.05), and a significant increase in elbow reversal

time relative to 3 Nm step torque responses (t(11) = 3.03, P,0.01).

Importantly, the changes in reversal times observed in Figure 4

C are not a simple consequence of physics and of the time-varying

ramp profiles. Instead, these changes reflect that participants relied

on a feedback control strategy that depended on the context.

When participants had to counter the same ramp-up or ramp-

down torques presented in a blocked manner, they altered their

feedback responses and the timing of corrective movements shifted

towards the values previously measured for step torque profiles

(Figure 4 A, bottom and 4 D). Following a ramp-down

perturbation, both elbow reversal times and times of hand-speed

minimum significantly increased towards values corresponding to

step torques (t(11).1.88, P,0.05). For the ramp-up torques, the

time of hand speed minimum decreased significantly (t(11) = 2.95,

P,0.01). Elbow reversal times followed the same trend

(t(11) = 1.54, P = 0.075).

The model based on Kalman filtering explains the effect of the

perturbation profiles on the kinematics of the corrective move-

ments (Figure 4 B). Prior expectations in the model were

determined by the dynamics of the external torque (Methods,

Eqn. 3). The time course of the actual and estimated state

variables is shown in Figure 5. Under the hypothesis that the

Figure 3. Procedures and perturbations. A: Overhead representation of the initial joint configuration and of a typical perturbation related
movement. The initial joint configuration is shown in black. Hand path from perturbation onset until the first hand-speed minimum (TH) is
represented in solid trace. The remaining portion of the corrective movement is shown in dashed trace. B: Illustration of the different torque profiles:
black traces illustrate the step perturbations (1 Nm and 3 Nm are displayed with thin traces), ramp-down perturbations in red and ramp-up
perturbations in blue. C: Schematic representation of the effect of a ramp-down perturbation profile on the state estimation: the overestimation (gray
region) result from the difference between the expected perturbation profile (step-function, dashed) and the actual perturbation (solid). The ramp-
down profile was designed to produce an overestimation as illustrated in Figure 1 C. The opposite reasoning applies to ramp up-perturbation that
produces an underestimation of the present state of the joint.
doi:10.1371/journal.pcbi.1003177.g003
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external torque is constant, the estimates of this variable can be

seen as a delayed and filtered version of the actual perturbation

(Figure 5 A, top). This produces an over- (under-) estimation

following the ramp-down (up) perturbation as illustrated by the

estimation error (Figure 5 B). These estimation errors are

propagated to the other state variables, leading to an over-

(under-) estimation of the actual joint velocity and displacement.

These estimation errors result from the fact that the Kalman filter

simultaneously corrects the present and past states under the

assumption that the external torque was constant throughout the

feedback delay period (dt = 60 ms). Our simulations capture three

critical aspects of the data. First, the model predicts an invariant

reversal time across the different values of step magnitude (Figure 4

B, C). This property is a consequence of the superposition

principle of linear systems, whereby scaled amounts of perturba-

tion-related motion result in scaling of the motor response. Our

data was compatible with this prediction, except for the difference

observed between reversal times following 1 Nm and 3 Nm step

perturbation. This difference may reflect the limitations of the

linear approximation. Second, the model also reproduces the

changes in the reversal times following ramp perturbations in a

way that is compatible with our experimental results (Figure 4 B,

C). Third, our hypothesis of a rapid update of the state estimate

accounts for the observed changes in reversal times depending on

whether ramp perturbations were expected or not (catch or

blocked designs, Figure 4 D): simulations were obtained by feeding

the controller with exact state information after artificially delaying

the response, so that reversal times following step responses were

exactly matched (see Methods). The difference between reversal

times of step or ramp profiles is markedly reduced when the

controller can rely on perfect state estimation (Figure 4 B, bottom),

and the shifts in reversal times were clearly compatible with

participants’ behaviour (Figure 4 D). This result is an important

prediction of the model: indeed the effect of the profile on the

corrective movement does not solely result from physics. Instead,

they reflect the model’s beliefs about the external torque and their

effect on the corrective response. It is important to realize that

estimation and control processes are independent in our model.

Therefore, as the control policy was always the same across all

simulations, we can ascribe the changes in feedback responses to

the estimation algorithm.

We collected the activity of elbow flexors and extensor muscles

in order to determine the time when prior-related components of

the response influenced the feedback correction. When partici-

pants expected a ramp-down perturbation (blocked condition), the

evoked response diverged from the response evoked by 3 Nm step

perturbations after 44 ms for Brachioradialis (Figure 6 A, ROC

Analysis) and 40 ms for Triceps Lateralis. In contrast, the same

analysis revealed that in the catch condition, responses followed

those evoked by 3 Nm step torques until 60 ms after perturbation

onset (76 ms for Triceps Lateralis), whereas the elbow displace-

ment was equal across catch and block conditions until .100 ms

(Figure 6 A). Observe also that the shoulder did not move until

.100 ms as a result of the multi-joint torque, which validates the

single joint model to address the problem of state estimation

following the perturbation. The onset of divergence between

ramp-down responses from the 3 Nm step torque across catch and

block conditions must be compared with the onset of divergence

measured across the step perturbations when participants relied on

adequate priors. In this case, responses diverged in less than 35 ms

Figure 4. Experiment 1: Behaviour. A: Average elbow motion from one exemplar subject when step perturbations were expected (top) and
when ramp-profiles were presented in blocked manner (bottom). Displays use the same color code as in Figure 3 B. The three black traces correspond
to 1 Nm, 2 Nm and 3 Nm step-torques. The vertical black dashed line is the reversal time averaged across responses to all step-torque perturbations.
Blue and red dashed lines represent the reversal times of ramp-up and ramp-down perturbations. The inset shows the initial elbow displacement for
the different perturbation profiles and magnitude (average 6 SD across subjects). The gray rectangle emphasizes that the initial joint displacement
across ramp-up (down) perturbations and the 1 Nm (3 Nm) step were similar for the first ,10 ms. B: Same as A from the model simulations. C: Timing
of the corrective response measured in joint coordinates based on the elbow reversal time (TE, black) and in Cartesian coordinate based on the first
hand speed minimum (TH, gray) for each perturbation profile (1, 2 and 3 Nm step torques; RD, ramp-down; RU, ramp-up; mean 6 SD across subject).
Orange dots represent the joint reversal time computed from model simulation. Times were measured for each subject and simulations relative to
the mean across responses to the step torque perturbations. Single (double) star(s) indicate significant differences at the level P,0.05 (P,0.01). D:
Effect of context on the timing of the corrective response for the ramp-down and ramp-up torque profiles with the same color code as in panel A.
doi:10.1371/journal.pcbi.1003177.g004
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for Brachioradialis and Triceps Lateralis in all pair wise

comparisons (Figure 6 B).

Changes in activity resulting from mistakenly tracking the

corresponding step function were significant in the long-latency

time window. Following ramp-down profiles, the pre-perturbation

activity (250–0 ms, see Methods), and the short latency response

(R1, 20–45 ms) were not significantly different across catch and

block conditions (Figure 6 C, one-tail paired t-test, t(11),1.31,

P.0.1), whereas significant context-related modulation was found

in the long-latency and early voluntary epochs of time (R2, 45–

75 ms: t(11) = 2.04, P = 0.03; R3, 75–105 ms: t(11) = 5.84, P,0.001;

Vol., 120–180 ms: t(11) = 2.98, P = 0.006). This effect means that,

for similar baseline and short-latency muscle activity, the long-

latency response was significantly reduced when participants were

expecting a ramp-down profile. The down-regulation of the

response started in the R2 time window and likely resulted from

internal processing of sensory data given that the joint displace-

ment was identical across conditions. The opposite tendency was

observed following ramp-up perturbations: responses in the

blocked condition displayed significant modulation in R2

(t(11) = 2.34, P = 0.019), whereas the other epochs displayed

statistically similar activity (t(11),1.64, P.0.05). We performed

an additional control experiment to address why the response

modulation was smaller following the ramp-up perturbations and

found that it was likely due to the relatively high perturbation

magnitudes (3 Nm), generating very high response rate. We

observed a stronger response modulation after reducing the

perturbation loads (see Methods).

In all, the prior-related component influences the muscle

response within about 60 ms of perturbation onset, in a way that

correlated with changes in the expected relationship between the

initial joint displacement and the state of the limb at the onset of

the motor response.

Experiment 2
A surprising result from Experiment 1 is that, on average, the

difference between ramp-down responses across conditions per-

sisted for a prolonged period of time (Figure 6 A). This suggests

that the internal priors are quite strong, and that the sensory data

does not fully overwrite it even after the time varying portion of

the ramp-down perturbation. Given the strength of these priors in

the corrective response, an important question is how rapidly they

can be updated should a distinct perturbation profile be

experienced. We designed the second experiment to test this

prediction. We used a random adaptation paradigm and tested the

influence of changes in perturbation profiles on the response to the

next trial [20,21]. This paradigm presents the advantage to test the

effect of a change in the perturbation profile on a large number of

trials, which is typically required for the analysis of EMG data.

The 2 Nm step and ramp-down were chosen based on the

results of the first experiment. After the habituation blocks (see

Methods), the two perturbations profiles were randomly inter-

Figure 5. State estimation following unexpected perturbations. A: Illustration of the actual (solid) and estimated (dashed) state variables.
From top to bottom, displays are the external torque (TE), the joint velocity and the joint displacement. 2 Nm step perturbation is represented in
black, ramp-down in red and ramp-up in blue. B: Estimation error for each perturbation profile, defined as the difference between the estimated state
and the true state.
doi:10.1371/journal.pcbi.1003177.g005
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leaved and equally likely. We sorted responses to each torque

profile (step or ramp) by the preceding trial and found that the

responses following a step perturbation displayed more vigorous

corrections for either perturbation type (quicker reversal times and

smaller total displacement) than those following a ramp-down

perturbation (Figure 7 A and B). EMG responses sorted by the

same criterion correlated with the trial-by-trial changes in the

behavior: up- or down-regulation was observed depending on

whether the preceding trial was a step or a ramp-down

perturbation, respectively (Figure 7 C and D). Importantly,

significant changes in muscle responses from all muscle samples

pooled together were found from the onset of the R2 time window

(45–75 ms, Figure 7 D), which confirms the results of Experiment

1. The difference between perturbation responses to the same

profile, (step or ramp-down) depending on the previous trial was

found at 66 ms, within the long-latency time window (ROC on the

differential signal relative to the pre-perturbation variability).

Observe that this divergence onset is found later than those

measured in the first experiment because, in this case, the

divergence were measured relative to the 3 Nm step responses

rather than across conditions. These results emphasize that

internal models of the perturbation profiles can be adjusted

following the occurrence of a single unexpected perturbation

profile.

Experiment 3
We first addressed whether inverting the internal prior affected

the response to the previously expected step perturbation profiles.

As predicted, reversal times following step perturbations tended to

be delayed when participants were expecting a ramp-down profile,

although this trend was only close to significant (Figure 8 A,

t(7) = 1.87, P = 0.051). Importantly, the long-latency and early

voluntary epochs displayed significant modulation across catch

and blocked conditions (Figure 8 C, t(7).1.9, P,0.05), showing

that the priors used in Experiment 1 can be reversed and modulate

the response to the step perturbations.

Second, this experiment was designed to investigate whether the

response modulation persisted when the muscles were pre-

activated. This experiment was motivated by the response

differentiation found at ,44 ms in the first experiment, which,

in theory, indicates that the short-latency pathway may have

contributed to the response modulation. We applied a background

load on the elbow joint (21 Nm) to evoked the same baseline

activity across the two series of blocks in which ramp-down trials

were presented as catch trials or in blocked fashion (Pre. across

conditions, t(7) = 0.4, P = 0.65). A short-latency response was

clearly evoked by each perturbation profile (R1 versus Pre.,

t(7).2.7, P,0.05), but these R1 responses were statistically similar

across catch and block conditions (t(7),0.4, P.0.25). In contrast,

Figure 6. Experiment 1: Muscle responses. A: Top: Average shoulder (dashed) and elbow (solid) joint displacements following extension torques
in three different cases, 3 Nm step torques (black), and ramp-down profiles in catch and blocked conditions (thin and thick red traces, respectively)
averaged across subjects. Shoulder motion was identical across all conditions and the corresponding traces are superimposed. Middle: Perturbation-
evoked response recorded from an elbow flexor (brachioradialis) with the same color code as in the top panel. Bottom: Difference between the 3 Nm
step response and the ramp-down in the catch condition (black), and between ramp-down torques in the block and catch (red). Arrows indicate the
onset of divergence from the 3 Nm evoked response. B: Response evoked by step-torque perturbations averaged across subjects. The shaded area
represents the standard error. The vertical arrow depicts the latest divergence onset across all pair-wise comparisons. C: Changes in evoked response
across the conditions where ramp-down (dark gray) or ramp-up (light gray) perturbations were presented in catch or blocked design. The grand
average of Brachioradialis and Triceps Lateralis responses was considered for this analysis. Positive designates that the evoked activity decreased in
the block condition.
doi:10.1371/journal.pcbi.1003177.g006
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long-latency (45 ms–105 ms) and early voluntary responses

(120 ms–180 ms) exhibited significant modulation across condi-

tions (Figure 8 B and C, t(7).1.9, P,0.05). The onset of

divergence across conditions was found at 55 ms (ROC on the

differential signal relative to the pre-perturbation activity). As in

Experiment 1, the modulation of the muscle response correlated

with the change in reversal time (Figure 8 A). Therefore, the

modulation of long-latency responses could be reproduced with

similar gains in the short-latency stretch response.

Experiment 4
In this experiment, we verified that the effect reported above

was specifically related to the perturbation profiles independent of

their magnitude. In theory, the controller only needs to know the

Figure 7. Results of experiment 2. A: Average hand path from one representative subject following step torques and ramp-down torques sorted
by trial n-1. The blue traces are the average across all trials preceded by a step perturbation and the red traces are the average across all trials
preceded by a ramp-down perturbation. B: Trial-by-trial modulation of the corrective response depending on the preceding trial for step (open
symbols) and ramp-down (filled symbols) flexion and extension perturbations (disk and diamond, respectively). Significant differences in data from
single perturbation profile (*) and from all perturbation pooled together ({) are shown at the level P,0.05 (one symbol) and P,0.01 (two symbols). C:
Grand average across the four muscles of interest and across subjects of trials sorted by trial n-1 with identical color code as in panel A for step
torques (left) and ramp-down (right) torque profiles. The black traces are the differential signals between blue and red responses. The dashed vertical
lines represent the different epochs of rapid motor responses (see Methods). D: Binned analysis of the difference in activation across responses
preceded by step torques and responses preceded by ramp-down torques for the four muscles of interests following step perturbations (left) and
ramp-down perturbations (right). As in panel C, positive designates an increased activity when the trial is preceded by a step perturbation. Bars
represent one standard error across the 12 subjects. From dark gray to light gray, displays are Brachioradialis (Br.), Biceps (Bc.), Triceps Lateralis (Tl.),
and Triceps Long (Tg.). Stars indicate significant modulation of the corresponding muscle at the level P,0.05 and the dagger ({) indicates significant
modulation from all muscle samples pooled together (one symbol, P,0.05; two symbols, P,0.01).
doi:10.1371/journal.pcbi.1003177.g007

Figure 8. Effect of muscle pre-activation. A: Changes in reversal times relative to the average across all step responses from the block condition
(similar as in Figure 4 C). Black and gray illustrate catch and block conditions while round and square items correspond to ramp-down and step
responses, respectively. B: Response evoked by ramp-down perturbation when these profiles are expected (black) or presented as catch trials (gray).
Data are from Brachioradialis and the trace is the average across subjects. Stars indicate that the response averaged in the corresponding time
window differed significantly across catch and block conditions (P,0.05). C: Same as B for the responses following step perturbations (2 Nm).
doi:10.1371/journal.pcbi.1003177.g008
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perturbation profile to correct the state estimate, independently

from the perturbation magnitude. A direct prediction of the model

is that participants expecting a step torque should be able to

respond to any perturbation magnitude provided that it follows a

step function. Alternatively, if changes in control gains are

involved, we expect to see a delayed corrective movement

following the unexpected 3 Nm step torques since subjects were

expecting a smaller perturbation (2 Nm). Feedback responses

should also overcompensate for an unexpected 1 Nm perturba-

tion. We tested these predictions by exposing participants to a

large number of step torques of 2 Nm and presented step

perturbations of 1 Nm or 3 Nm as catch trials following the same

distribution as in the first experiment (see Methods). We found that

reversal times were essentially invariant across all step magnitudes

even when the large (3 Nm) and small (1 Nm) perturbations were

unexpected. Figure 9 shows the reversal times and the time of

hand speed minimum. As observed in Experiment 1, the reversal

times displayed little variation across the different values of the step

perturbation magnitude. We used the same axis as in Figure 4 C to

emphasize that unexpected changes in step magnitude cannot

account for the effect of unexpected ramp-profiles on the reversal

times. Indeed, the variation in reversal times evoked by ramp-

down torques are of the order of 240 ms on average (Figure 4 C),

which is clearly outside of the range of values reported in Figure 9

A. While the effect of ramp-up torques was overall smaller, the

shift in reversal time of ,10 ms on average (Figure 4 C) is also

outside of the range reported in this experiment.

These results suggest that the variation in the kinematics of

corrective movements emphasized above is specific to the shape of

the perturbation. Muscle responses of an elbow flexor are shown in

Figure 9 B: the scaling of the response with the magnitude of the

step can be observed very early. The measured onset of divergence

across all paired comparisons of response populations was found in

the short-latency time window (ROC, 35 ms vertical arrow). This

result shows that although changes in magnitude were unexpected,

participants did not track any inadequate response strategy as

observed following ramp perturbations.

Discussion

This study shows that internal models of the perturbation loads

influence long-latency responses to mechanical perturbations.

Simulations based on optimal feedback control suggest that these

priors reflect a rapid correction of the estimated state of the limb

based on sensory prediction. In general, internal priors strongly

influence decisional processes [22,23], multi-sensory integration

[24–27] and forward predictions [12,16,17,28]. This study shows

that internal priors also influence the feedback control strategies

following mechanical perturbations.

Although previous studies have suggested that the brain uses

sensory prediction following a perturbation [13,14,29], direct

evidence was missing because the latter studies addressed changes

in feedback responses over longer time windows (.100 ms),

during which the usual forward dynamic model is engaged

(Figure 2, Motor Prediction). Also, these studies did not investigate

how quickly the prediction performed on sensory signals was used

to guide motor responses. In order to disambiguate sensory from

motor prediction mechanisms, it was necessary to manipulate the

perturbation over a time window during which the motor

command does not influence the motion of the limb. We

addressed this concern by varying the load profiles over a time

window corresponding to the shortest sensorimotor delays, as we

suspected that the sophistication of long-latency responses is at

least partially due to a rapid update in state estimation [30].

Our approach focuses on the rather simple case of a constant

external torque, which is easy to model in the framework of linear

systems. However, the limitations of linear systems are only

theoretical and our data suggest that participants were able to

learn more complex priors corresponding to non-linear ramp-up

or ramp-down perturbations. Whether we are able to learn any

perturbation profile, or equivalently any mapping between the

sensed initial motion and the actual state of the limb, is an open

question. Another important question is how multiple priors can

be acquired. Our daily lives suggest that we can acquire motor

skills in distinct tasks (such as biking and skating) without re-

learning every time that we switch between tasks. A recent study in

the context of force field learning has emphasized that multiple

internal models can be acquired provided that the internal

representation of the movements are distinct [31]. If a similar

mechanism underlies internal models for sensory predictions, we

expect that contextual factors play a key role for the acquisition of

multiple priors associated with distinct motor tasks.

Overall, the effects of prior expectations on the muscle response

as well as on the kinematics of the corrective movements were

quite small. This is not surprising as perturbations were

manipulated over a very short time interval (,50 ms), and the

resulting unexpected change in limb motion can only be small. A

clear difficulty is that it is not possible to investigate the case where

Figure 9. Effect of unexpected changes in perturbation magnitude. A: Reversal times and hand speed minima across the tested values of
step magnitudes as presented in Figure 4 C. We used the same scale as in Figure 4 C to emphasize that unexpected changes in step magnitude could
not account for the effect of ramp profiles on the times of reversal or hand speed minima. B: Perturbation evoked response from Brachioradialis
averaged across subjects. The vertical arrows illustrate the latest onset of divergence across all pair wise comparisons based on ROC analysis (35 ms).
doi:10.1371/journal.pcbi.1003177.g009
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no estimation at all is engaged in the response. Instead, we had to

manipulate participants’ expectations to extract the evidence for a

sensory predictor. Although our approach evoked small effects in

terms of magnitude, the results were consistently reproduced

across experiments. Importantly, we also showed with simulations

that ignoring the use of sensory predictions could lead to instability

that should clearly be avoided at all cost.

We also demonstrate two key properties of the sensory

predictor. First, we show that the influence of a prior during

mechanical perturbations occurs from ,45 ms to ,60 ms, at

which time the motor response started to diverge towards the

appropriate profile. Assuming a contribution of the transcortical

feedback with sensory and motor delays of about 30 ms [32,33], it

is possible that the internal prior uses at most 15 ms of sensory

information. Accumulating sensory evidence overrides this prior

with a further 15 ms of information. However, we found that the

responses remained biased by the expected profile well beyond this

early time period, which may reflect the continued influence of the

prior.

A second key property of sensory predictors is that it is modified

on a trial-by-trial basis, which parallels the properties of the

voluntary motor system observed in force-field learning studies

[20,34]. We randomly interleaved two response profiles and found

that perturbation responses were also modified by the perturbation

applied on the previous trial. This result emphasizes that similar

mechanisms underlie voluntary control and rapid feedback

responses to perturbations [30].

In principle, it is also possible that feedback gains were changed

independently from any update in state estimation. Such changes

in feedback gains may originate from internal set of the control

strategy, or from changes in the peripheral motor apparatus

through co-contraction and stiffness modulation [35–37]. While it

is difficult to completely rule out such alternative interpretation,

we believe that, in the present case, several features of our data

argue against non-specific changes in control gain. First, we

showed that applying control gains to delayed sensory feedback

was likely to generate unstable oscillations. Although the control

performances in such cases should be thoroughly investigated, our

simulations suggest that delays on the order of tens of milliseconds

cannot be ignored to produce fast and accurate feedback responses

(see Figure 2).

Second, we found that the modulation of long-latency responses

according to prior expectation was present even after controlling

for the pre-perturbation activity and short-latency reflex (Exper-

iment 3). This experiment was partially motivated by the

divergence onset between the expected ramp-down from the

3 Nm perturbations that we found at the end of the short-latency

time window (Experiment 1). However, even with similar R1

responses, it is possible that rapid sensory predictions occurred at

the periphery [38], and that the sensitivity of the spindles to

changes is muscle velocity and acceleration was adjusted according

to participants’ expectations [39–41]. Besides possible adjustments

of the peripheral apparatus, our suggestion is that a similar sensory

input is mapped into a distinct motor output as a result of a

learned relationship between the initial joint displacement and the

state of the limb. An important question is to determine under

which circumstances motor systems rely on non-specific modula-

tion of the short latency pathway as opposed to a novel

sensorimotor mapping.

Finally, unexpected changes in the step magnitude did not

generate any over nor under compensation. Responses to 1 Nm

and 3 Nm step perturbations were clearly similar regardless of

whether changes in perturbation magnitudes were expected or

not. Therefore, changes in reversal times evoked by ramp

perturbations could not be explained by a possible modulation

of control gains involved in response to unexpected changes in

perturbation magnitude. These results were predicted by the

model: the Kalman filter can correct the present estimate of the

state of the limb by combining the sensed step magnitude of each

individual trial with prior assumptions about the perturbation

profile. As a consequence, time-varying feedback responses result

from a constant feedback control policy applied to time varying

estimates of the state of the limb, which does not require any prior

knowledge about the perturbation magnitude. The controller only

needs to know the perturbation profile.

Future studies should investigate the underlying neural path-

way. The latency of the prior-related component already sets

physiological constraints on the possible candidates. The cerebel-

lum is clearly a candidate region given its known implication in

prediction processes associated with descending commands

[16,42–44]. Our sensory-based prediction is similar in many

respects; the main differences are that sensory information is used

as input rather than the motor command, and the time interval

over which the prediction is computed is distinct. Otherwise, these

two prediction processes need the same internal model of limb

dynamics. The cerebellum also responds to mechanical perturba-

tions in the required time window [45,46] and projects to the

primary motor cortex that is known to contribute to long-latency

activity [47–49]. In addition, cerebellar dysfunction induces

oscillatory feedback responses to perturbations [50–52], which

recalls the stability issue encountered when feedback delays were

ignored (Figure 3). From this perspective, cerebellar modulation of

reflex gains could be a stabilizing mechanism that anticipates what

the motor system should do in the present time.

A sensory prediction is critical when abrupt perturbations

induce large displacement as in the present study. However,

disturbances can also be encountered at smaller scales including

noise in neural circuits, and feedback responses are likely engaged

at the level of small deviations corresponding to natural variability

[53]. Even small deviations in the limb motion must be processed

to accurately adjust the ongoing motor command. In this respect,

the sensory predictor must be engaged during voluntary move-

ments as well as following external perturbations. Motor learning

and development of motor skills is also clearly contingent upon the

acquisition of both sensory and motor predictive models since

feed-forward and feedback processes must incorporate knowledge

of the dynamical interaction with the environment [14]. Biking on

a bumpy road, skating or countering wind gusts pushing one’s sail

are examples of tasks that we could hardly learn to stabilize

without adaptive sensory prediction of the state of the body.

Methods

Ethics Statement
The Queen’s University Research Ethics Board approved the

experimental protocol and participants gave written informed

consent following standard procedures.

Apparatus
Subjects interacted with a virtual reality display showing visual

targets and a right-hand aligned cursor in the horizontal plane.

Participants’ right arm was placed on an exoskeleton that can

selectively apply torques at the shoulder and/or elbow joints

(KINARM, BKIN Technologies, Kingston, ON [54,55]). Arm

motion was constrained to the horizontal plane. The target (radius

1.2 cm) was located at 45 and 90 degrees of shoulder and elbow

angles for each subject (Figure 3 A). Perturbations were applied

after a random delay (between 1 s and 2 s) following stabilization
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at the start target. In all cases, perturbations were built up in 5 ms

and equal amounts of torque were applied at the shoulder and

elbow joints. This procedure allows compensating for interaction

torques at the elbow joint, which cancels the initial shoulder

acceleration and produces pure elbow motion for ,150 ms [56].

The hand-aligned cursor was extinguished at perturbation onset.

Participants were instructed to return to the target within 800 ms

of perturbation onset and stabilize for 2 s. We used different time

varying perturbation profiles to produce an ambiguous relation-

ship between the present state of the limb and the initial joint

displacement sensed after the feedback time delay. The different

perturbation profiles are illustrated in Figure 3 B. The step

perturbations of different magnitudes followed a linear buildup of

5 ms. The ramp-down perturbation followed a linear ramp from

0 Nm to 3 Nm in 5 ms, and then from 3 Nm to 1 Nm in 50 ms.

The ramp-up perturbation followed a linear build up from 0 to

1 Nm in 5 ms, followed by a second linear build up from 1 Nm to

3 Nm in 50 ms (Figure 3 B).

Main Experiments
Experiment 1. This experiment tested whether feedback

responses to perturbation engaged internal priors about the

perturbation profile. To do so, we used step torque perturbation

of varying size and direction so that participants were expecting

this perturbation profile. We addressed the effect of unexpected

time-varying perturbation by using ramp-up or ramp-down

perturbations randomly presented as catch trials (Figure 3 B).

Subjects (N = 12) completed four identical blocks separated by

short pauses to avoid fatigue. Each block consisted of 60 step trials

(10 flexion or extension 61, 2 or 3 Nm), 8 ramp-up trials and 8

ramp-down trials (46 flexion or extension for each profile),

summing to a total of 76 trials per block. We also investigated

whether participants altered their responses to each of the ramp

profiles if they were expected. After the four initial blocks,

participants were exposed to two blocks of ramp-up or ramp-down

perturbations presented in blocked fashion (60 trials, 306 flexion

or extension for each perturbation profile) in order to test whether

changes in the context modulated the feedback response to these

perturbation profiles.

We also performed an additional experiment to address the

influence of the load magnitude on the response profiles to the

ramp-up perturbations. Indeed, the response modulation following

ramp-up perturbations was weaker, which is partially due to the

large perturbation loads applied (3 Nm). We used the same

paradigm on 8 participants while using load magnitudes reduced

by 20% in order to see whether smaller load magnitudes leave

more room for the response modulation following the ramp-up

perturbations. Participants countered step torques of 0.8 Nm,

1.6 Nm or 2.4 Nm while ramp-up perturbations (from 0 to

0.8 Nm in 5 ms, and 0.8 to 2.4 in 50 ms) were presented as catch

trials with the same distribution as in the main experiment.

Participants were also exposed to a block of ramp-up perturba-

tions. The sequence of blocks was randomized across participants.

This control experiment reproduced the results of the main

experiment and amplified the response modulation across

conditions (see Results). We found a stronger effect following

ramp-up torques: the reversal times were significantly delayed

relative to those following step perturbations (DTime = 11.5 ms on

average, t(7).2.3, P,0.05), and the modulation of muscle response

was significant in the R2 (t(7) = 2.21, P = 0.031) and early voluntary

time windows (t(7) = 2.02, P = 0.041).

Experiment 2. In this experiment, we investigated the effect

of a change in the perturbation profile on the feedback response

strategy of the following trial by using a random adaptation

paradigm. This experiment sought to examine whether the

component of the rapid feedback responses that depends on prior

expectations can be quickly adjusted from trial-to-trial as observed

for voluntary control [20,34]. To do so, we chose step torques

(2 Nm) and ramp-down profiles based on the results of Experi-

ment 1 as these profiles elicited a robust behavioral effect. After

performing a series of 60 of each perturbation type to familiarize

subjects with the experimental setup, subjects (N = 12) were

exposed to four blocks in which step or ramp-down torques were

randomly interleaved and equally likely. Each block consisted of

60 trials including ramp-down and step perturbations (156step or

ramp-down6flexion or extension). The order of the initial

habituation blocks was randomized across participants to avoid

inducing a systematic bias towards the profile experienced in the

last habituation block.

Control Experiments
Experiment 3. This experiment tested two main effects. First,

we used a similar paradigm as in Experiment 1 except that we had

step perturbations as catch trials while participants were expecting

a ramp-down perturbation. Second, this experiment was per-

formed with a constant load applied on the elbow (21 Nm) to in

order to control for the pre-perturbation activity and short-latency

reflex. In one series of blocks, participants (N = 8) were instructed

to counter the perturbations including step torques of 61 Nm,

62 Nm and 63 Nm. Perturbations were randomly interleaved

and added to the constant background load. Ramp-down

perturbations were presented as catch trials following the same

distribution as in Experiment 1 (16 ramp-down perturbations for

60 step perturbations). In another series of blocks, ramp-down

perturbations were blocked and 2 Nm step-torques were presented

as catch trials. The sequence of each series of blocks was varied

across subjects to eliminate possible order effects.

Experiment 4. We finally examined the effect changes in

control gains evoked by an unexpected step magnitude. We

needed to verify that unexpected changes in the step magnitude

did not produce variation in movement kinematics that could

account for the effect emphasized in the first experiment.

Participants (N = 8) had to counter step torques of 62 Nm

presented in blocks of 48 trials (246 flexion or extension). Step

perturbation of 63 Nm and 61 Nm were presented as catch trials

(463 Nm or 1 Nm6flexion or extension per block), summing to a

total of 64 trials per block. Each subject performed three blocks.

Data Collection and Analysis
Shoulder and elbow motion were collected at 1 kHz and

digitally filtered at 50 Hz (4th order dual-pass Butterworth filter).

We considered both the kinematics of elbow motion as well as

hand paths in Cartesian coordinates to validate the use of the

single joint model presented below. Muscle activity was collected

by means of surface electrodes attached on the muscle belly after

light abrasion of the skin with alcohol (DE-2.1, Delsys, Boston,

MA). We concentrated on the mono-articular elbow muscles for

Experiment 1, 3 and 4 (Brachioradialis, Br.; Triceps Lateralis, Tl.),

and on the mono- and bi-articular elbow muscles for Experiment 2

(Biceps, Bc; and Triceps Long, Tg., in addition to Br. and Tl.).

The raw EMG signal was amplified (gain = 104), digitally band-

pass filtered (10–400 Hz), rectified, and averaged across trials.

EMG signals were normalized to the average activity measured

against a 2 Nm background load for all muscle samples (except in

Experiment 3 where we used the activity evoked by the 1 Nm

background load), while participants maintained postural control

in the initial joint configuration (elbow = 90 deg and shoulder = 45

deg). The binned analysis of muscles activity was based on average
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EMG across the different epochs following classical definitions

(Pre., 250 to 0 ms, R1, 20 to 45 ms; R2, 45 to 75 ms; R3, 75 to

105 ms and early voluntary from 120 to 180 ms [57]). Statistical

comparisons of kinematics or integrated EMG were based on one-

tailed paired t-tests across the different conditions. We used

Receiver Operating Characteristics (ROC) to determine the onset

of divergence between time series of EMG signals [58].

Model
The importance of the model is to provide a rationale for the

experimental design as well as predictions about the effect of the

perturbation profile on the kinematics of the corrective movement.

The hypothesis that the brain uses a process similar to a Kalman

filter was found to be a very powerful approach to characterize the

online combination of internal priors with multisensory informa-

tion [25,26,59]. We used this model in the context of optimal

control to emphasize the consequences of feedback delays within a

framework that is compatible with current approaches in

sensorimotor control.

We considered the angular motion of a rigid body as a model of

the elbow joint. The choice of a single joint model was compatible

with the perturbation-related motion immediately after the

perturbation onset. Indeed, because we applied similar amounts

of torque at the shoulder and elbow, the initial shoulder

acceleration is zero as a result of the initial joint configuration

and dynamics. Our data confirmed this property as the shoulder

did not move until .100 ms following the perturbation. There-

fore, the problem of state estimation following the perturbation

reduces to the estimation of the elbow joint displacement in

agreement with the single joint model. In addition, more complex

models (e.g. nonlinear models including inter-segmental dynamics)

are not necessary because the single-joint model captures the

problem caused by feedback delays. Thus, we kept the model as

simple as possible.

The differential equation of the joint motion was coupled with a

first order, low-pass model of muscle dynamics linking the control

variable to the muscular torque. The net torque was the sum of a

viscous torque proportional to the angular velocity, a controlled

torque (TC) and an external torque (TE). The different parameters

(inertia, viscosity and time constants) were estimated from

physiological models [60,61]. The controlled torque was a first

order, low-pass response to the control variable (u) with time

constant t= 60 ms. The inertia (I = 0.065 Kg m2) was estimated

from the robot structure and average anthropometric data. The

viscous constant was set to G = 0.05 N/s. The angular motion of

the joint is described by the following system of differential

equations (h is the joint angle and the dot represents time

derivative):

I€hh~{G _hhzTCzTE ð1Þ

t _TTC~u{TC ð2Þ

_TTE~0 ð3Þ

This system was transformed into a discrete time control system

by using classical Euler integration with 10 ms time step in order

to take noise disturbances into account. Feedback delays were set

to 60 ms. This value of feedback delay is compatible with the long-

latency transmission delays, and also takes into account the fact

that the controller, unlike EMG, can change the control value

instantaneously. We therefore added on time step to the usual

,50 ms considered for long latency delays in order to generate

more realistic simulations. The state vector is composed of the

joint angle, the joint velocity, the torques and the target location

(noted h*) at each time step:

zt~ h _hh TC TE h�
� �T ð4Þ

The dependency of the state variables on time was omitted for

clarity. In order to take feedback delays into account, the state

vector must be augmented to include the previous time steps until

the first time step observable by the controller. We define the

augmented state as follows:

xt~ zT
t zT

t{1 . . . zT
t{h

� �T ð5Þ

where h = 6 represents the feedback delay expressed in number of

sample times (60 ms). After reduction to the non-delayed case by

system augmentation (Equation 5), the discrete dynamics and

feedback can be written as:

xtz1~AxtzButzjt ð6Þ

yt~Hxtzvt ð7Þ

The matrices A and B are determined by the system dynamics and

augmentation (Eqns. 1–3), and H expresses that only the most

delayed time-step of the augmented state vector is observable by

the controller (On and In are zeros and identity matrices of

appropriate dimension):

H~ On On . . . In½ � ð8Þ

We considered additive Gaussian noise (jt and vt) affecting the

control and feedback signals to ensure that the state estimation was

independent from the control mechanism [62]. However, all

simulated results were similar in the presence of signal-dependent

noise. The motor noise (jt) only affected the control signal

(Equation 2) while the feedback noise (vt) affected all entries of the

observed state vector (Equation 7).

For this class of system, the Kalman filter gives an unbiased

estimate of the state vector (Equation 5) that minimizes the

estimation variance [63]. The state estimation is performed in two

steps. We used x̂xt to designate the estimated state at time step t

following standard notations. First, a prior estimate is computed

based on the motor commands and internal models of the systems

dynamics (x̂x
p
tz1). This prior estimate was also corrupted by

additive Gaussian noise (ft):

x̂xp
tz1~Ax̂xtzButzft ð9Þ

Then, the prior estimate is corrected by the difference between

expected and actual sensory feedback, weighted by the Kalman gain:

x̂xtz1~x̂xp
tz1zKtz1 yt{Hx̂xp

tz1

� �
ð10Þ

The rapid update of state estimation results from the definition of the

augmented state. Indeed, the second term in Equation 10 corrects

the prior estimate (Equation 9), which itself contains the past state
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vectors (Equation 5). Hence, the Kalman filter simultaneously

corrects the sequence of joint angle, joint velocities and torques over

the time interval corresponding to the feedback delay. Because a

constant external torque is assumed (Equation 3), the controller

treated changes in the external torque as step function. Hence, the

sensory prediction results from the estimation of the augmented state

vector (Equation 5), under the hypothesis that the external torque

was constant. The consequences of assuming an external torque on

the state estimation following the perturbation is illustrated in

Figure 5.

The task of the controller was to stabilize the joint at a given angle

against the external torque and noise disturbances. The cost-function

that penalized deviation from the prescribed joint angle was:

J~
XN

t~1

w ht{h�ð ÞzRtu
2
t ð11Þ

N is the time horizon expressed in number of time steps; w and Rt,

t,N, are constant scaling parameters and RN = 0. This cost-function

simply penalizes deviation from h* at minimum motor cost. For this

class of control problems, the optimal control sequence is a linear

function of the state estimate that can be written as follows:

ut~{Ltx̂xt ð12Þ

All noise parameters were Gaussian with zero mean and variance

equal to 1026. This small value of noise variance is due to the fact

that random disturbances are generated at each time step, and the

variance should therefore scale according to the magnitude of the

time step. When the process is simulated, we obtained a standard

deviation of the joint angle of ,0.1 deg over a 100 ms time window,

which is compatible with the natural variability of unperturbed

postural control [64]. The cost parameters were adjusted to match

the perturbation related motion across simulations and data.

Changing these parameters, as well as the delay in the feedback

loop, had qualitatively no impact on the simulation results. The full

control algorithm consisted in applying optimal feedback gains to

estimates of the system state obtained from adaptive Kalman filter

(Eqn. 12). The derivation of optimal feedback gains and Kalman

gains followed procedures fully described earlier [62,64,65].

Simulations
The simulations of reaching movements presented in Figure 2

were obtained by letting the system free to move for 600 ms (w = 0

in Eqn. 11), and then penalizing deviations from the prescribed

joint angle (10, 15 or 20 deg) for 400 ms. Regarding simulations of

postural control with perturbations, we used a time horizon that

was sufficiently large so that the feedback gains (Lt in Eqn. 12) were

constant, approximating a steady-state postural control task. The

different perturbation profiles were reproduced by changing the

value of the external torque numerically (TE). We tested whether

the forward update in state estimation could be ignored by

implementing a Kalman filter with the following feedback signal

instead of Equation 7:

yt~xt{hzvt ð13Þ

where xt was defined in Equation 4. In fact, ignoring the system

augmentation violates the assumption that the Kalman filter uses

the conditional distribution of the feedback signal given the

present state [63], and the control design is therefore prone to

instability as a consequence of time delays in the feedback loop.

Finally, the blocked condition for the ramp-up/down pertur-

bation profiles was simulated based on the assumption that the

ideal control performance would be achieved if the controller

could rely on perfect state information. To approximate this, we

artificially set the control signal to 0 for a time interval

corresponding to the feedback delay following the perturbation,

and then applied the feedback gains to the true state of the system.

In this case, the perfect state information corresponds to an

estimation error that is zero, and the performance of the resulting

control process corresponds to the best-case scenario. The artificial

delaying of the response was used to generate a realistic

displacement of the joint following the perturbation. We verified

that the reversal times following step perturbations were identical

with artificially delaying of the response, allowing us to compare

changes in reversal times following ramp-perturbations. We should

emphasize that the simulations based on perfect state information

indicate what the system should do in the ideal case, without

dealing explicitly with more complex priors. A theoretical

limitation is that such complex profiles are difficult to reproduce

within the framework of linear systems without additional

dimensions and parameters. We performed additional simulations

in which the external torque follows linear profiles (by setting the

derivative of TE to a non-zero value), and found the same results as

with perfect state information. We decided to concentrate on the

simulations with veridical state information because it provided the

same prediction with fewer assumptions.

In general, the variability in the reversal times from the

simulations was lower than variability observed experimentally.

The confidence interval was further reduced by considering the

average reversal times across 50 simulation runs. In order to

emphasize that effect of the estimation algorithm on corrective

movements, we did not attempt to reproduce the experimental

variability and chose to concentrate on the average reversal times

across simulations (Figure 4).

A shortcoming of our approach is that we change the value of

the external torque (TE) during the simulations, while the feedback

gains and Kalman gains depend on the initial condition (and

uncentered covariance matrices) for which TE was set to 0.

However, this procedure has no impact on the simulation results

because we only used additive noise, making the process variability

independent from the values of the state variables. In the presence

of signal dependent noise, small changes in control gains and

Kalman gains were observed following changes in the external

torque value because higher motor commands induced more

variable control signals. However, this small reduction in gains did

not impact the simulation results presented above.
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